ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nntri1 Unicode version

Theorem nntri1 6499
Description: A trichotomy law for natural numbers. (Contributed by Jim Kingdon, 28-Aug-2019.)
Assertion
Ref Expression
nntri1  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  C_  B  <->  -.  B  e.  A ) )

Proof of Theorem nntri1
StepHypRef Expression
1 ssnel 4570 . 2  |-  ( A 
C_  B  ->  -.  B  e.  A )
2 nntri3or 6496 . . . 4  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  e.  B  \/  A  =  B  \/  B  e.  A
) )
3 df-3or 979 . . . . . . 7  |-  ( ( A  e.  B  \/  A  =  B  \/  B  e.  A )  <->  ( ( A  e.  B  \/  A  =  B
)  \/  B  e.  A ) )
43biimpi 120 . . . . . 6  |-  ( ( A  e.  B  \/  A  =  B  \/  B  e.  A )  ->  ( ( A  e.  B  \/  A  =  B )  \/  B  e.  A ) )
54orcomd 729 . . . . 5  |-  ( ( A  e.  B  \/  A  =  B  \/  B  e.  A )  ->  ( B  e.  A  \/  ( A  e.  B  \/  A  =  B
) ) )
65ord 724 . . . 4  |-  ( ( A  e.  B  \/  A  =  B  \/  B  e.  A )  ->  ( -.  B  e.  A  ->  ( A  e.  B  \/  A  =  B ) ) )
72, 6syl 14 . . 3  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( -.  B  e.  A  ->  ( A  e.  B  \/  A  =  B ) ) )
8 nnord 4613 . . . . . . 7  |-  ( B  e.  om  ->  Ord  B )
9 ordelss 4381 . . . . . . 7  |-  ( ( Ord  B  /\  A  e.  B )  ->  A  C_  B )
108, 9sylan 283 . . . . . 6  |-  ( ( B  e.  om  /\  A  e.  B )  ->  A  C_  B )
1110ex 115 . . . . 5  |-  ( B  e.  om  ->  ( A  e.  B  ->  A 
C_  B ) )
1211adantl 277 . . . 4  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  e.  B  ->  A  C_  B )
)
13 eqimss 3211 . . . . 5  |-  ( A  =  B  ->  A  C_  B )
1413a1i 9 . . . 4  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  =  B  ->  A  C_  B
) )
1512, 14jaod 717 . . 3  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( ( A  e.  B  \/  A  =  B )  ->  A  C_  B ) )
167, 15syld 45 . 2  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( -.  B  e.  A  ->  A  C_  B
) )
171, 16impbid2 143 1  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  C_  B  <->  -.  B  e.  A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708    \/ w3o 977    = wceq 1353    e. wcel 2148    C_ wss 3131   Ord word 4364   omcom 4591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-v 2741  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-uni 3812  df-int 3847  df-tr 4104  df-iord 4368  df-on 4370  df-suc 4373  df-iom 4592
This theorem is referenced by:  nnsseleq  6504  nnmword  6521  nnawordex  6532  nndomo  6866  nnnninfeq  7128  ennnfonelemex  12417  pwle2  14787
  Copyright terms: Public domain W3C validator