Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ssnel | GIF version |
Description: Relationship between subset and elementhood. In the context of ordinals this can be seen as an ordering law. (Contributed by Jim Kingdon, 22-Jul-2019.) |
Ref | Expression |
---|---|
ssnel | ⊢ (𝐴 ⊆ 𝐵 → ¬ 𝐵 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elirr 4534 | . 2 ⊢ ¬ 𝐵 ∈ 𝐵 | |
2 | ssel 3147 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ∈ 𝐴 → 𝐵 ∈ 𝐵)) | |
3 | 1, 2 | mtoi 664 | 1 ⊢ (𝐴 ⊆ 𝐵 → ¬ 𝐵 ∈ 𝐴) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2146 ⊆ wss 3127 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 ax-setind 4530 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-ral 2458 df-v 2737 df-dif 3129 df-in 3133 df-ss 3140 df-sn 3595 |
This theorem is referenced by: nntri1 6487 pw1ne3 7219 3nelsucpw1 7223 3nsssucpw1 7225 |
Copyright terms: Public domain | W3C validator |