ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nmznsg Unicode version

Theorem nmznsg 13283
Description: Any subgroup is a normal subgroup of its normalizer. (Contributed by Mario Carneiro, 19-Jan-2015.)
Hypotheses
Ref Expression
elnmz.1  |-  N  =  { x  e.  X  |  A. y  e.  X  ( ( x  .+  y )  e.  S  <->  ( y  .+  x )  e.  S ) }
nmzsubg.2  |-  X  =  ( Base `  G
)
nmzsubg.3  |-  .+  =  ( +g  `  G )
nmznsg.4  |-  H  =  ( Gs  N )
Assertion
Ref Expression
nmznsg  |-  ( S  e.  (SubGrp `  G
)  ->  S  e.  (NrmSGrp `  H ) )
Distinct variable groups:    x, y, G   
x, S, y    x,  .+ , y    x, X, y
Allowed substitution hints:    H( x, y)    N( x, y)

Proof of Theorem nmznsg
Dummy variables  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 19 . . 3  |-  ( S  e.  (SubGrp `  G
)  ->  S  e.  (SubGrp `  G ) )
2 elnmz.1 . . . 4  |-  N  =  { x  e.  X  |  A. y  e.  X  ( ( x  .+  y )  e.  S  <->  ( y  .+  x )  e.  S ) }
3 nmzsubg.2 . . . 4  |-  X  =  ( Base `  G
)
4 nmzsubg.3 . . . 4  |-  .+  =  ( +g  `  G )
52, 3, 4ssnmz 13281 . . 3  |-  ( S  e.  (SubGrp `  G
)  ->  S  C_  N
)
6 subgrcl 13249 . . . . 5  |-  ( S  e.  (SubGrp `  G
)  ->  G  e.  Grp )
72, 3, 4nmzsubg 13280 . . . . 5  |-  ( G  e.  Grp  ->  N  e.  (SubGrp `  G )
)
86, 7syl 14 . . . 4  |-  ( S  e.  (SubGrp `  G
)  ->  N  e.  (SubGrp `  G ) )
9 nmznsg.4 . . . . 5  |-  H  =  ( Gs  N )
109subsubg 13267 . . . 4  |-  ( N  e.  (SubGrp `  G
)  ->  ( S  e.  (SubGrp `  H )  <->  ( S  e.  (SubGrp `  G )  /\  S  C_  N ) ) )
118, 10syl 14 . . 3  |-  ( S  e.  (SubGrp `  G
)  ->  ( S  e.  (SubGrp `  H )  <->  ( S  e.  (SubGrp `  G )  /\  S  C_  N ) ) )
121, 5, 11mpbir2and 946 . 2  |-  ( S  e.  (SubGrp `  G
)  ->  S  e.  (SubGrp `  H ) )
132ssrab3 3265 . . . . . 6  |-  N  C_  X
1413sseli 3175 . . . . 5  |-  ( w  e.  N  ->  w  e.  X )
152nmzbi 13279 . . . . 5  |-  ( ( z  e.  N  /\  w  e.  X )  ->  ( ( z  .+  w )  e.  S  <->  ( w  .+  z )  e.  S ) )
1614, 15sylan2 286 . . . 4  |-  ( ( z  e.  N  /\  w  e.  N )  ->  ( ( z  .+  w )  e.  S  <->  ( w  .+  z )  e.  S ) )
1716rgen2 2580 . . 3  |-  A. z  e.  N  A. w  e.  N  ( (
z  .+  w )  e.  S  <->  ( w  .+  z )  e.  S
)
189subgbas 13248 . . . . 5  |-  ( N  e.  (SubGrp `  G
)  ->  N  =  ( Base `  H )
)
198, 18syl 14 . . . 4  |-  ( S  e.  (SubGrp `  G
)  ->  N  =  ( Base `  H )
)
2019raleqdv 2696 . . . 4  |-  ( S  e.  (SubGrp `  G
)  ->  ( A. w  e.  N  (
( z  .+  w
)  e.  S  <->  ( w  .+  z )  e.  S
)  <->  A. w  e.  (
Base `  H )
( ( z  .+  w )  e.  S  <->  ( w  .+  z )  e.  S ) ) )
2119, 20raleqbidv 2706 . . 3  |-  ( S  e.  (SubGrp `  G
)  ->  ( A. z  e.  N  A. w  e.  N  (
( z  .+  w
)  e.  S  <->  ( w  .+  z )  e.  S
)  <->  A. z  e.  (
Base `  H ) A. w  e.  ( Base `  H ) ( ( z  .+  w
)  e.  S  <->  ( w  .+  z )  e.  S
) ) )
2217, 21mpbii 148 . 2  |-  ( S  e.  (SubGrp `  G
)  ->  A. z  e.  ( Base `  H
) A. w  e.  ( Base `  H
) ( ( z 
.+  w )  e.  S  <->  ( w  .+  z )  e.  S
