ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssnel GIF version

Theorem ssnel 4562
Description: Relationship between subset and elementhood. In the context of ordinals this can be seen as an ordering law. (Contributed by Jim Kingdon, 22-Jul-2019.)
Assertion
Ref Expression
ssnel (𝐴𝐵 → ¬ 𝐵𝐴)

Proof of Theorem ssnel
StepHypRef Expression
1 elirr 4534 . 2 ¬ 𝐵𝐵
2 ssel 3147 . 2 (𝐴𝐵 → (𝐵𝐴𝐵𝐵))
31, 2mtoi 664 1 (𝐴𝐵 → ¬ 𝐵𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wcel 2146  wss 3127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157  ax-setind 4530
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-ral 2458  df-v 2737  df-dif 3129  df-in 3133  df-ss 3140  df-sn 3595
This theorem is referenced by:  nntri1  6487  pw1ne3  7219  3nelsucpw1  7223  3nsssucpw1  7225
  Copyright terms: Public domain W3C validator