ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sslin GIF version

Theorem sslin 3249
Description: Add left intersection to subclass relation. (Contributed by NM, 19-Oct-1999.)
Assertion
Ref Expression
sslin (𝐴𝐵 → (𝐶𝐴) ⊆ (𝐶𝐵))

Proof of Theorem sslin
StepHypRef Expression
1 ssrin 3248 . 2 (𝐴𝐵 → (𝐴𝐶) ⊆ (𝐵𝐶))
2 incom 3215 . 2 (𝐶𝐴) = (𝐴𝐶)
3 incom 3215 . 2 (𝐶𝐵) = (𝐵𝐶)
41, 2, 33sstr4g 3090 1 (𝐴𝐵 → (𝐶𝐴) ⊆ (𝐶𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  cin 3020  wss 3021
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082
This theorem depends on definitions:  df-bi 116  df-tru 1302  df-nf 1405  df-sb 1704  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-v 2643  df-in 3027  df-ss 3034
This theorem is referenced by:  ss2in  3251  difdifdirss  3394  ssres2  4782  ssrnres  4917  sbthlem7  6779  ioodisj  9617  ntrss  12070  cnptoprest  12189
  Copyright terms: Public domain W3C validator