ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssnel GIF version

Theorem ssnel 4553
Description: Relationship between subset and elementhood. In the context of ordinals this can be seen as an ordering law. (Contributed by Jim Kingdon, 22-Jul-2019.)
Assertion
Ref Expression
ssnel (𝐴𝐵 → ¬ 𝐵𝐴)

Proof of Theorem ssnel
StepHypRef Expression
1 elirr 4525 . 2 ¬ 𝐵𝐵
2 ssel 3141 . 2 (𝐴𝐵 → (𝐵𝐴𝐵𝐵))
31, 2mtoi 659 1 (𝐴𝐵 → ¬ 𝐵𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wcel 2141  wss 3121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152  ax-setind 4521
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-v 2732  df-dif 3123  df-in 3127  df-ss 3134  df-sn 3589
This theorem is referenced by:  nntri1  6475  pw1ne3  7207  3nelsucpw1  7211  3nsssucpw1  7213
  Copyright terms: Public domain W3C validator