| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssrab3 | GIF version | ||
| Description: Subclass relation for a restricted class abstraction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| ssrab3.1 | ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜑} |
| Ref | Expression |
|---|---|
| ssrab3 | ⊢ 𝐵 ⊆ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrab3.1 | . 2 ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜑} | |
| 2 | ssrab2 3269 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 | |
| 3 | 1, 2 | eqsstri 3216 | 1 ⊢ 𝐵 ⊆ 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 {crab 2479 ⊆ wss 3157 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rab 2484 df-in 3163 df-ss 3170 |
| This theorem is referenced by: pcprecl 12468 pcprendvds 12469 4sqlem13m 12582 4sqlem14 12583 4sqlem17 12586 nmzsubg 13350 nmznsg 13353 conjnmz 13419 conjnmzb 13420 nzrring 13749 lringnzr 13759 rrgeq0 13831 rrgss 13832 mpodvdsmulf1o 15236 fsumdvdsmul 15237 lgsfcl2 15257 |
| Copyright terms: Public domain | W3C validator |