ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssrab3 GIF version

Theorem ssrab3 3283
Description: Subclass relation for a restricted class abstraction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
Hypothesis
Ref Expression
ssrab3.1 𝐵 = {𝑥𝐴𝜑}
Assertion
Ref Expression
ssrab3 𝐵𝐴
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem ssrab3
StepHypRef Expression
1 ssrab3.1 . 2 𝐵 = {𝑥𝐴𝜑}
2 ssrab2 3282 . 2 {𝑥𝐴𝜑} ⊆ 𝐴
31, 2eqsstri 3229 1 𝐵𝐴
Colors of variables: wff set class
Syntax hints:   = wceq 1373  {crab 2489  wss 3170
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-rab 2494  df-in 3176  df-ss 3183
This theorem is referenced by:  pcprecl  12682  pcprendvds  12683  4sqlem13m  12796  4sqlem14  12797  4sqlem17  12800  nmzsubg  13616  nmznsg  13619  conjnmz  13685  conjnmzb  13686  nzrring  14015  lringnzr  14025  rrgeq0  14097  rrgss  14098  mpodvdsmulf1o  15532  fsumdvdsmul  15533  lgsfcl2  15553
  Copyright terms: Public domain W3C validator