ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nmznsg Unicode version

Theorem nmznsg 13319
Description: Any subgroup is a normal subgroup of its normalizer. (Contributed by Mario Carneiro, 19-Jan-2015.)
Hypotheses
Ref Expression
elnmz.1  |-  N  =  { x  e.  X  |  A. y  e.  X  ( ( x  .+  y )  e.  S  <->  ( y  .+  x )  e.  S ) }
nmzsubg.2  |-  X  =  ( Base `  G
)
nmzsubg.3  |-  .+  =  ( +g  `  G )
nmznsg.4  |-  H  =  ( Gs  N )
Assertion
Ref Expression
nmznsg  |-  ( S  e.  (SubGrp `  G
)  ->  S  e.  (NrmSGrp `  H ) )
Distinct variable groups:    x, y, G   
x, S, y    x,  .+ , y    x, X, y
Allowed substitution hints:    H( x, y)    N( x, y)

Proof of Theorem nmznsg
Dummy variables  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 19 . . 3  |-  ( S  e.  (SubGrp `  G
)  ->  S  e.  (SubGrp `  G ) )
2 elnmz.1 . . . 4  |-  N  =  { x  e.  X  |  A. y  e.  X  ( ( x  .+  y )  e.  S  <->  ( y  .+  x )  e.  S ) }
3 nmzsubg.2 . . . 4  |-  X  =  ( Base `  G
)
4 nmzsubg.3 . . . 4  |-  .+  =  ( +g  `  G )
52, 3, 4ssnmz 13317 . . 3  |-  ( S  e.  (SubGrp `  G
)  ->  S  C_  N
)
6 subgrcl 13285 . . . . 5  |-  ( S  e.  (SubGrp `  G
)  ->  G  e.  Grp )
72, 3, 4nmzsubg 13316 . . . . 5  |-  ( G  e.  Grp  ->  N  e.  (SubGrp `  G )
)
86, 7syl 14 . . . 4  |-  ( S  e.  (SubGrp `  G
)  ->  N  e.  (SubGrp `  G ) )
9 nmznsg.4 . . . . 5  |-  H  =  ( Gs  N )
109subsubg 13303 . . . 4  |-  ( N  e.  (SubGrp `  G
)  ->  ( S  e.  (SubGrp `  H )  <->  ( S  e.  (SubGrp `  G )  /\  S  C_  N ) ) )
118, 10syl 14 . . 3  |-  ( S  e.  (SubGrp `  G
)  ->  ( S  e.  (SubGrp `  H )  <->  ( S  e.  (SubGrp `  G )  /\  S  C_  N ) ) )
121, 5, 11mpbir2and 946 . 2  |-  ( S  e.  (SubGrp `  G
)  ->  S  e.  (SubGrp `  H ) )
132ssrab3 3269 . . . . . 6  |-  N  C_  X
1413sseli 3179 . . . . 5  |-  ( w  e.  N  ->  w  e.  X )
152nmzbi 13315 . . . . 5  |-  ( ( z  e.  N  /\  w  e.  X )  ->  ( ( z  .+  w )  e.  S  <->  ( w  .+  z )  e.  S ) )
1614, 15sylan2 286 . . . 4  |-  ( ( z  e.  N  /\  w  e.  N )  ->  ( ( z  .+  w )  e.  S  <->  ( w  .+  z )  e.  S ) )
1716rgen2 2583 . . 3  |-  A. z  e.  N  A. w  e.  N  ( (
z  .+  w )  e.  S  <->  ( w  .+  z )  e.  S
)
189subgbas 13284 . . . . 5  |-  ( N  e.  (SubGrp `  G
)  ->  N  =  ( Base `  H )
)
198, 18syl 14 . . . 4  |-  ( S  e.  (SubGrp `  G
)  ->  N  =  ( Base `  H )
)
2019raleqdv 2699 . . . 4  |-  ( S  e.  (SubGrp `  G
)  ->  ( A. w  e.  N  (
( z  .+  w
)  e.  S  <->  ( w  .+  z )  e.  S
)  <->  A. w  e.  (
Base `  H )
( ( z  .+  w )  e.  S  <->  ( w  .+  z )  e.  S ) ) )
2119, 20raleqbidv 2709 . . 3  |-  ( S  e.  (SubGrp `  G
)  ->  ( A. z  e.  N  A. w  e.  N  (
( z  .+  w
)  e.  S  <->  ( w  .+  z )  e.  S
)  <->  A. z  e.  (
Base `  H ) A. w  e.  ( Base `  H ) ( ( z  .+  w
)  e.  S  <->  ( w  .+  z )  e.  S
) ) )
2217, 21mpbii 148 . 2  |-  ( S  e.  (SubGrp `  G
)  ->  A. z  e.  ( Base `  H
) A. w  e.  ( Base `  H
) ( ( z 
.+  w )  e.  S  <->  ( w  .+  z )  e.  S
) )
23 eqid 2196 . . . 4  |-  ( Base `  H )  =  (
Base `  H )
24 eqid 2196 . . . 4  |-  ( +g  `  H )  =  ( +g  `  H )
2523, 24isnsg 13308 . . 3  |-  ( S  e.  (NrmSGrp `  H
)  <->  ( S  e.  (SubGrp `  H )  /\  A. z  e.  (
Base `  H ) A. w  e.  ( Base `  H ) ( ( z ( +g  `  H ) w )  e.  S  <->  ( w
( +g  `  H ) z )  e.  S
) ) )
269a1i 9 . . . . . . . . 9  |-  ( S  e.  (SubGrp `  G
)  ->  H  =  ( Gs  N ) )
274a1i 9 . . . . . . . . 9  |-  ( S  e.  (SubGrp `  G
)  ->  .+  =  ( +g  `  G ) )
2826, 27, 8, 6ressplusgd 12782 . . . . . . . 8  |-  ( S  e.  (SubGrp `  G
)  ->  .+  =  ( +g  `  H ) )
2928oveqd 5939 . . . . . . 7  |-  ( S  e.  (SubGrp `  G
)  ->  ( z  .+  w )  =  ( z ( +g  `  H
) w ) )
3029eleq1d 2265 . . . . . 6  |-  ( S  e.  (SubGrp `  G
)  ->  ( (
z  .+  w )  e.  S  <->  ( z ( +g  `  H ) w )  e.  S
) )
3128oveqd 5939 . . . . . . 7  |-  ( S  e.  (SubGrp `  G
)  ->  ( w  .+  z )  =  ( w ( +g  `  H
) z ) )
3231eleq1d 2265 . . . . . 6  |-  ( S  e.  (SubGrp `  G
)  ->  ( (
w  .+  z )  e.  S  <->  ( w ( +g  `  H ) z )  e.  S
) )
3330, 32bibi12d 235 . . . . 5  |-  ( S  e.  (SubGrp `  G
)  ->  ( (
( z  .+  w
)  e.  S  <->  ( w  .+  z )  e.  S
)  <->  ( ( z ( +g  `  H
) w )  e.  S  <->  ( w ( +g  `  H ) z )  e.  S
) ) )
34332ralbidv 2521 . . . 4  |-  ( S  e.  (SubGrp `  G
)  ->  ( A. z  e.  ( Base `  H ) A. w  e.  ( Base `  H
) ( ( z 
.+  w )  e.  S  <->  ( w  .+  z )  e.  S
)  <->  A. z  e.  (
Base `  H ) A. w  e.  ( Base `  H ) ( ( z ( +g  `  H ) w )  e.  S  <->  ( w
( +g  `  H ) z )  e.  S
) ) )
3534anbi2d 464 . . 3  |-  ( S  e.  (SubGrp `  G
)  ->  ( ( S  e.  (SubGrp `  H
)  /\  A. z  e.  ( Base `  H
) A. w  e.  ( Base `  H
) ( ( z 
.+  w )  e.  S  <->  ( w  .+  z )  e.  S
) )  <->  ( S  e.  (SubGrp `  H )  /\  A. z  e.  (
Base `  H ) A. w  e.  ( Base `  H ) ( ( z ( +g  `  H ) w )  e.  S  <->  ( w
( +g  `  H ) z )  e.  S
) ) ) )
3625, 35bitr4id 199 . 2  |-  ( S  e.  (SubGrp `  G
)  ->  ( S  e.  (NrmSGrp `  H )  <->  ( S  e.  (SubGrp `  H )  /\  A. z  e.  ( Base `  H ) A. w  e.  ( Base `  H
) ( ( z 
.+  w )  e.  S  <->  ( w  .+  z )  e.  S
) ) ) )
3712, 22, 36mpbir2and 946 1  |-  ( S  e.  (SubGrp `  G
)  ->  S  e.  (NrmSGrp `  H ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   A.wral 2475   {crab 2479    C_ wss 3157   ` cfv 5258  (class class class)co 5922   Basecbs 12654   ↾s cress 12655   +g cplusg 12731   Grpcgrp 13108  SubGrpcsubg 13273  NrmSGrpcnsg 13274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7968  ax-resscn 7969  ax-1cn 7970  ax-1re 7971  ax-icn 7972  ax-addcl 7973  ax-addrcl 7974  ax-mulcl 7975  ax-addcom 7977  ax-addass 7979  ax-i2m1 7982  ax-0lt1 7983  ax-0id 7985  ax-rnegex 7986  ax-pre-ltirr 7989  ax-pre-ltadd 7993
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-pnf 8061  df-mnf 8062  df-ltxr 8064  df-inn 8988  df-2 9046  df-ndx 12657  df-slot 12658  df-base 12660  df-sets 12661  df-iress 12662  df-plusg 12744  df-0g 12905  df-mgm 12975  df-sgrp 13021  df-mnd 13034  df-grp 13111  df-minusg 13112  df-sbg 13113  df-subg 13276  df-nsg 13277
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator