ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3nelsucpw1 Unicode version

Theorem 3nelsucpw1 7251
Description: Three is not an element of the successor of the power set of  1o. (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.)
Assertion
Ref Expression
3nelsucpw1  |-  -.  3o  e.  suc  ~P 1o

Proof of Theorem 3nelsucpw1
StepHypRef Expression
1 1lt2o 6461 . . . . 5  |-  1o  e.  2o
2 elelsuc 4424 . . . . 5  |-  ( 1o  e.  2o  ->  1o  e.  suc  2o )
31, 2ax-mp 5 . . . 4  |-  1o  e.  suc  2o
4 df-3o 6437 . . . 4  |-  3o  =  suc  2o
53, 4eleqtrri 2265 . . 3  |-  1o  e.  3o
6 ssnel 4583 . . 3  |-  ( 3o  C_  1o  ->  -.  1o  e.  3o )
75, 6mt2 641 . 2  |-  -.  3o  C_  1o
8 pw1ne3 7247 . . . . . 6  |-  ~P 1o  =/=  3o
98nesymi 2406 . . . . 5  |-  -.  3o  =  ~P 1o
109a1i 9 . . . 4  |-  ( 3o  e.  suc  ~P 1o  ->  -.  3o  =  ~P 1o )
11 elsuci 4418 . . . 4  |-  ( 3o  e.  suc  ~P 1o  ->  ( 3o  e.  ~P 1o  \/  3o  =  ~P 1o ) )
1210, 11ecased 1360 . . 3  |-  ( 3o  e.  suc  ~P 1o  ->  3o  e.  ~P 1o )
1312elpwid 3601 . 2  |-  ( 3o  e.  suc  ~P 1o  ->  3o  C_  1o )
147, 13mto 663 1  |-  -.  3o  e.  suc  ~P 1o
Colors of variables: wff set class
Syntax hints:   -. wn 3    = wceq 1364    e. wcel 2160    C_ wss 3144   ~Pcpw 3590   suc csuc 4380   1oc1o 6428   2oc2o 6429   3oc3o 6430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-nul 4144  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-setind 4551
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-v 2754  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-uni 3825  df-int 3860  df-tr 4117  df-iord 4381  df-on 4383  df-suc 4386  df-iom 4605  df-1o 6435  df-2o 6436  df-3o 6437
This theorem is referenced by:  onntri35  7254
  Copyright terms: Public domain W3C validator