ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nmznsg Unicode version

Theorem nmznsg 13582
Description: Any subgroup is a normal subgroup of its normalizer. (Contributed by Mario Carneiro, 19-Jan-2015.)
Hypotheses
Ref Expression
elnmz.1  |-  N  =  { x  e.  X  |  A. y  e.  X  ( ( x  .+  y )  e.  S  <->  ( y  .+  x )  e.  S ) }
nmzsubg.2  |-  X  =  ( Base `  G
)
nmzsubg.3  |-  .+  =  ( +g  `  G )
nmznsg.4  |-  H  =  ( Gs  N )
Assertion
Ref Expression
nmznsg  |-  ( S  e.  (SubGrp `  G
)  ->  S  e.  (NrmSGrp `  H ) )
Distinct variable groups:    x, y, G   
x, S, y    x,  .+ , y    x, X, y
Allowed substitution hints:    H( x, y)    N( x, y)

Proof of Theorem nmznsg
Dummy variables  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 19 . . 3  |-  ( S  e.  (SubGrp `  G
)  ->  S  e.  (SubGrp `  G ) )
2 elnmz.1 . . . 4  |-  N  =  { x  e.  X  |  A. y  e.  X  ( ( x  .+  y )  e.  S  <->  ( y  .+  x )  e.  S ) }
3 nmzsubg.2 . . . 4  |-  X  =  ( Base `  G
)
4 nmzsubg.3 . . . 4  |-  .+  =  ( +g  `  G )
52, 3, 4ssnmz 13580 . . 3  |-  ( S  e.  (SubGrp `  G
)  ->  S  C_  N
)
6 subgrcl 13548 . . . . 5  |-  ( S  e.  (SubGrp `  G
)  ->  G  e.  Grp )
72, 3, 4nmzsubg 13579 . . . . 5  |-  ( G  e.  Grp  ->  N  e.  (SubGrp `  G )
)
86, 7syl 14 . . . 4  |-  ( S  e.  (SubGrp `  G
)  ->  N  e.  (SubGrp `  G ) )
9 nmznsg.4 . . . . 5  |-  H  =  ( Gs  N )
109subsubg 13566 . . . 4  |-  ( N  e.  (SubGrp `  G
)  ->  ( S  e.  (SubGrp `  H )  <->  ( S  e.  (SubGrp `  G )  /\  S  C_  N ) ) )
118, 10syl 14 . . 3  |-  ( S  e.  (SubGrp `  G
)  ->  ( S  e.  (SubGrp `  H )  <->  ( S  e.  (SubGrp `  G )  /\  S  C_  N ) ) )
121, 5, 11mpbir2and 947 . 2  |-  ( S  e.  (SubGrp `  G
)  ->  S  e.  (SubGrp `  H ) )
132ssrab3 3279 . . . . . 6  |-  N  C_  X
1413sseli 3189 . . . . 5  |-  ( w  e.  N  ->  w  e.  X )
152nmzbi 13578 . . . . 5  |-  ( ( z  e.  N  /\  w  e.  X )  ->  ( ( z  .+  w )  e.  S  <->  ( w  .+  z )  e.  S ) )
1614, 15sylan2 286 . . . 4  |-  ( ( z  e.  N  /\  w  e.  N )  ->  ( ( z  .+  w )  e.  S  <->  ( w  .+  z )  e.  S ) )
1716rgen2 2592 . . 3  |-  A. z  e.  N  A. w  e.  N  ( (
z  .+  w )  e.  S  <->  ( w  .+  z )  e.  S
)
189subgbas 13547 . . . . 5  |-  ( N  e.  (SubGrp `  G
)  ->  N  =  ( Base `  H )
)
198, 18syl 14 . . . 4  |-  ( S  e.  (SubGrp `  G
)  ->  N  =  ( Base `  H )
)
2019raleqdv 2708 . . . 4  |-  ( S  e.  (SubGrp `  G
)  ->  ( A. w  e.  N  (
( z  .+  w
)  e.  S  <->  ( w  .+  z )  e.  S
)  <->  A. w  e.  (
Base `  H )
( ( z  .+  w )  e.  S  <->  ( w  .+  z )  e.  S ) ) )
2119, 20raleqbidv 2718 . . 3  |-  ( S  e.  (SubGrp `  G
)  ->  ( A. z  e.  N  A. w  e.  N  (
( z  .+  w
)  e.  S  <->  ( w  .+  z )  e.  S
)  <->  A. z  e.  (
Base `  H ) A. w  e.  ( Base `  H ) ( ( z  .+  w
)  e.  S  <->  ( w  .+  z )  e.  S
) ) )
2217, 21mpbii 148 . 2  |-  ( S  e.  (SubGrp `  G
)  ->  A. z  e.  ( Base `  H
) A. w  e.  ( Base `  H
) ( ( z 
.+  w )  e.  S  <->  ( w  .+  z )  e.  S
) )
23 eqid 2205 . . . 4  |-  ( Base `  H )  =  (
Base `  H )
24 eqid 2205 . . . 4  |-  ( +g  `  H )  =  ( +g  `  H )
2523, 24isnsg 13571 . . 3  |-  ( S  e.  (NrmSGrp `  H
)  <->  ( S  e.  (SubGrp `  H )  /\  A. z  e.  (
Base `  H ) A. w  e.  ( Base `  H ) ( ( z ( +g  `  H ) w )  e.  S  <->  ( w
( +g  `  H ) z )  e.  S
) ) )
269a1i 9 . . . . . . . . 9  |-  ( S  e.  (SubGrp `  G
)  ->  H  =  ( Gs  N ) )
274a1i 9 . . . . . . . . 9  |-  ( S  e.  (SubGrp `  G
)  ->  .+  =  ( +g  `  G ) )
2826, 27, 8, 6ressplusgd 12994 . . . . . . . 8  |-  ( S  e.  (SubGrp `  G
)  ->  .+  =  ( +g  `  H ) )
2928oveqd 5963 . . . . . . 7  |-  ( S  e.  (SubGrp `  G
)  ->  ( z  .+  w )  =  ( z ( +g  `  H
) w ) )
3029eleq1d 2274 . . . . . 6  |-  ( S  e.  (SubGrp `  G
)  ->  ( (
z  .+  w )  e.  S  <->  ( z ( +g  `  H ) w )  e.  S
) )
3128oveqd 5963 . . . . . . 7  |-  ( S  e.  (SubGrp `  G
)  ->  ( w  .+  z )  =  ( w ( +g  `  H
) z ) )
3231eleq1d 2274 . . . . . 6  |-  ( S  e.  (SubGrp `  G
)  ->  ( (
w  .+  z )  e.  S  <->  ( w ( +g  `  H ) z )  e.  S
) )
3330, 32bibi12d 235 . . . . 5  |-  ( S  e.  (SubGrp `  G
)  ->  ( (
( z  .+  w
)  e.  S  <->  ( w  .+  z )  e.  S
)  <->  ( ( z ( +g  `  H
) w )  e.  S  <->  ( w ( +g  `  H ) z )  e.  S
) ) )
34332ralbidv 2530 . . . 4  |-  ( S  e.  (SubGrp `  G
)  ->  ( A. z  e.  ( Base `  H ) A. w  e.  ( Base `  H
) ( ( z 
.+  w )  e.  S  <->  ( w  .+  z )  e.  S
)  <->  A. z  e.  (
Base `  H ) A. w  e.  ( Base `  H ) ( ( z ( +g  `  H ) w )  e.  S  <->  ( w
( +g  `  H ) z )  e.  S
) ) )
3534anbi2d 464 . . 3  |-  ( S  e.  (SubGrp `  G
)  ->  ( ( S  e.  (SubGrp `  H
)  /\  A. z  e.  ( Base `  H
) A. w  e.  ( Base `  H
) ( ( z 
.+  w )  e.  S  <->  ( w  .+  z )  e.  S
) )  <->  ( S  e.  (SubGrp `  H )  /\  A. z  e.  (
Base `  H ) A. w  e.  ( Base `  H ) ( ( z ( +g  `  H ) w )  e.  S  <->  ( w
( +g  `  H ) z )  e.  S
) ) ) )
3625, 35bitr4id 199 . 2  |-  ( S  e.  (SubGrp `  G
)  ->  ( S  e.  (NrmSGrp `  H )  <->  ( S  e.  (SubGrp `  H )  /\  A. z  e.  ( Base `  H ) A. w  e.  ( Base `  H
) ( ( z 
.+  w )  e.  S  <->  ( w  .+  z )  e.  S
) ) ) )
3712, 22, 36mpbir2and 947 1  |-  ( S  e.  (SubGrp `  G
)  ->  S  e.  (NrmSGrp `  H ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2176   A.wral 2484   {crab 2488    C_ wss 3166   ` cfv 5272  (class class class)co 5946   Basecbs 12865   ↾s cress 12866   +g cplusg 12942   Grpcgrp 13365  SubGrpcsubg 13536  NrmSGrpcnsg 13537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-addcom 8027  ax-addass 8029  ax-i2m1 8032  ax-0lt1 8033  ax-0id 8035  ax-rnegex 8036  ax-pre-ltirr 8039  ax-pre-ltadd 8043
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-1st 6228  df-2nd 6229  df-pnf 8111  df-mnf 8112  df-ltxr 8114  df-inn 9039  df-2 9097  df-ndx 12868  df-slot 12869  df-base 12871  df-sets 12872  df-iress 12873  df-plusg 12955  df-0g 13123  df-mgm 13221  df-sgrp 13267  df-mnd 13282  df-grp 13368  df-minusg 13369  df-sbg 13370  df-subg 13539  df-nsg 13540
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator