| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssrab3 | GIF version | ||
| Description: Subclass relation for a restricted class abstraction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| ssrab3.1 | ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜑} |
| Ref | Expression |
|---|---|
| ssrab3 | ⊢ 𝐵 ⊆ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrab3.1 | . 2 ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜑} | |
| 2 | ssrab2 3282 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 | |
| 3 | 1, 2 | eqsstri 3229 | 1 ⊢ 𝐵 ⊆ 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 {crab 2489 ⊆ wss 3170 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-rab 2494 df-in 3176 df-ss 3183 |
| This theorem is referenced by: pcprecl 12682 pcprendvds 12683 4sqlem13m 12796 4sqlem14 12797 4sqlem17 12800 nmzsubg 13616 nmznsg 13619 conjnmz 13685 conjnmzb 13686 nzrring 14015 lringnzr 14025 rrgeq0 14097 rrgss 14098 mpodvdsmulf1o 15532 fsumdvdsmul 15533 lgsfcl2 15553 |
| Copyright terms: Public domain | W3C validator |