ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nntri1 Unicode version

Theorem nntri1 6549
Description: A trichotomy law for natural numbers. (Contributed by Jim Kingdon, 28-Aug-2019.)
Assertion
Ref Expression
nntri1  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  C_  B  <->  -.  B  e.  A ) )

Proof of Theorem nntri1
StepHypRef Expression
1 ssnel 4601 . 2  |-  ( A 
C_  B  ->  -.  B  e.  A )
2 nntri3or 6546 . . . 4  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  e.  B  \/  A  =  B  \/  B  e.  A
) )
3 df-3or 981 . . . . . . 7  |-  ( ( A  e.  B  \/  A  =  B  \/  B  e.  A )  <->  ( ( A  e.  B  \/  A  =  B
)  \/  B  e.  A ) )
43biimpi 120 . . . . . 6  |-  ( ( A  e.  B  \/  A  =  B  \/  B  e.  A )  ->  ( ( A  e.  B  \/  A  =  B )  \/  B  e.  A ) )
54orcomd 730 . . . . 5  |-  ( ( A  e.  B  \/  A  =  B  \/  B  e.  A )  ->  ( B  e.  A  \/  ( A  e.  B  \/  A  =  B
) ) )
65ord 725 . . . 4  |-  ( ( A  e.  B  \/  A  =  B  \/  B  e.  A )  ->  ( -.  B  e.  A  ->  ( A  e.  B  \/  A  =  B ) ) )
72, 6syl 14 . . 3  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( -.  B  e.  A  ->  ( A  e.  B  \/  A  =  B ) ) )
8 nnord 4644 . . . . . . 7  |-  ( B  e.  om  ->  Ord  B )
9 ordelss 4410 . . . . . . 7  |-  ( ( Ord  B  /\  A  e.  B )  ->  A  C_  B )
108, 9sylan 283 . . . . . 6  |-  ( ( B  e.  om  /\  A  e.  B )  ->  A  C_  B )
1110ex 115 . . . . 5  |-  ( B  e.  om  ->  ( A  e.  B  ->  A 
C_  B ) )
1211adantl 277 . . . 4  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  e.  B  ->  A  C_  B )
)
13 eqimss 3233 . . . . 5  |-  ( A  =  B  ->  A  C_  B )
1413a1i 9 . . . 4  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  =  B  ->  A  C_  B
) )
1512, 14jaod 718 . . 3  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( ( A  e.  B  \/  A  =  B )  ->  A  C_  B ) )
167, 15syld 45 . 2  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( -.  B  e.  A  ->  A  C_  B
) )
171, 16impbid2 143 1  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  C_  B  <->  -.  B  e.  A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    \/ w3o 979    = wceq 1364    e. wcel 2164    C_ wss 3153   Ord word 4393   omcom 4622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-uni 3836  df-int 3871  df-tr 4128  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623
This theorem is referenced by:  nnsseleq  6554  nnmword  6571  nnawordex  6582  nndomo  6920  nnnninfeq  7187  ennnfonelemex  12571  pwle2  15489
  Copyright terms: Public domain W3C validator