ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pw1ne3 Unicode version

Theorem pw1ne3 7411
Description: The power set of  1o is not three. (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.)
Assertion
Ref Expression
pw1ne3  |-  ~P 1o  =/=  3o

Proof of Theorem pw1ne3
StepHypRef Expression
1 1lt2o 6586 . . . . 5  |-  1o  e.  2o
2 ssnel 4660 . . . . 5  |-  ( 2o  C_  1o  ->  -.  1o  e.  2o )
31, 2mt2 643 . . . 4  |-  -.  2o  C_  1o
4 2onn 6665 . . . . . 6  |-  2o  e.  om
54elexi 2812 . . . . 5  |-  2o  e.  _V
65elpw 3655 . . . 4  |-  ( 2o  e.  ~P 1o  <->  2o  C_  1o )
73, 6mtbir 675 . . 3  |-  -.  2o  e.  ~P 1o
85sucid 4507 . . . . 5  |-  2o  e.  suc  2o
9 df-3o 6562 . . . . 5  |-  3o  =  suc  2o
108, 9eleqtrri 2305 . . . 4  |-  2o  e.  3o
11 eleq2 2293 . . . 4  |-  ( ~P 1o  =  3o  ->  ( 2o  e.  ~P 1o  <->  2o  e.  3o ) )
1210, 11mpbiri 168 . . 3  |-  ( ~P 1o  =  3o  ->  2o  e.  ~P 1o )
137, 12mto 666 . 2  |-  -.  ~P 1o  =  3o
1413neir 2403 1  |-  ~P 1o  =/=  3o
Colors of variables: wff set class
Syntax hints:    = wceq 1395    e. wcel 2200    =/= wne 2400    C_ wss 3197   ~Pcpw 3649   suc csuc 4455   omcom 4681   1oc1o 6553   2oc2o 6554   3oc3o 6555
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-uni 3888  df-int 3923  df-tr 4182  df-iord 4456  df-on 4458  df-suc 4461  df-iom 4682  df-1o 6560  df-2o 6561  df-3o 6562
This theorem is referenced by:  3nelsucpw1  7415
  Copyright terms: Public domain W3C validator