| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nmznsg | Unicode version | ||
| Description: Any subgroup is a normal subgroup of its normalizer. (Contributed by Mario Carneiro, 19-Jan-2015.) |
| Ref | Expression |
|---|---|
| elnmz.1 |
|
| nmzsubg.2 |
|
| nmzsubg.3 |
|
| nmznsg.4 |
|
| Ref | Expression |
|---|---|
| nmznsg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 |
. . 3
| |
| 2 | elnmz.1 |
. . . 4
| |
| 3 | nmzsubg.2 |
. . . 4
| |
| 4 | nmzsubg.3 |
. . . 4
| |
| 5 | 2, 3, 4 | ssnmz 13351 |
. . 3
|
| 6 | subgrcl 13319 |
. . . . 5
| |
| 7 | 2, 3, 4 | nmzsubg 13350 |
. . . . 5
|
| 8 | 6, 7 | syl 14 |
. . . 4
|
| 9 | nmznsg.4 |
. . . . 5
| |
| 10 | 9 | subsubg 13337 |
. . . 4
|
| 11 | 8, 10 | syl 14 |
. . 3
|
| 12 | 1, 5, 11 | mpbir2and 946 |
. 2
|
| 13 | 2 | ssrab3 3270 |
. . . . . 6
|
| 14 | 13 | sseli 3180 |
. . . . 5
|
| 15 | 2 | nmzbi 13349 |
. . . . 5
|
| 16 | 14, 15 | sylan2 286 |
. . . 4
|
| 17 | 16 | rgen2 2583 |
. . 3
|
| 18 | 9 | subgbas 13318 |
. . . . 5
|
| 19 | 8, 18 | syl 14 |
. . . 4
|
| 20 | 19 | raleqdv 2699 |
. . . 4
|
| 21 | 19, 20 | raleqbidv 2709 |
. . 3
|
| 22 | 17, 21 | mpbii 148 |
. 2
|
| 23 | eqid 2196 |
. . . 4
| |
| 24 | eqid 2196 |
. . . 4
| |
| 25 | 23, 24 | isnsg 13342 |
. . 3
|
| 26 | 9 | a1i 9 |
. . . . . . . . 9
|
| 27 | 4 | a1i 9 |
. . . . . . . . 9
|
| 28 | 26, 27, 8, 6 | ressplusgd 12816 |
. . . . . . . 8
|
| 29 | 28 | oveqd 5940 |
. . . . . . 7
|
| 30 | 29 | eleq1d 2265 |
. . . . . 6
|
| 31 | 28 | oveqd 5940 |
. . . . . . 7
|
| 32 | 31 | eleq1d 2265 |
. . . . . 6
|
| 33 | 30, 32 | bibi12d 235 |
. . . . 5
|
| 34 | 33 | 2ralbidv 2521 |
. . . 4
|
| 35 | 34 | anbi2d 464 |
. . 3
|
| 36 | 25, 35 | bitr4id 199 |
. 2
|
| 37 | 12, 22, 36 | mpbir2and 946 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7972 ax-resscn 7973 ax-1cn 7974 ax-1re 7975 ax-icn 7976 ax-addcl 7977 ax-addrcl 7978 ax-mulcl 7979 ax-addcom 7981 ax-addass 7983 ax-i2m1 7986 ax-0lt1 7987 ax-0id 7989 ax-rnegex 7990 ax-pre-ltirr 7993 ax-pre-ltadd 7997 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5878 df-ov 5926 df-oprab 5927 df-mpo 5928 df-1st 6199 df-2nd 6200 df-pnf 8065 df-mnf 8066 df-ltxr 8068 df-inn 8993 df-2 9051 df-ndx 12691 df-slot 12692 df-base 12694 df-sets 12695 df-iress 12696 df-plusg 12778 df-0g 12939 df-mgm 13009 df-sgrp 13055 df-mnd 13068 df-grp 13145 df-minusg 13146 df-sbg 13147 df-subg 13310 df-nsg 13311 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |