ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgsfcl2 Unicode version

Theorem lgsfcl2 14410
Description: The function  F is closed in integers with absolute value less than  1 (namely  { -u
1 ,  0 ,  1 }, see zabsle1 14403). (Contributed by Mario Carneiro, 4-Feb-2015.)
Hypotheses
Ref Expression
lgsval.1  |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( if ( n  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( n  -  1 )  /  2 ) )  +  1 )  mod  n )  -  1 ) ) ^ (
n  pCnt  N )
) ,  1 ) )
lgsfcl2.z  |-  Z  =  { x  e.  ZZ  |  ( abs `  x
)  <_  1 }
Assertion
Ref Expression
lgsfcl2  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  F : NN --> Z )
Distinct variable groups:    A, n, x   
x, F    n, N, x    n, Z
Allowed substitution hints:    F( n)    Z( x)

Proof of Theorem lgsfcl2
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0z 9264 . . . . . . . . 9  |-  0  e.  ZZ
2 0le1 8438 . . . . . . . . 9  |-  0  <_  1
3 fveq2 5516 . . . . . . . . . . . 12  |-  ( x  =  0  ->  ( abs `  x )  =  ( abs `  0
) )
4 abs0 11067 . . . . . . . . . . . 12  |-  ( abs `  0 )  =  0
53, 4eqtrdi 2226 . . . . . . . . . . 11  |-  ( x  =  0  ->  ( abs `  x )  =  0 )
65breq1d 4014 . . . . . . . . . 10  |-  ( x  =  0  ->  (
( abs `  x
)  <_  1  <->  0  <_  1 ) )
7 lgsfcl2.z . . . . . . . . . 10  |-  Z  =  { x  e.  ZZ  |  ( abs `  x
)  <_  1 }
86, 7elrab2 2897 . . . . . . . . 9  |-  ( 0  e.  Z  <->  ( 0  e.  ZZ  /\  0  <_  1 ) )
91, 2, 8mpbir2an 942 . . . . . . . 8  |-  0  e.  Z
109a1i 9 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  0  e.  Z )
11 1z 9279 . . . . . . . . . 10  |-  1  e.  ZZ
12 1le1 8529 . . . . . . . . . 10  |-  1  <_  1
13 fveq2 5516 . . . . . . . . . . . . 13  |-  ( x  =  1  ->  ( abs `  x )  =  ( abs `  1
) )
14 abs1 11081 . . . . . . . . . . . . 13  |-  ( abs `  1 )  =  1
1513, 14eqtrdi 2226 . . . . . . . . . . . 12  |-  ( x  =  1  ->  ( abs `  x )  =  1 )
1615breq1d 4014 . . . . . . . . . . 11  |-  ( x  =  1  ->  (
( abs `  x
)  <_  1  <->  1  <_  1 ) )
1716, 7elrab2 2897 . . . . . . . . . 10  |-  ( 1  e.  Z  <->  ( 1  e.  ZZ  /\  1  <_  1 ) )
1811, 12, 17mpbir2an 942 . . . . . . . . 9  |-  1  e.  Z
1918a1i 9 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  1  e.  Z )
20 neg1z 9285 . . . . . . . . . 10  |-  -u 1  e.  ZZ
21 fveq2 5516 . . . . . . . . . . . . 13  |-  ( x  =  -u 1  ->  ( abs `  x )  =  ( abs `  -u 1
) )
22 ax-1cn 7904 . . . . . . . . . . . . . . 15  |-  1  e.  CC
2322absnegi 11156 . . . . . . . . . . . . . 14  |-  ( abs `  -u 1 )  =  ( abs `  1
)
2423, 14eqtri 2198 . . . . . . . . . . . . 13  |-  ( abs `  -u 1 )  =  1
2521, 24eqtrdi 2226 . . . . . . . . . . . 12  |-  ( x  =  -u 1  ->  ( abs `  x )  =  1 )
2625breq1d 4014 . . . . . . . . . . 11  |-  ( x  =  -u 1  ->  (
( abs `  x
)  <_  1  <->  1  <_  1 ) )
2726, 7elrab2 2897 . . . . . . . . . 10  |-  ( -u
1  e.  Z  <->  ( -u 1  e.  ZZ  /\  1  <_ 
1 ) )
2820, 12, 27mpbir2an 942 . . . . . . . . 9  |-  -u 1  e.  Z
2928a1i 9 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  -u 1  e.  Z )
30 simp1 997 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  A  e.  ZZ )
31 8nn 9086 . . . . . . . . . . . . . 14  |-  8  e.  NN
3231a1i 9 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  8  e.  NN )
3330, 32zmodcld 10345 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  ( A  mod  8 )  e. 
NN0 )
3433nn0zd 9373 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  ( A  mod  8 )  e.  ZZ )
35 zdceq 9328 . . . . . . . . . . 11  |-  ( ( ( A  mod  8
)  e.  ZZ  /\  1  e.  ZZ )  -> DECID  ( A  mod  8 )  =  1 )
3634, 11, 35sylancl 413 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  -> DECID  ( A  mod  8
)  =  1 )
37 7nn 9085 . . . . . . . . . . . 12  |-  7  e.  NN
3837nnzi 9274 . . . . . . . . . . 11  |-  7  e.  ZZ
39 zdceq 9328 . . . . . . . . . . 11  |-  ( ( ( A  mod  8
)  e.  ZZ  /\  7  e.  ZZ )  -> DECID  ( A  mod  8 )  =  7 )
4034, 38, 39sylancl 413 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  -> DECID  ( A  mod  8
)  =  7 )
41 dcor 935 . . . . . . . . . 10  |-  (DECID  ( A  mod  8 )  =  1  ->  (DECID  ( A  mod  8 )  =  7  -> DECID 
( ( A  mod  8 )  =  1  \/  ( A  mod  8 )  =  7 ) ) )
4236, 40, 41sylc 62 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  -> DECID  ( ( A  mod  8 )  =  1  \/  ( A  mod  8 )  =  7 ) )
43 elprg 3613 . . . . . . . . . . 11  |-  ( ( A  mod  8 )  e.  NN0  ->  ( ( A  mod  8 )  e.  { 1 ,  7 }  <->  ( ( A  mod  8 )  =  1  \/  ( A  mod  8 )  =  7 ) ) )
4433, 43syl 14 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  (
( A  mod  8
)  e.  { 1 ,  7 }  <->  ( ( A  mod  8 )  =  1  \/  ( A  mod  8 )  =  7 ) ) )
4544dcbid 838 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  (DECID  ( A  mod  8 )  e. 
{ 1 ,  7 }  <-> DECID  ( ( A  mod  8 )  =  1  \/  ( A  mod  8 )  =  7 ) ) )
4642, 45mpbird 167 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  -> DECID  ( A  mod  8
)  e.  { 1 ,  7 } )
4719, 29, 46ifcldcd 3571 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 )  e.  Z
)
48 2nn 9080 . . . . . . . . 9  |-  2  e.  NN
4948a1i 9 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  2  e.  NN )
50 dvdsdc 11805 . . . . . . . 8  |-  ( ( 2  e.  NN  /\  A  e.  ZZ )  -> DECID  2 
||  A )
5149, 30, 50syl2anc 411 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  -> DECID  2  ||  A )
5210, 47, 51ifcldcd 3571 . . . . . 6  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) )  e.  Z )
5352ad3antrrr 492 . . . . 5  |-  ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  NN )  /\  n  e.  Prime )  /\  n  =  2 )  ->  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) )  e.  Z )
54 simpl1 1000 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  NN )  ->  A  e.  ZZ )
5554ad2antrr 488 . . . . . 6  |-  ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  NN )  /\  n  e.  Prime )  /\  -.  n  =  2 )  ->  A  e.  ZZ )
56 simplr 528 . . . . . . 7  |-  ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  NN )  /\  n  e.  Prime )  /\  -.  n  =  2 )  ->  n  e.  Prime )
57 simpr 110 . . . . . . . 8  |-  ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  NN )  /\  n  e.  Prime )  /\  -.  n  =  2 )  ->  -.  n  = 
2 )
5857neqned 2354 . . . . . . 7  |-  ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  NN )  /\  n  e.  Prime )  /\  -.  n  =  2 )  ->  n  =/=  2
)
59 eldifsn 3720 . . . . . . 7  |-  ( n  e.  ( Prime  \  {
2 } )  <->  ( n  e.  Prime  /\  n  =/=  2 ) )
6056, 58, 59sylanbrc 417 . . . . . 6  |-  ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  NN )  /\  n  e.  Prime )  /\  -.  n  =  2 )  ->  n  e.  ( Prime  \  { 2 } ) )
617lgslem4 14407 . . . . . 6  |-  ( ( A  e.  ZZ  /\  n  e.  ( Prime  \  { 2 } ) )  ->  ( (
( ( A ^
( ( n  - 
1 )  /  2
) )  +  1 )  mod  n )  -  1 )  e.  Z )
6255, 60, 61syl2anc 411 . . . . 5  |-  ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  NN )  /\  n  e.  Prime )  /\  -.  n  =  2 )  ->  ( ( ( ( A ^ (
( n  -  1 )  /  2 ) )  +  1 )  mod  n )  - 
1 )  e.  Z
)
63 simplr 528 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  NN )  /\  n  e.  Prime )  ->  n  e.  NN )
6463nnzd 9374 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  NN )  /\  n  e.  Prime )  ->  n  e.  ZZ )
65 2z 9281 . . . . . 6  |-  2  e.  ZZ
66 zdceq 9328 . . . . . 6  |-  ( ( n  e.  ZZ  /\  2  e.  ZZ )  -> DECID  n  =  2 )
6764, 65, 66sylancl 413 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  NN )  /\  n  e.  Prime )  -> DECID  n  =  2
)
6853, 62, 67ifcldadc 3564 . . . 4  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  NN )  /\  n  e.  Prime )  ->  if ( n  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( n  -  1 )  /  2 ) )  +  1 )  mod  n )  -  1 ) )  e.  Z
)
69 simpr 110 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  NN )  /\  n  e.  Prime )  ->  n  e.  Prime )
70 simpll2 1037 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  NN )  /\  n  e.  Prime )  ->  N  e.  ZZ )
71 simpll3 1038 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  NN )  /\  n  e.  Prime )  ->  N  =/=  0 )
72 pczcl 12298 . . . . 5  |-  ( ( n  e.  Prime  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( n  pCnt  N
)  e.  NN0 )
7369, 70, 71, 72syl12anc 1236 . . . 4  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  NN )  /\  n  e.  Prime )  ->  (
n  pCnt  N )  e.  NN0 )
747ssrab3 3242 . . . . . 6  |-  Z  C_  ZZ
75 zsscn 9261 . . . . . 6  |-  ZZ  C_  CC
7674, 75sstri 3165 . . . . 5  |-  Z  C_  CC
777lgslem3 14406 . . . . 5  |-  ( ( a  e.  Z  /\  b  e.  Z )  ->  ( a  x.  b
)  e.  Z )
7876, 77, 18expcllem 10531 . . . 4  |-  ( ( if ( n  =  2 ,  if ( 2  ||  A , 
0 ,  if ( ( A  mod  8
)  e.  { 1 ,  7 } , 
1 ,  -u 1
) ) ,  ( ( ( ( A ^ ( ( n  -  1 )  / 
2 ) )  +  1 )  mod  n
)  -  1 ) )  e.  Z  /\  ( n  pCnt  N )  e.  NN0 )  -> 
( if ( n  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( n  -  1 )  /  2 ) )  +  1 )  mod  n )  -  1 ) ) ^ (
n  pCnt  N )
)  e.  Z )
7968, 73, 78syl2anc 411 . . 3  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  NN )  /\  n  e.  Prime )  ->  ( if ( n  =  2 ,  if ( 2 
||  A ,  0 ,  if ( ( A  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) ,  ( ( ( ( A ^ (
( n  -  1 )  /  2 ) )  +  1 )  mod  n )  - 
1 ) ) ^
( n  pCnt  N
) )  e.  Z
)
8018a1i 9 . . 3  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  NN )  /\  -.  n  e.  Prime )  -> 
1  e.  Z )
81 simpr 110 . . . 4  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  NN )  ->  n  e.  NN )
82 prmdc 12130 . . . 4  |-  ( n  e.  NN  -> DECID  n  e.  Prime )
8381, 82syl 14 . . 3  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  NN )  -> DECID  n  e.  Prime )
8479, 80, 83ifcldadc 3564 . 2  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  NN )  ->  if ( n  e. 
