ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgsfcl2 Unicode version

Theorem lgsfcl2 15163
Description: The function  F is closed in integers with absolute value less than  1 (namely  { -u
1 ,  0 ,  1 }, see zabsle1 15156). (Contributed by Mario Carneiro, 4-Feb-2015.)
Hypotheses
Ref Expression
lgsval.1  |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( if ( n  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( n  -  1 )  /  2 ) )  +  1 )  mod  n )  -  1 ) ) ^ (
n  pCnt  N )
) ,  1 ) )
lgsfcl2.z  |-  Z  =  { x  e.  ZZ  |  ( abs `  x
)  <_  1 }
Assertion
Ref Expression
lgsfcl2  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  F : NN --> Z )
Distinct variable groups:    A, n, x   
x, F    n, N, x    n, Z
Allowed substitution hints:    F( n)    Z( x)

Proof of Theorem lgsfcl2
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0z 9331 . . . . . . . . 9  |-  0  e.  ZZ
2 0le1 8502 . . . . . . . . 9  |-  0  <_  1
3 fveq2 5555 . . . . . . . . . . . 12  |-  ( x  =  0  ->  ( abs `  x )  =  ( abs `  0
) )
4 abs0 11205 . . . . . . . . . . . 12  |-  ( abs `  0 )  =  0
53, 4eqtrdi 2242 . . . . . . . . . . 11  |-  ( x  =  0  ->  ( abs `  x )  =  0 )
65breq1d 4040 . . . . . . . . . 10  |-  ( x  =  0  ->  (
( abs `  x
)  <_  1  <->  0  <_  1 ) )
7 lgsfcl2.z . . . . . . . . . 10  |-  Z  =  { x  e.  ZZ  |  ( abs `  x
)  <_  1 }
86, 7elrab2 2920 . . . . . . . . 9  |-  ( 0  e.  Z  <->  ( 0  e.  ZZ  /\  0  <_  1 ) )
91, 2, 8mpbir2an 944 . . . . . . . 8  |-  0  e.  Z
109a1i 9 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  0  e.  Z )
11 1z 9346 . . . . . . . . . 10  |-  1  e.  ZZ
12 1le1 8593 . . . . . . . . . 10  |-  1  <_  1
13 fveq2 5555 . . . . . . . . . . . . 13  |-  ( x  =  1  ->  ( abs `  x )  =  ( abs `  1
) )
14 abs1 11219 . . . . . . . . . . . . 13  |-  ( abs `  1 )  =  1
1513, 14eqtrdi 2242 . . . . . . . . . . . 12  |-  ( x  =  1  ->  ( abs `  x )  =  1 )
1615breq1d 4040 . . . . . . . . . . 11  |-  ( x  =  1  ->  (
( abs `  x
)  <_  1  <->  1  <_  1 ) )
1716, 7elrab2 2920 . . . . . . . . . 10  |-  ( 1  e.  Z  <->  ( 1  e.  ZZ  /\  1  <_  1 ) )
1811, 12, 17mpbir2an 944 . . . . . . . . 9  |-  1  e.  Z
1918a1i 9 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  1  e.  Z )
20 neg1z 9352 . . . . . . . . . 10  |-  -u 1  e.  ZZ
21 fveq2 5555 . . . . . . . . . . . . 13  |-  ( x  =  -u 1  ->  ( abs `  x )  =  ( abs `  -u 1
) )
22 ax-1cn 7967 . . . . . . . . . . . . . . 15  |-  1  e.  CC
2322absnegi 11294 . . . . . . . . . . . . . 14  |-  ( abs `  -u 1 )  =  ( abs `  1
)
2423, 14eqtri 2214 . . . . . . . . . . . . 13  |-  ( abs `  -u 1 )  =  1
2521, 24eqtrdi 2242 . . . . . . . . . . . 12  |-  ( x  =  -u 1  ->  ( abs `  x )  =  1 )
2625breq1d 4040 . . . . . . . . . . 11  |-  ( x  =  -u 1  ->  (
( abs `  x
)  <_  1  <->  1  <_  1 ) )
2726, 7elrab2 2920 . . . . . . . . . 10  |-  ( -u
1  e.  Z  <->  ( -u 1  e.  ZZ  /\  1  <_ 
1 ) )
2820, 12, 27mpbir2an 944 . . . . . . . . 9  |-  -u 1  e.  Z
2928a1i 9 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  -u 1  e.  Z )
30 simp1 999 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  A  e.  ZZ )
31 8nn 9152 . . . . . . . . . . . . . 14  |-  8  e.  NN
3231a1i 9 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  8  e.  NN )
3330, 32zmodcld 10419 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  ( A  mod  8 )  e. 
NN0 )
3433nn0zd 9440 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  ( A  mod  8 )  e.  ZZ )
35 zdceq 9395 . . . . . . . . . . 11  |-  ( ( ( A  mod  8
)  e.  ZZ  /\  1  e.  ZZ )  -> DECID  ( A  mod  8 )  =  1 )
3634, 11, 35sylancl 413 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  -> DECID  ( A  mod  8
)  =  1 )
37 7nn 9151 . . . . . . . . . . . 12  |-  7  e.  NN
3837nnzi 9341 . . . . . . . . . . 11  |-  7  e.  ZZ
39 zdceq 9395 . . . . . . . . . . 11  |-  ( ( ( A  mod  8
)  e.  ZZ  /\  7  e.  ZZ )  -> DECID  ( A  mod  8 )  =  7 )
4034, 38, 39sylancl 413 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  -> DECID  ( A  mod  8
)  =  7 )
41 dcor 937 . . . . . . . . . 10  |-  (DECID  ( A  mod  8 )  =  1  ->  (DECID  ( A  mod  8 )  =  7  -> DECID 
( ( A  mod  8 )  =  1  \/  ( A  mod  8 )  =  7 ) ) )
4236, 40, 41sylc 62 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  -> DECID  ( ( A  mod  8 )  =  1  \/  ( A  mod  8 )  =  7 ) )
43 elprg 3639 . . . . . . . . . . 11  |-  ( ( A  mod  8 )  e.  NN0  ->  ( ( A  mod  8 )  e.  { 1 ,  7 }  <->  ( ( A  mod  8 )  =  1  \/  ( A  mod  8 )  =  7 ) ) )
4433, 43syl 14 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  (
( A  mod  8
)  e.  { 1 ,  7 }  <->  ( ( A  mod  8 )  =  1  \/  ( A  mod  8 )  =  7 ) ) )
4544dcbid 839 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  (DECID  ( A  mod  8 )  e. 
{ 1 ,  7 }  <-> DECID  ( ( A  mod  8 )  =  1  \/  ( A  mod  8 )  =  7 ) ) )
4642, 45mpbird 167 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  -> DECID  ( A  mod  8
)  e.  { 1 ,  7 } )
4719, 29, 46ifcldcd 3594 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 )  e.  Z
)
48 2nn 9146 . . . . . . . . 9  |-  2  e.  NN
4948a1i 9 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  2  e.  NN )
50 dvdsdc 11944 . . . . . . . 8  |-  ( ( 2  e.  NN  /\  A  e.  ZZ )  -> DECID  2 
||  A )
5149, 30, 50syl2anc 411 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  -> DECID  2  ||  A )
5210, 47, 51ifcldcd 3594 . . . . . 6  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) )  e.  Z )
5352ad3antrrr 492 . . . . 5  |-  ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  NN )  /\  n  e.  Prime )  /\  n  =  2 )  ->  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) )  e.  Z )
54 simpl1 1002 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  NN )  ->  A  e.  ZZ )
5554ad2antrr 488 . . . . . 6  |-  ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  NN )  /\  n  e.  Prime )  /\  -.  n  =  2 )  ->  A  e.  ZZ )
56 simplr 528 . . . . . . 7  |-  ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  NN )  /\  n  e.  Prime )  /\  -.  n  =  2 )  ->  n  e.  Prime )
57 simpr 110 . . . . . . . 8  |-  ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  NN )  /\  n  e.  Prime )  /\  -.  n  =  2 )  ->  -.  n  = 
2 )
5857neqned 2371 . . . . . . 7  |-  ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  NN )  /\  n  e.  Prime )  /\  -.  n  =  2 )  ->  n  =/=  2
)
59 eldifsn 3746 . . . . . . 7  |-  ( n  e.  ( Prime  \  {
2 } )  <->  ( n  e.  Prime  /\  n  =/=  2 ) )
6056, 58, 59sylanbrc 417 . . . . . 6  |-  ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  NN )  /\  n  e.  Prime )  /\  -.  n  =  2 )  ->  n  e.  ( Prime  \  { 2 } ) )
617lgslem4 15160 . . . . . 6  |-  ( ( A  e.  ZZ  /\  n  e.  ( Prime  \  { 2 } ) )  ->  ( (
( ( A ^
( ( n  - 
1 )  /  2
) )  +  1 )  mod  n )  -  1 )  e.  Z )
6255, 60, 61syl2anc 411 . . . . 5  |-  ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  NN )  /\  n  e.  Prime )  /\  -.  n  =  2 )  ->  ( ( ( ( A ^ (
( n  -  1 )  /  2 ) )  +  1 )  mod  n )  - 
1 )  e.  Z
)
63 simplr 528 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  NN )  /\  n  e.  Prime )  ->  n  e.  NN )
6463nnzd 9441 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  NN )  /\  n  e.  Prime )  ->  n  e.  ZZ )
65 2z 9348 . . . . . 6  |-  2  e.  ZZ
66 zdceq 9395 . . . . . 6  |-  ( ( n  e.  ZZ  /\  2  e.  ZZ )  -> DECID  n  =  2 )
6764, 65, 66sylancl 413 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  NN )  /\  n  e.  Prime )  -> DECID  n  =  2
)
