| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lgsfcl2 | Unicode version | ||
| Description: The function |
| Ref | Expression |
|---|---|
| lgsval.1 |
|
| lgsfcl2.z |
|
| Ref | Expression |
|---|---|
| lgsfcl2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0z 9356 |
. . . . . . . . 9
| |
| 2 | 0le1 8527 |
. . . . . . . . 9
| |
| 3 | fveq2 5561 |
. . . . . . . . . . . 12
| |
| 4 | abs0 11242 |
. . . . . . . . . . . 12
| |
| 5 | 3, 4 | eqtrdi 2245 |
. . . . . . . . . . 11
|
| 6 | 5 | breq1d 4044 |
. . . . . . . . . 10
|
| 7 | lgsfcl2.z |
. . . . . . . . . 10
| |
| 8 | 6, 7 | elrab2 2923 |
. . . . . . . . 9
|
| 9 | 1, 2, 8 | mpbir2an 944 |
. . . . . . . 8
|
| 10 | 9 | a1i 9 |
. . . . . . 7
|
| 11 | 1z 9371 |
. . . . . . . . . 10
| |
| 12 | 1le1 8618 |
. . . . . . . . . 10
| |
| 13 | fveq2 5561 |
. . . . . . . . . . . . 13
| |
| 14 | abs1 11256 |
. . . . . . . . . . . . 13
| |
| 15 | 13, 14 | eqtrdi 2245 |
. . . . . . . . . . . 12
|
| 16 | 15 | breq1d 4044 |
. . . . . . . . . . 11
|
| 17 | 16, 7 | elrab2 2923 |
. . . . . . . . . 10
|
| 18 | 11, 12, 17 | mpbir2an 944 |
. . . . . . . . 9
|
| 19 | 18 | a1i 9 |
. . . . . . . 8
|
| 20 | neg1z 9377 |
. . . . . . . . . 10
| |
| 21 | fveq2 5561 |
. . . . . . . . . . . . 13
| |
| 22 | ax-1cn 7991 |
. . . . . . . . . . . . . . 15
| |
| 23 | 22 | absnegi 11331 |
. . . . . . . . . . . . . 14
|
| 24 | 23, 14 | eqtri 2217 |
. . . . . . . . . . . . 13
|
| 25 | 21, 24 | eqtrdi 2245 |
. . . . . . . . . . . 12
|
| 26 | 25 | breq1d 4044 |
. . . . . . . . . . 11
|
| 27 | 26, 7 | elrab2 2923 |
. . . . . . . . . 10
|
| 28 | 20, 12, 27 | mpbir2an 944 |
. . . . . . . . 9
|
| 29 | 28 | a1i 9 |
. . . . . . . 8
|
| 30 | simp1 999 |
. . . . . . . . . . . . 13
| |
| 31 | 8nn 9177 |
. . . . . . . . . . . . . 14
| |
| 32 | 31 | a1i 9 |
. . . . . . . . . . . . 13
|
| 33 | 30, 32 | zmodcld 10456 |
. . . . . . . . . . . 12
|
| 34 | 33 | nn0zd 9465 |
. . . . . . . . . . 11
|
| 35 | zdceq 9420 |
. . . . . . . . . . 11
| |
| 36 | 34, 11, 35 | sylancl 413 |
. . . . . . . . . 10
|
| 37 | 7nn 9176 |
. . . . . . . . . . . 12
| |
| 38 | 37 | nnzi 9366 |
. . . . . . . . . . 11
|
| 39 | zdceq 9420 |
. . . . . . . . . . 11
| |
| 40 | 34, 38, 39 | sylancl 413 |
. . . . . . . . . 10
|
| 41 | dcor 937 |
. . . . . . . . . 10
| |
| 42 | 36, 40, 41 | sylc 62 |
. . . . . . . . 9
|
| 43 | elprg 3643 |
. . . . . . . . . . 11
| |
| 44 | 33, 43 | syl 14 |
. . . . . . . . . 10
|
| 45 | 44 | dcbid 839 |
. . . . . . . . 9
|
| 46 | 42, 45 | mpbird 167 |
. . . . . . . 8
|
| 47 | 19, 29, 46 | ifcldcd 3598 |
. . . . . . 7
|
| 48 | 2nn 9171 |
. . . . . . . . 9
| |
| 49 | 48 | a1i 9 |
. . . . . . . 8
|
| 50 | dvdsdc 11982 |
. . . . . . . 8
| |
| 51 | 49, 30, 50 | syl2anc 411 |
. . . . . . 7
|
| 52 | 10, 47, 51 | ifcldcd 3598 |
. . . . . 6
|
| 53 | 52 | ad3antrrr 492 |
