ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nmznsg Unicode version

Theorem nmznsg 13750
Description: Any subgroup is a normal subgroup of its normalizer. (Contributed by Mario Carneiro, 19-Jan-2015.)
Hypotheses
Ref Expression
elnmz.1  |-  N  =  { x  e.  X  |  A. y  e.  X  ( ( x  .+  y )  e.  S  <->  ( y  .+  x )  e.  S ) }
nmzsubg.2  |-  X  =  ( Base `  G
)
nmzsubg.3  |-  .+  =  ( +g  `  G )
nmznsg.4  |-  H  =  ( Gs  N )
Assertion
Ref Expression
nmznsg  |-  ( S  e.  (SubGrp `  G
)  ->  S  e.  (NrmSGrp `  H ) )
Distinct variable groups:    x, y, G   
x, S, y    x,  .+ , y    x, X, y
Allowed substitution hints:    H( x, y)    N( x, y)

Proof of Theorem nmznsg
Dummy variables  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 19 . . 3  |-  ( S  e.  (SubGrp `  G
)  ->  S  e.  (SubGrp `  G ) )
2 elnmz.1 . . . 4  |-  N  =  { x  e.  X  |  A. y  e.  X  ( ( x  .+  y )  e.  S  <->  ( y  .+  x )  e.  S ) }
3 nmzsubg.2 . . . 4  |-  X  =  ( Base `  G
)
4 nmzsubg.3 . . . 4  |-  .+  =  ( +g  `  G )
52, 3, 4ssnmz 13748 . . 3  |-  ( S  e.  (SubGrp `  G
)  ->  S  C_  N
)
6 subgrcl 13716 . . . . 5  |-  ( S  e.  (SubGrp `  G
)  ->  G  e.  Grp )
72, 3, 4nmzsubg 13747 . . . . 5  |-  ( G  e.  Grp  ->  N  e.  (SubGrp `  G )
)
86, 7syl 14 . . . 4  |-  ( S  e.  (SubGrp `  G
)  ->  N  e.  (SubGrp `  G ) )
9 nmznsg.4 . . . . 5  |-  H  =  ( Gs  N )
109subsubg 13734 . . . 4  |-  ( N  e.  (SubGrp `  G
)  ->  ( S  e.  (SubGrp `  H )  <->  ( S  e.  (SubGrp `  G )  /\  S  C_  N ) ) )
118, 10syl 14 . . 3  |-  ( S  e.  (SubGrp `  G
)  ->  ( S  e.  (SubGrp `  H )  <->  ( S  e.  (SubGrp `  G )  /\  S  C_  N ) ) )
121, 5, 11mpbir2and 950 . 2  |-  ( S  e.  (SubGrp `  G
)  ->  S  e.  (SubGrp `  H ) )
132ssrab3 3310 . . . . . 6  |-  N  C_  X
1413sseli 3220 . . . . 5  |-  ( w  e.  N  ->  w  e.  X )
152nmzbi 13746 . . . . 5  |-  ( ( z  e.  N  /\  w  e.  X )  ->  ( ( z  .+  w )  e.  S  <->  ( w  .+  z )  e.  S ) )
1614, 15sylan2 286 . . . 4  |-  ( ( z  e.  N  /\  w  e.  N )  ->  ( ( z  .+  w )  e.  S  <->  ( w  .+  z )  e.  S ) )
1716rgen2 2616 . . 3  |-  A. z  e.  N  A. w  e.  N  ( (
z  .+  w )  e.  S  <->  ( w  .+  z )  e.  S
)
189subgbas 13715 . . . . 5  |-  ( N  e.  (SubGrp `  G
)  ->  N  =  ( Base `  H )
)
198, 18syl 14 . . . 4  |-  ( S  e.  (SubGrp `  G
)  ->  N  =  ( Base `  H )
)
2019raleqdv 2734 . . . 4  |-  ( S  e.  (SubGrp `  G
)  ->  ( A. w  e.  N  (
( z  .+  w
)  e.  S  <->  ( w  .+  z )  e.  S
)  <->  A. w  e.  (
Base `  H )
( ( z  .+  w )  e.  S  <->  ( w  .+  z )  e.  S ) ) )
2119, 20raleqbidv 2744 . . 3  |-  ( S  e.  (SubGrp `  G
)  ->  ( A. z  e.  N  A. w  e.  N  (
( z  .+  w
)  e.  S  <->  ( w  .+  z )  e.  S
)  <->  A. z  e.  (
Base `  H ) A. w  e.  ( Base `  H ) ( ( z  .+  w
)  e.  S  <->  ( w  .+  z )  e.  S
) ) )
2217, 21mpbii 148 . 2  |-  ( S  e.  (SubGrp `  G
)  ->  A. z  e.  ( Base `  H
) A. w  e.  ( Base `  H
) ( ( z 
.+  w )  e.  S  <->  ( w  .+  z )  e.  S
) )
23 eqid 2229 . . . 4  |-  ( Base `  H )  =  (
Base `  H )
24 eqid 2229 . . . 4  |-  ( +g  `  H )  =  ( +g  `  H )
2523, 24isnsg 13739 . . 3  |-  ( S  e.  (NrmSGrp `  H
)  <->  ( S  e.  (SubGrp `  H )  /\  A. z  e.  (
Base `  H ) A. w  e.  ( Base `  H ) ( ( z ( +g  `  H ) w )  e.  S  <->  ( w
( +g  `  H ) z )  e.  S
) ) )
269a1i 9 . . . . . . . . 9  |-  ( S  e.  (SubGrp `  G
)  ->  H  =  ( Gs  N ) )
274a1i 9 . . . . . . . . 9  |-  ( S  e.  (SubGrp `  G
)  ->  .+  =  ( +g  `  G ) )
2826, 27, 8, 6ressplusgd 13162 . . . . . . . 8  |-  ( S  e.  (SubGrp `  G
)  ->  .+  =  ( +g  `  H ) )
2928oveqd 6018 . . . . . . 7  |-  ( S  e.  (SubGrp `  G
)  ->  ( z  .+  w )  =  ( z ( +g  `  H
) w ) )
3029eleq1d 2298 . . . . . 6  |-  ( S  e.  (SubGrp `  G
)  ->  ( (
z  .+  w )  e.  S  <->  ( z ( +g  `  H ) w )  e.  S
) )
3128oveqd 6018 . . . . . . 7  |-  ( S  e.  (SubGrp `  G
)  ->  ( w  .+  z )  =  ( w ( +g  `  H
) z ) )
3231eleq1d 2298 . . . . . 6  |-  ( S  e.  (SubGrp `  G
)  ->  ( (
w  .+  z )  e.  S  <->  ( w ( +g  `  H ) z )  e.  S
) )
3330, 32bibi12d 235 . . . . 5  |-  ( S  e.  (SubGrp `  G
)  ->  ( (
( z  .+  w
)  e.  S  <->  ( w  .+  z )  e.  S
)  <->  ( ( z ( +g  `  H
) w )  e.  S  <->  ( w ( +g  `  H ) z )  e.  S
) ) )
34332ralbidv 2554 . . . 4  |-  ( S  e.  (SubGrp `  G
)  ->  ( A. z  e.  ( Base `  H ) A. w  e.  ( Base `  H
) ( ( z 
.+  w )  e.  S  <->  ( w  .+  z )  e.  S
)  <->  A. z  e.  (
Base `  H ) A. w  e.  ( Base `  H ) ( ( z ( +g  `  H ) w )  e.  S  <->  ( w
( +g  `  H ) z )  e.  S
) ) )
3534anbi2d 464 . . 3  |-  ( S  e.  (SubGrp `  G
)  ->  ( ( S  e.  (SubGrp `  H
)  /\  A. z  e.  ( Base `  H
) A. w  e.  ( Base `  H
) ( ( z 
.+  w )  e.  S  <->  ( w  .+  z )  e.  S
) )  <->  ( S  e.  (SubGrp `  H )  /\  A. z  e.  (
Base `  H ) A. w  e.  ( Base `  H ) ( ( z ( +g  `  H ) w )  e.  S  <->  ( w
( +g  `  H ) z )  e.  S
) ) ) )
3625, 35bitr4id 199 . 2  |-  ( S  e.  (SubGrp `  G
)  ->  ( S  e.  (NrmSGrp `  H )  <->  ( S  e.  (SubGrp `  H )  /\  A. z  e.  ( Base `  H ) A. w  e.  ( Base `  H
) ( ( z 
.+  w )  e.  S  <->  ( w  .+  z )  e.  S
) ) ) )
3712, 22, 36mpbir2and 950 1  |-  ( S  e.  (SubGrp `  G
)  ->  S  e.  (NrmSGrp `  H ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   A.wral 2508   {crab 2512    C_ wss 3197   ` cfv 5318  (class class class)co 6001   Basecbs 13032   ↾s cress 13033   +g cplusg 13110   Grpcgrp 13533  SubGrpcsubg 13704  NrmSGrpcnsg 13705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-pre-ltirr 8111  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-pnf 8183  df-mnf 8184  df-ltxr 8186  df-inn 9111  df-2 9169  df-ndx 13035  df-slot 13036  df-base 13038  df-sets 13039  df-iress 13040  df-plusg 13123  df-0g 13291  df-mgm 13389  df-sgrp 13435  df-mnd 13450  df-grp 13536  df-minusg 13537  df-sbg 13538  df-subg 13707  df-nsg 13708
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator