ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pw1ne3 Unicode version

Theorem pw1ne3 7207
Description: The power set of  1o is not three. (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.)
Assertion
Ref Expression
pw1ne3  |-  ~P 1o  =/=  3o

Proof of Theorem pw1ne3
StepHypRef Expression
1 1lt2o 6421 . . . . 5  |-  1o  e.  2o
2 ssnel 4553 . . . . 5  |-  ( 2o  C_  1o  ->  -.  1o  e.  2o )
31, 2mt2 635 . . . 4  |-  -.  2o  C_  1o
4 2onn 6500 . . . . . 6  |-  2o  e.  om
54elexi 2742 . . . . 5  |-  2o  e.  _V
65elpw 3572 . . . 4  |-  ( 2o  e.  ~P 1o  <->  2o  C_  1o )
73, 6mtbir 666 . . 3  |-  -.  2o  e.  ~P 1o
85sucid 4402 . . . . 5  |-  2o  e.  suc  2o
9 df-3o 6397 . . . . 5  |-  3o  =  suc  2o
108, 9eleqtrri 2246 . . . 4  |-  2o  e.  3o
11 eleq2 2234 . . . 4  |-  ( ~P 1o  =  3o  ->  ( 2o  e.  ~P 1o  <->  2o  e.  3o ) )
1210, 11mpbiri 167 . . 3  |-  ( ~P 1o  =  3o  ->  2o  e.  ~P 1o )
137, 12mto 657 . 2  |-  -.  ~P 1o  =  3o
1413neir 2343 1  |-  ~P 1o  =/=  3o
Colors of variables: wff set class
Syntax hints:    = wceq 1348    e. wcel 2141    =/= wne 2340    C_ wss 3121   ~Pcpw 3566   suc csuc 4350   omcom 4574   1oc1o 6388   2oc2o 6389   3oc3o 6390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-uni 3797  df-int 3832  df-tr 4088  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-1o 6395  df-2o 6396  df-3o 6397
This theorem is referenced by:  3nelsucpw1  7211
  Copyright terms: Public domain W3C validator