) )
23 eqid 2193 . . . 4  |-  ( Base `  H )  =  (
Base `  H )
24 eqid 2193 . . . 4  |-  ( +g  `  H )  =  ( +g  `  H )
2523, 24isnsg 13272 . . 3  |-  ( S  e.  (NrmSGrp `  H
)  <->  ( S  e.  (SubGrp `  H )  /\  A. z  e.  (
Base `  H ) A. w  e.  ( Base `  H ) ( ( z ( +g  `  H ) w )  e.  S  <->  ( w
( +g  `  H ) z )  e.  S
) ) )
269a1i 9 . . . . . . . . 9  |-  ( S  e.  (SubGrp `  G
)  ->  H  =  ( Gs  N ) )
274a1i 9 . . . . . . . . 9  |-  ( S  e.  (SubGrp `  G
)  ->  .+  =  ( +g  `  G ) )
2826, 27, 8, 6ressplusgd 12746 . . . . . . . 8  |-  ( S  e.  (SubGrp `  G
)  ->  .+  =  ( +g  `  H ) )
2928oveqd 5935 . . . . . . 7  |-  ( S  e.  (SubGrp `  G
)  ->  ( z  .+  w )  =  ( z ( +g  `  H
) w ) )
3029eleq1d 2262 . . . . . 6  |-  ( S  e.  (SubGrp `  G
)  ->  ( (
z  .+  w )  e.  S  <->  ( z ( +g  `  H ) w )  e.  S
) )
3128oveqd 5935 . . . . . . 7  |-  ( S  e.  (SubGrp `  G
)  ->  ( w  .+  z )  =  ( w ( +g  `  H
) z ) )
3231eleq1d 2262 . . . . . 6  |-  ( S  e.  (SubGrp `  G
)  ->  ( (
w  .+  z )  e.  S  <->  ( w ( +g  `  H ) z )  e.  S
) )
3330, 32bibi12d 235 . . . . 5  |-  ( S  e.  (SubGrp `  G
)  ->  ( (
( z  .+  w
)  e.  S  <->  ( w  .+  z )  e.  S
)  <->  ( ( z ( +g  `  H
) w )  e.  S  <->  ( w ( +g  `  H ) z )  e.  S
) ) )
34332ralbidv 2518 . . . 4  |-  ( S  e.  (SubGrp `  G
)  ->  ( A. z  e.  ( Base `  H ) A. w  e.  ( Base `  H
) ( ( z 
.+  w )  e.  S  <->  ( w  .+  z )  e.  S
)  <->  A. z  e.  (
Base `  H ) A. w  e.  ( Base `  H ) ( ( z ( +g  `  H ) w )  e.  S  <->  ( w
( +g  `  H ) z )  e.  S
) ) )
3534anbi2d 464 . . 3  |-  ( S  e.  (SubGrp `  G
)  ->  ( ( S  e.  (SubGrp `  H
)  /\  A. z  e.  ( Base `  H
) A. w  e.  ( Base `  H
) ( ( z 
.+  w )  e.  S  <->  ( w  .+  z )  e.  S
) )  <->  ( S  e.  (SubGrp `  H )  /\  A. z  e.  (
Base `  H ) A. w  e.  ( Base `  H ) ( ( z ( +g  `  H ) w )  e.  S  <->  ( w
( +g  `  H ) z )  e.  S
) ) ) )
3625, 35bitr4id 199 . 2  |-  ( S  e.  (SubGrp `  G
)  ->  ( S  e.  (NrmSGrp `  H )  <->  ( S  e.  (SubGrp `  H )  /\  A. z  e.  ( Base `  H ) A. w  e.  ( Base `  H
) ( ( z 
.+  w )  e.  S  <->  ( w  .+  z )  e.  S
) ) ) )
3712, 22, 36mpbir2and 946 1  |-  ( S  e.  (SubGrp `  G
)  ->  S  e.  (NrmSGrp `  H ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   A.wral 2472   {crab 2476    C_ wss 3153   ` cfv 5254  (class class class)co 5918   Basecbs 12618   ↾s cress 12619   +g cplusg 12695   Grpcgrp 13072  SubGrpcsubg 13237  NrmSGrpcnsg 13238
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-pre-ltirr 7984  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-pnf 8056  df-mnf 8057  df-ltxr 8059  df-inn 8983  df-2 9041  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-iress 12626  df-plusg 12708  df-0g 12869  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-grp 13075  df-minusg 13076  df-sbg 13077  df-subg 13240  df-nsg 13241
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator