ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssnel GIF version

Theorem ssnel 4630
Description: Relationship between subset and elementhood. In the context of ordinals this can be seen as an ordering law. (Contributed by Jim Kingdon, 22-Jul-2019.)
Assertion
Ref Expression
ssnel (𝐴𝐵 → ¬ 𝐵𝐴)

Proof of Theorem ssnel
StepHypRef Expression
1 elirr 4602 . 2 ¬ 𝐵𝐵
2 ssel 3191 . 2 (𝐴𝐵 → (𝐵𝐴𝐵𝐵))
31, 2mtoi 666 1 (𝐴𝐵 → ¬ 𝐵𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wcel 2177  wss 3170
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188  ax-setind 4598
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-v 2775  df-dif 3172  df-in 3176  df-ss 3183  df-sn 3644
This theorem is referenced by:  nntri1  6600  pw1ne3  7371  3nelsucpw1  7375  3nsssucpw1  7377  nninfctlemfo  12446
  Copyright terms: Public domain W3C validator