| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssrab3 | GIF version | ||
| Description: Subclass relation for a restricted class abstraction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| ssrab3.1 | ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜑} |
| Ref | Expression |
|---|---|
| ssrab3 | ⊢ 𝐵 ⊆ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrab3.1 | . 2 ⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜑} | |
| 2 | ssrab2 3269 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 | |
| 3 | 1, 2 | eqsstri 3216 | 1 ⊢ 𝐵 ⊆ 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 {crab 2479 ⊆ wss 3157 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rab 2484 df-in 3163 df-ss 3170 |
| This theorem is referenced by: pcprecl 12485 pcprendvds 12486 4sqlem13m 12599 4sqlem14 12600 4sqlem17 12603 nmzsubg 13418 nmznsg 13421 conjnmz 13487 conjnmzb 13488 nzrring 13817 lringnzr 13827 rrgeq0 13899 rrgss 13900 mpodvdsmulf1o 15312 fsumdvdsmul 15313 lgsfcl2 15333 |
| Copyright terms: Public domain | W3C validator |