| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssnel | GIF version | ||
| Description: Relationship between subset and elementhood. In the context of ordinals this can be seen as an ordering law. (Contributed by Jim Kingdon, 22-Jul-2019.) |
| Ref | Expression |
|---|---|
| ssnel | ⊢ (𝐴 ⊆ 𝐵 → ¬ 𝐵 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elirr 4587 | . 2 ⊢ ¬ 𝐵 ∈ 𝐵 | |
| 2 | ssel 3186 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ∈ 𝐴 → 𝐵 ∈ 𝐵)) | |
| 3 | 1, 2 | mtoi 665 | 1 ⊢ (𝐴 ⊆ 𝐵 → ¬ 𝐵 ∈ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2175 ⊆ wss 3165 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 ax-setind 4583 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-v 2773 df-dif 3167 df-in 3171 df-ss 3178 df-sn 3638 |
| This theorem is referenced by: nntri1 6572 pw1ne3 7324 3nelsucpw1 7328 3nsssucpw1 7330 nninfctlemfo 12280 |
| Copyright terms: Public domain | W3C validator |