ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssrab3 GIF version

Theorem ssrab3 3233
Description: Subclass relation for a restricted class abstraction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
Hypothesis
Ref Expression
ssrab3.1 𝐵 = {𝑥𝐴𝜑}
Assertion
Ref Expression
ssrab3 𝐵𝐴
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem ssrab3
StepHypRef Expression
1 ssrab3.1 . 2 𝐵 = {𝑥𝐴𝜑}
2 ssrab2 3232 . 2 {𝑥𝐴𝜑} ⊆ 𝐴
31, 2eqsstri 3179 1 𝐵𝐴
Colors of variables: wff set class
Syntax hints:   = wceq 1348  {crab 2452  wss 3121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rab 2457  df-in 3127  df-ss 3134
This theorem is referenced by:  pcprecl  12243  pcprendvds  12244  lgsfcl2  13701
  Copyright terms: Public domain W3C validator