ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nmznsg Unicode version

Theorem nmznsg 13078
Description: Any subgroup is a normal subgroup of its normalizer. (Contributed by Mario Carneiro, 19-Jan-2015.)
Hypotheses
Ref Expression
elnmz.1  |-  N  =  { x  e.  X  |  A. y  e.  X  ( ( x  .+  y )  e.  S  <->  ( y  .+  x )  e.  S ) }
nmzsubg.2  |-  X  =  ( Base `  G
)
nmzsubg.3  |-  .+  =  ( +g  `  G )
nmznsg.4  |-  H  =  ( Gs  N )
Assertion
Ref Expression
nmznsg  |-  ( S  e.  (SubGrp `  G
)  ->  S  e.  (NrmSGrp `  H ) )
Distinct variable groups:    x, y, G   
x, S, y    x,  .+ , y    x, X, y
Allowed substitution hints:    H( x, y)    N( x, y)

Proof of Theorem nmznsg
Dummy variables  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 19 . . 3  |-  ( S  e.  (SubGrp `  G
)  ->  S  e.  (SubGrp `  G ) )
2 elnmz.1 . . . 4  |-  N  =  { x  e.  X  |  A. y  e.  X  ( ( x  .+  y )  e.  S  <->  ( y  .+  x )  e.  S ) }
3 nmzsubg.2 . . . 4  |-  X  =  ( Base `  G
)
4 nmzsubg.3 . . . 4  |-  .+  =  ( +g  `  G )
52, 3, 4ssnmz 13076 . . 3  |-  ( S  e.  (SubGrp `  G
)  ->  S  C_  N
)
6 subgrcl 13044 . . . . 5  |-  ( S  e.  (SubGrp `  G
)  ->  G  e.  Grp )
72, 3, 4nmzsubg 13075 . . . . 5  |-  ( G  e.  Grp  ->  N  e.  (SubGrp `  G )
)
86, 7syl 14 . . . 4  |-  ( S  e.  (SubGrp `  G
)  ->  N  e.  (SubGrp `  G ) )
9 nmznsg.4 . . . . 5  |-  H  =  ( Gs  N )
109subsubg 13062 . . . 4  |-  ( N  e.  (SubGrp `  G
)  ->  ( S  e.  (SubGrp `  H )  <->  ( S  e.  (SubGrp `  G )  /\  S  C_  N ) ) )
118, 10syl 14 . . 3  |-  ( S  e.  (SubGrp `  G
)  ->  ( S  e.  (SubGrp `  H )  <->  ( S  e.  (SubGrp `  G )  /\  S  C_  N ) ) )
121, 5, 11mpbir2and 944 . 2  |-  ( S  e.  (SubGrp `  G
)  ->  S  e.  (SubGrp `  H ) )
132ssrab3 3243 . . . . . 6  |-  N  C_  X
1413sseli 3153 . . . . 5  |-  ( w  e.  N  ->  w  e.  X )
152nmzbi 13074 . . . . 5  |-  ( ( z  e.  N  /\  w  e.  X )  ->  ( ( z  .+  w )  e.  S  <->  ( w  .+  z )  e.  S ) )
1614, 15sylan2 286 . . . 4  |-  ( ( z  e.  N  /\  w  e.  N )  ->  ( ( z  .+  w )  e.  S  <->  ( w  .+  z )  e.  S ) )
1716rgen2 2563 . . 3  |-  A. z  e.  N  A. w  e.  N  ( (
z  .+  w )  e.  S  <->  ( w  .+  z )  e.  S
)
189subgbas 13043 . . . . 5  |-  ( N  e.  (SubGrp `  G
)  ->  N  =  ( Base `  H )
)
198, 18syl 14 . . . 4  |-  ( S  e.  (SubGrp `  G
)  ->  N  =  ( Base `  H )
)
2019raleqdv 2679 . . . 4  |-  ( S  e.  (SubGrp `  G
)  ->  ( A. w  e.  N  (
( z  .+  w
)  e.  S  <->  ( w  .+  z )  e.  S
)  <->  A. w  e.  (
Base `  H )
( ( z  .+  w )  e.  S  <->  ( w  .+  z )  e.  S ) ) )
2119, 20raleqbidv 2685 . . 3  |-  ( S  e.  (SubGrp `  G
)  ->  ( A. z  e.  N  A. w  e.  N  (
( z  .+  w
)  e.  S  <->  ( w  .+  z )  e.  S
)  <->  A. z  e.  (
Base `  H ) A. w  e.  ( Base `  H ) ( ( z  .+  w
)  e.  S  <->  ( w  .+  z )  e.  S
) ) )
2217, 21mpbii 148 . 2  |-  ( S  e.  (SubGrp `  G
)  ->  A. z  e.  ( Base `  H
) A. w  e.  ( Base `  H
) ( ( z 
.+  w )  e.  S  <->  ( w  .+  z )  e.  S
) )
