ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3nelsucpw1 Unicode version

Theorem 3nelsucpw1 7301
Description: Three is not an element of the successor of the power set of  1o. (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.)
Assertion
Ref Expression
3nelsucpw1  |-  -.  3o  e.  suc  ~P 1o

Proof of Theorem 3nelsucpw1
StepHypRef Expression
1 1lt2o 6500 . . . . 5  |-  1o  e.  2o
2 elelsuc 4444 . . . . 5  |-  ( 1o  e.  2o  ->  1o  e.  suc  2o )
31, 2ax-mp 5 . . . 4  |-  1o  e.  suc  2o
4 df-3o 6476 . . . 4  |-  3o  =  suc  2o
53, 4eleqtrri 2272 . . 3  |-  1o  e.  3o
6 ssnel 4605 . . 3  |-  ( 3o  C_  1o  ->  -.  1o  e.  3o )
75, 6mt2 641 . 2  |-  -.  3o  C_  1o
8 pw1ne3 7297 . . . . . 6  |-  ~P 1o  =/=  3o
98nesymi 2413 . . . . 5  |-  -.  3o  =  ~P 1o
109a1i 9 . . . 4  |-  ( 3o  e.  suc  ~P 1o  ->  -.  3o  =  ~P 1o )
11 elsuci 4438 . . . 4  |-  ( 3o  e.  suc  ~P 1o  ->  ( 3o  e.  ~P 1o  \/  3o  =  ~P 1o ) )
1210, 11ecased 1360 . . 3  |-  ( 3o  e.  suc  ~P 1o  ->  3o  e.  ~P 1o )
1312elpwid 3616 . 2  |-  ( 3o  e.  suc  ~P 1o  ->  3o  C_  1o )
147, 13mto 663 1  |-  -.  3o  e.  suc  ~P 1o
Colors of variables: wff set class
Syntax hints:   -. wn 3    = wceq 1364    e. wcel 2167    C_ wss 3157   ~Pcpw 3605   suc csuc 4400   1oc1o 6467   2oc2o 6468   3oc3o 6469
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-uni 3840  df-int 3875  df-tr 4132  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627  df-1o 6474  df-2o 6475  df-3o 6476
This theorem is referenced by:  onntri35  7304
  Copyright terms: Public domain W3C validator