6853, 62, 67ifcldadc 3587 . . . 4  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  NN )  /\  n  e.  Prime )  ->  if ( n  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( n  -  1 )  /  2 ) )  +  1 )  mod  n )  -  1 ) )  e.  Z
)
69 simpr 110 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  NN )  /\  n  e.  Prime )  ->  n  e.  Prime )
70 simpll2 1039 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  NN )  /\  n  e.  Prime )  ->  N  e.  ZZ )
71 simpll3 1040 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  NN )  /\  n  e.  Prime )  ->  N  =/=  0 )
72 pczcl 12439 . . . . 5  |-  ( ( n  e.  Prime  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( n  pCnt  N
)  e.  NN0 )
7369, 70, 71, 72syl12anc 1247 . . . 4  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  NN )  /\  n  e.  Prime )  ->  (
n  pCnt  N )  e.  NN0 )
747ssrab3 3266 . . . . . 6  |-  Z  C_  ZZ
75 zsscn 9328 . . . . . 6  |-  ZZ  C_  CC
7674, 75sstri 3189 . . . . 5  |-  Z  C_  CC
777lgslem3 15159 . . . . 5  |-  ( ( a  e.  Z  /\  b  e.  Z )  ->  ( a  x.  b
)  e.  Z )
7876, 77, 18expcllem 10624 . . . 4  |-  ( ( if ( n  =  2 ,  if ( 2  ||  A , 
0 ,  if ( ( A  mod  8
)  e.  { 1 ,  7 } , 
1 ,  -u 1
) ) ,  ( ( ( ( A ^ ( ( n  -  1 )  / 
2 ) )  +  1 )  mod  n
)  -  1 ) )  e.  Z  /\  ( n  pCnt  N )  e.  NN0 )  -> 
( if ( n  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( n  -  1 )  /  2 ) )  +  1 )  mod  n )  -  1 ) ) ^ (
n  pCnt  N )
)  e.  Z )
7968, 73, 78syl2anc 411 . . 3  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  NN )  /\  n  e.  Prime )  ->  ( if ( n  =  2 ,  if ( 2 
||  A ,  0 ,  if ( ( A  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) ,  ( ( ( ( A ^ (
( n  -  1 )  /  2 ) )  +  1 )  mod  n )  - 
1 ) ) ^
( n  pCnt  N
) )  e.  Z
)
8018a1i 9 . . 3  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  NN )  /\  -.  n  e.  Prime )  -> 
1  e.  Z )
81 simpr 110 . . . 4  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  NN )  ->  n  e.  NN )
82 prmdc 12271 . . . 4  |-  ( n  e.  NN  -> DECID  n  e.  Prime )
8381, 82syl 14 . . 3  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  NN )  -> DECID  n  e.  Prime )
8479, 80, 83ifcldadc 3587 . 2  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  NN )  ->  if ( n  e. 
Prime ,  ( if ( n  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( n  -  1 )  /  2 ) )  +  1 )  mod  n )  -  1 ) ) ^ (
n  pCnt  N )
) ,  1 )  e.  Z )
85 lgsval.1 . 2  |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( if ( n  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( n  -  1 )  /  2 ) )  +  1 )  mod  n )  -  1 ) ) ^ (
n  pCnt  N )
) ,  1 ) )
8684, 85fmptd 5713 1  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  F : NN --> Z )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709  DECID wdc 835    /\ w3a 980    = wceq 1364    e. wcel 2164    =/= wne 2364   {crab 2476    \ cdif 3151   ifcif 3558   {csn 3619   {cpr 3620   class class class wbr 4030    |-> cmpt 4091   -->wf 5251   ` cfv 5255  (class class class)co 5919   CCcc 7872   0cc0 7874   1c1 7875    + caddc 7877    <_ cle 8057    - cmin 8192   -ucneg 8193    / cdiv 8693   NNcn 8984   2c2 9035   7c7 9040   8c8 9041   NN0cn0 9243   ZZcz 9320    mod cmo 10396   ^cexp 10612   abscabs 11144    || cdvds 11933   Primecprime 12248    pCnt cpc 12425
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993  ax-caucvg 7994
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-xor 1387  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-frec 6446  df-1o 6471  df-2o 6472  df-oadd 6475  df-er 6589  df-en 6797  df-dom 6798  df-fin 6799  df-sup 7045  df-inf 7046  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-5 9046  df-6 9047  df-7 9048  df-8 9049  df-n0 9244  df-z 9321  df-uz 9596  df-q 9688  df-rp 9723  df-fz 10078  df-fzo 10212  df-fl 10342  df-mod 10397  df-seqfrec 10522  df-exp 10613  df-ihash 10850  df-cj 10989  df-re 10990  df-im 10991  df-rsqrt 11145  df-abs 11146  df-clim 11425  df-proddc 11697  df-dvds 11934  df-gcd 12083  df-prm 12249  df-phi 12352  df-pc 12426
This theorem is referenced by:  lgscllem  15164  lgsfcl  15165  lgsfle1  15166
  Copyright terms: Public domain W3C validator