ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pw1ne3 Unicode version

Theorem pw1ne3 7231
Description: The power set of  1o is not three. (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.)
Assertion
Ref Expression
pw1ne3  |-  ~P 1o  =/=  3o

Proof of Theorem pw1ne3
StepHypRef Expression
1 1lt2o 6445 . . . . 5  |-  1o  e.  2o
2 ssnel 4570 . . . . 5  |-  ( 2o  C_  1o  ->  -.  1o  e.  2o )
31, 2mt2 640 . . . 4  |-  -.  2o  C_  1o
4 2onn 6524 . . . . . 6  |-  2o  e.  om
54elexi 2751 . . . . 5  |-  2o  e.  _V
65elpw 3583 . . . 4  |-  ( 2o  e.  ~P 1o  <->  2o  C_  1o )
73, 6mtbir 671 . . 3  |-  -.  2o  e.  ~P 1o
85sucid 4419 . . . . 5  |-  2o  e.  suc  2o
9 df-3o 6421 . . . . 5  |-  3o  =  suc  2o
108, 9eleqtrri 2253 . . . 4  |-  2o  e.  3o
11 eleq2 2241 . . . 4  |-  ( ~P 1o  =  3o  ->  ( 2o  e.  ~P 1o  <->  2o  e.  3o ) )
1210, 11mpbiri 168 . . 3  |-  ( ~P 1o  =  3o  ->  2o  e.  ~P 1o )
137, 12mto 662 . 2  |-  -.  ~P 1o  =  3o
1413neir 2350 1  |-  ~P 1o  =/=  3o
Colors of variables: wff set class
Syntax hints:    = wceq 1353    e. wcel 2148    =/= wne 2347    C_ wss 3131   ~Pcpw 3577   suc csuc 4367   omcom 4591   1oc1o 6412   2oc2o 6413   3oc3o 6414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-v 2741  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-uni 3812  df-int 3847  df-tr 4104  df-iord 4368  df-on 4370  df-suc 4373  df-iom 4592  df-1o 6419  df-2o 6420  df-3o 6421
This theorem is referenced by:  3nelsucpw1  7235
  Copyright terms: Public domain W3C validator