ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sslin GIF version

Theorem sslin 3410
Description: Add left intersection to subclass relation. (Contributed by NM, 19-Oct-1999.)
Assertion
Ref Expression
sslin (𝐴𝐵 → (𝐶𝐴) ⊆ (𝐶𝐵))

Proof of Theorem sslin
StepHypRef Expression
1 ssrin 3409 . 2 (𝐴𝐵 → (𝐴𝐶) ⊆ (𝐵𝐶))
2 incom 3376 . 2 (𝐶𝐴) = (𝐴𝐶)
3 incom 3376 . 2 (𝐶𝐵) = (𝐵𝐶)
41, 2, 33sstr4g 3247 1 (𝐴𝐵 → (𝐶𝐴) ⊆ (𝐶𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  cin 3176  wss 3177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-ext 2191
This theorem depends on definitions:  df-bi 117  df-tru 1378  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-v 2781  df-in 3183  df-ss 3190
This theorem is referenced by:  ss2in  3412  difdifdirss  3556  ssres2  5008  ssrnres  5147  sbthlem7  7098  ioodisj  10157  ntrss  14758  cnptoprest  14878
  Copyright terms: Public domain W3C validator