ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3nelsucpw1 Unicode version

Theorem 3nelsucpw1 7233
Description: Three is not an element of the successor of the power set of  1o. (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.)
Assertion
Ref Expression
3nelsucpw1  |-  -.  3o  e.  suc  ~P 1o

Proof of Theorem 3nelsucpw1
StepHypRef Expression
1 1lt2o 6443 . . . . 5  |-  1o  e.  2o
2 elelsuc 4410 . . . . 5  |-  ( 1o  e.  2o  ->  1o  e.  suc  2o )
31, 2ax-mp 5 . . . 4  |-  1o  e.  suc  2o
4 df-3o 6419 . . . 4  |-  3o  =  suc  2o
53, 4eleqtrri 2253 . . 3  |-  1o  e.  3o
6 ssnel 4569 . . 3  |-  ( 3o  C_  1o  ->  -.  1o  e.  3o )
75, 6mt2 640 . 2  |-  -.  3o  C_  1o
8 pw1ne3 7229 . . . . . 6  |-  ~P 1o  =/=  3o
98nesymi 2393 . . . . 5  |-  -.  3o  =  ~P 1o
109a1i 9 . . . 4  |-  ( 3o  e.  suc  ~P 1o  ->  -.  3o  =  ~P 1o )
11 elsuci 4404 . . . 4  |-  ( 3o  e.  suc  ~P 1o  ->  ( 3o  e.  ~P 1o  \/  3o  =  ~P 1o ) )
1210, 11ecased 1349 . . 3  |-  ( 3o  e.  suc  ~P 1o  ->  3o  e.  ~P 1o )
1312elpwid 3587 . 2  |-  ( 3o  e.  suc  ~P 1o  ->  3o  C_  1o )
147, 13mto 662 1  |-  -.  3o  e.  suc  ~P 1o
Colors of variables: wff set class
Syntax hints:   -. wn 3    = wceq 1353    e. wcel 2148    C_ wss 3130   ~Pcpw 3576   suc csuc 4366   1oc1o 6410   2oc2o 6411   3oc3o 6412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-v 2740  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-pw 3578  df-sn 3599  df-pr 3600  df-uni 3811  df-int 3846  df-tr 4103  df-iord 4367  df-on 4369  df-suc 4372  df-iom 4591  df-1o 6417  df-2o 6418  df-3o 6419
This theorem is referenced by:  onntri35  7236
  Copyright terms: Public domain W3C validator