ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pw1ne3 Unicode version

Theorem pw1ne3 7297
Description: The power set of  1o is not three. (Contributed by James E. Hanson and Jim Kingdon, 30-Jul-2024.)
Assertion
Ref Expression
pw1ne3  |-  ~P 1o  =/=  3o

Proof of Theorem pw1ne3
StepHypRef Expression
1 1lt2o 6500 . . . . 5  |-  1o  e.  2o
2 ssnel 4605 . . . . 5  |-  ( 2o  C_  1o  ->  -.  1o  e.  2o )
31, 2mt2 641 . . . 4  |-  -.  2o  C_  1o
4 2onn 6579 . . . . . 6  |-  2o  e.  om
54elexi 2775 . . . . 5  |-  2o  e.  _V
65elpw 3611 . . . 4  |-  ( 2o  e.  ~P 1o  <->  2o  C_  1o )
73, 6mtbir 672 . . 3  |-  -.  2o  e.  ~P 1o
85sucid 4452 . . . . 5  |-  2o  e.  suc  2o
9 df-3o 6476 . . . . 5  |-  3o  =  suc  2o
108, 9eleqtrri 2272 . . . 4  |-  2o  e.  3o
11 eleq2 2260 . . . 4  |-  ( ~P 1o  =  3o  ->  ( 2o  e.  ~P 1o  <->  2o  e.  3o ) )
1210, 11mpbiri 168 . . 3  |-  ( ~P 1o  =  3o  ->  2o  e.  ~P 1o )
137, 12mto 663 . 2  |-  -.  ~P 1o  =  3o
1413neir 2370 1  |-  ~P 1o  =/=  3o
Colors of variables: wff set class
Syntax hints:    = wceq 1364    e. wcel 2167    =/= wne 2367    C_ wss 3157   ~Pcpw 3605   suc csuc 4400   omcom 4626   1oc1o 6467   2oc2o 6468   3oc3o 6469
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-uni 3840  df-int 3875  df-tr 4132  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627  df-1o 6474  df-2o 6475  df-3o 6476
This theorem is referenced by:  3nelsucpw1  7301
  Copyright terms: Public domain W3C validator