Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ssnel | GIF version |
Description: Relationship between subset and elementhood. In the context of ordinals this can be seen as an ordering law. (Contributed by Jim Kingdon, 22-Jul-2019.) |
Ref | Expression |
---|---|
ssnel | ⊢ (𝐴 ⊆ 𝐵 → ¬ 𝐵 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elirr 4518 | . 2 ⊢ ¬ 𝐵 ∈ 𝐵 | |
2 | ssel 3136 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ∈ 𝐴 → 𝐵 ∈ 𝐵)) | |
3 | 1, 2 | mtoi 654 | 1 ⊢ (𝐴 ⊆ 𝐵 → ¬ 𝐵 ∈ 𝐴) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2136 ⊆ wss 3116 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-v 2728 df-dif 3118 df-in 3122 df-ss 3129 df-sn 3582 |
This theorem is referenced by: nntri1 6464 pw1ne3 7186 3nelsucpw1 7190 3nsssucpw1 7192 |
Copyright terms: Public domain | W3C validator |