23 eqid 2177 . . . 4  |-  ( Base `  H )  =  (
Base `  H )
24 eqid 2177 . . . 4  |-  ( +g  `  H )  =  ( +g  `  H )
2523, 24isnsg 13067 . . 3  |-  ( S  e.  (NrmSGrp `  H
)  <->  ( S  e.  (SubGrp `  H )  /\  A. z  e.  (
Base `  H ) A. w  e.  ( Base `  H ) ( ( z ( +g  `  H ) w )  e.  S  <->  ( w
( +g  `  H ) z )  e.  S
) ) )
269a1i 9 . . . . . . . . 9  |-  ( S  e.  (SubGrp `  G
)  ->  H  =  ( Gs  N ) )
274a1i 9 . . . . . . . . 9  |-  ( S  e.  (SubGrp `  G
)  ->  .+  =  ( +g  `  G ) )
2826, 27, 8, 6ressplusgd 12589 . . . . . . . 8  |-  ( S  e.  (SubGrp `  G
)  ->  .+  =  ( +g  `  H ) )
2928oveqd 5894 . . . . . . 7  |-  ( S  e.  (SubGrp `  G
)  ->  ( z  .+  w )  =  ( z ( +g  `  H
) w ) )
3029eleq1d 2246 . . . . . 6  |-  ( S  e.  (SubGrp `  G
)  ->  ( (
z  .+  w )  e.  S  <->  ( z ( +g  `  H ) w )  e.  S
) )
3128oveqd 5894 . . . . . . 7  |-  ( S  e.  (SubGrp `  G
)  ->  ( w  .+  z )  =  ( w ( +g  `  H
) z ) )
3231eleq1d 2246 . . . . . 6  |-  ( S  e.  (SubGrp `  G
)  ->  ( (
w  .+  z )  e.  S  <->  ( w ( +g  `  H ) z )  e.  S
) )
3330, 32bibi12d 235 . . . . 5  |-  ( S  e.  (SubGrp `  G
)  ->  ( (
( z  .+  w
)  e.  S  <->  ( w  .+  z )  e.  S
)  <->  ( ( z ( +g  `  H
) w )  e.  S  <->  ( w ( +g  `  H ) z )  e.  S
) ) )
34332ralbidv 2501 . . . 4  |-  ( S  e.  (SubGrp `  G
)  ->  ( A. z  e.  ( Base `  H ) A. w  e.  ( Base `  H
) ( ( z 
.+  w )  e.  S  <->  ( w  .+  z )  e.  S
)  <->  A. z  e.  (
Base `  H ) A. w  e.  ( Base `  H ) ( ( z ( +g  `  H ) w )  e.  S  <->  ( w
( +g  `  H ) z )  e.  S
) ) )
3534anbi2d 464 . . 3  |-  ( S  e.  (SubGrp `  G
)  ->  ( ( S  e.  (SubGrp `  H
)  /\  A. z  e.  ( Base `  H
) A. w  e.  ( Base `  H
) ( ( z 
.+  w )  e.  S  <->  ( w  .+  z )  e.  S
) )  <->  ( S  e.  (SubGrp `  H )  /\  A. z  e.  (
Base `  H ) A. w  e.  ( Base `  H ) ( ( z ( +g  `  H ) w )  e.  S  <->  ( w
( +g  `  H ) z )  e.  S
) ) ) )
3625, 35bitr4id 199 . 2  |-  ( S  e.  (SubGrp `  G
)  ->  ( S  e.  (NrmSGrp `  H )  <->  ( S  e.  (SubGrp `  H )  /\  A. z  e.  ( Base `  H ) A. w  e.  ( Base `  H
) ( ( z 
.+  w )  e.  S  <->  ( w  .+  z )  e.  S
) ) ) )
3712, 22, 36mpbir2and 944 1  |-  ( S  e.  (SubGrp `  G
)  ->  S  e.  (NrmSGrp `  H ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148   A.wral 2455   {crab 2459    C_ wss 3131   ` cfv 5218  (class class class)co 5877   Basecbs 12464   ↾s cress 12465   +g cplusg 12538   Grpcgrp 12882  SubGrpcsubg 13032  NrmSGrpcnsg 13033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-addass 7915  ax-i2m1 7918  ax-0lt1 7919  ax-0id 7921  ax-rnegex 7922  ax-pre-ltirr 7925  ax-pre-ltadd 7929
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-pnf 7996  df-mnf 7997  df-ltxr 7999  df-inn 8922  df-2 8980  df-ndx 12467  df-slot 12468  df-base 12470  df-sets 12471  df-iress 12472  df-plusg 12551  df-0g 12712  df-mgm 12780  df-sgrp 12813  df-mnd 12823  df-grp 12885  df-minusg 12886  df-sbg 12887  df-subg 13035  df-nsg 13036
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator