![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3nelsucpw1 | Unicode version |
Description: Three is not an element
of the successor of the power set of ![]() |
Ref | Expression |
---|---|
3nelsucpw1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1lt2o 6461 |
. . . . 5
![]() ![]() ![]() ![]() | |
2 | elelsuc 4424 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 5 |
. . . 4
![]() ![]() ![]() ![]() ![]() |
4 | df-3o 6437 |
. . . 4
![]() ![]() ![]() ![]() ![]() | |
5 | 3, 4 | eleqtrri 2265 |
. . 3
![]() ![]() ![]() ![]() |
6 | ssnel 4583 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
7 | 5, 6 | mt2 641 |
. 2
![]() ![]() ![]() ![]() ![]() |
8 | pw1ne3 7247 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() | |
9 | 8 | nesymi 2406 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() |
10 | 9 | a1i 9 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
11 | elsuci 4418 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
12 | 10, 11 | ecased 1360 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
13 | 12 | elpwid 3601 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
14 | 7, 13 | mto 663 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-nul 4144 ax-pow 4189 ax-pr 4224 ax-un 4448 ax-setind 4551 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-ral 2473 df-rex 2474 df-v 2754 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-pw 3592 df-sn 3613 df-pr 3614 df-uni 3825 df-int 3860 df-tr 4117 df-iord 4381 df-on 4383 df-suc 4386 df-iom 4605 df-1o 6435 df-2o 6436 df-3o 6437 |
This theorem is referenced by: onntri35 7254 |
Copyright terms: Public domain | W3C validator |