. . . . 5
|
| 54 | simpl1 1002 |
. . . . . . 7
| |
| 55 | 54 | ad2antrr 488 |
. . . . . 6
|
| 56 | simplr 528 |
. . . . . . 7
| |
| 57 | simpr 110 |
. . . . . . . 8
| |
| 58 | 57 | neqned 2374 |
. . . . . . 7
|
| 59 | eldifsn 3750 |
. . . . . . 7
| |
| 60 | 56, 58, 59 | sylanbrc 417 |
. . . . . 6
|
| 61 | 7 | lgslem4 15352 |
. . . . . 6
|
| 62 | 55, 60, 61 | syl2anc 411 |
. . . . 5
|
| 63 | simplr 528 |
. . . . . . 7
| |
| 64 | 63 | nnzd 9466 |
. . . . . 6
|
| 65 | 2z 9373 |
. . . . . 6
| |
| 66 | zdceq 9420 |
. . . . . 6
| |
| 67 | 64, 65, 66 | sylancl 413 |
. . . . 5
|
| 68 | 53, 62, 67 | ifcldadc 3591 |
. . . 4
|
| 69 | simpr 110 |
. . . . 5
| |
| 70 | simpll2 1039 |
. . . . 5
| |
| 71 | simpll3 1040 |
. . . . 5
| |
| 72 | pczcl 12494 |
. . . . 5
| |
| 73 | 69, 70, 71, 72 | syl12anc 1247 |
. . . 4
|
| 74 | 7 | ssrab3 3270 |
. . . . . 6
|
| 75 | zsscn 9353 |
. . . . . 6
| |
| 76 | 74, 75 | sstri 3193 |
. . . . 5
|
| 77 | 7 | lgslem3 15351 |
. . . . 5
|
| 78 | 76, 77, 18 | expcllem 10661 |
. . . 4
|
| 79 | 68, 73, 78 | syl2anc 411 |
. . 3
|
| 80 | 18 | a1i 9 |
. . 3
|
| 81 | simpr 110 |
. . . 4
| |
| 82 | prmdc 12325 |
. . . 4
| |
| 83 | 81, 82 | syl 14 |
. . 3
|
| 84 | 79, 80, 83 | ifcldadc 3591 |
. 2
|
| 85 | lgsval.1 |
. 2
| |
| 86 | 84, 85 | fmptd 5719 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7989 ax-resscn 7990 ax-1cn 7991 ax-1re 7992 ax-icn 7993 ax-addcl 7994 ax-addrcl 7995 ax-mulcl 7996 ax-mulrcl 7997 ax-addcom 7998 ax-mulcom 7999 ax-addass 8000 ax-mulass 8001 ax-distr 8002 ax-i2m1 8003 ax-0lt1 8004 ax-1rid 8005 ax-0id 8006 ax-rnegex 8007 ax-precex 8008 ax-cnre 8009 ax-pre-ltirr 8010 ax-pre-ltwlin 8011 ax-pre-lttrn 8012 ax-pre-apti 8013 ax-pre-ltadd 8014 ax-pre-mulgt0 8015 ax-pre-mulext 8016 ax-arch 8017 ax-caucvg 8018 |
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-xor 1387 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-po 4332 df-iso 4333 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-isom 5268 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-recs 6372 df-irdg 6437 df-frec 6458 df-1o 6483 df-2o 6484 df-oadd 6487 df-er 6601 df-en 6809 df-dom 6810 df-fin 6811 df-sup 7059 df-inf 7060 df-pnf 8082 df-mnf 8083 df-xr 8084 df-ltxr 8085 df-le 8086 df-sub 8218 df-neg 8219 df-reap 8621 df-ap 8628 df-div 8719 df-inn 9010 df-2 9068 df-3 9069 df-4 9070 df-5 9071 df-6 9072 df-7 9073 df-8 9074 df-n0 9269 df-z 9346 df-uz 9621 df-q 9713 df-rp 9748 df-fz 10103 df-fzo 10237 df-fl 10379 df-mod 10434 df-seqfrec 10559 df-exp 10650 df-ihash 10887 df-cj 11026 df-re 11027 df-im 11028 df-rsqrt 11182 df-abs 11183 df-clim 11463 df-proddc 11735 df-dvds 11972 df-gcd 12148 df-prm 12303 df-phi 12406 df-pc 12481 |
| This theorem is referenced by: lgscllem 15356 lgsfcl 15357 lgsfle1 15358 |
| Copyright terms: Public domain | W3C validator |