Prime ,  ( if ( n  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( n  -  1 )  /  2 ) )  +  1 )  mod  n )  -  1 ) ) ^ (
n  pCnt  N )
) ,  1 )  e.  Z )
85 lgsval.1 . 2  |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( if ( n  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( n  -  1 )  /  2 ) )  +  1 )  mod  n )  -  1 ) ) ^ (
n  pCnt  N )
) ,  1 ) )
8684, 85fmptd 5671 1  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  F : NN --> Z )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708  DECID wdc 834    /\ w3a 978    = wceq 1353    e. wcel 2148    =/= wne 2347   {crab 2459    \ cdif 3127   ifcif 3535   {csn 3593   {cpr 3594   class class class wbr 4004    |-> cmpt 4065   -->wf 5213   ` cfv 5217  (class class class)co 5875   CCcc 7809   0cc0 7811   1c1 7812    + caddc 7814    <_ cle 7993    - cmin 8128   -ucneg 8129    / cdiv 8629   NNcn 8919   2c2 8970   7c7 8975   8c8 8976   NN0cn0 9176   ZZcz 9253    mod cmo 10322   ^cexp 10519   abscabs 11006    || cdvds 11794   Primecprime 12107    pCnt cpc 12284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-iinf 4588  ax-cnex 7902  ax-resscn 7903  ax-1cn 7904  ax-1re 7905  ax-icn 7906  ax-addcl 7907  ax-addrcl 7908  ax-mulcl 7909  ax-mulrcl 7910  ax-addcom 7911  ax-mulcom 7912  ax-addass 7913  ax-mulass 7914  ax-distr 7915  ax-i2m1 7916  ax-0lt1 7917  ax-1rid 7918  ax-0id 7919  ax-rnegex 7920  ax-precex 7921  ax-cnre 7922  ax-pre-ltirr 7923  ax-pre-ltwlin 7924  ax-pre-lttrn 7925  ax-pre-apti 7926  ax-pre-ltadd 7927  ax-pre-mulgt0 7928  ax-pre-mulext 7929  ax-arch 7930  ax-caucvg 7931
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-xor 1376  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-if 3536  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-tr 4103  df-id 4294  df-po 4297  df-iso 4298  df-iord 4367  df-on 4369  df-ilim 4370  df-suc 4372  df-iom 4591  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-isom 5226  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142  df-recs 6306  df-irdg 6371  df-frec 6392  df-1o 6417  df-2o 6418  df-oadd 6421  df-er 6535  df-en 6741  df-dom 6742  df-fin 6743  df-sup 6983  df-inf 6984  df-pnf 7994  df-mnf 7995  df-xr 7996  df-ltxr 7997  df-le 7998  df-sub 8130  df-neg 8131  df-reap 8532  df-ap 8539  df-div 8630  df-inn 8920  df-2 8978  df-3 8979  df-4 8980  df-5 8981  df-6 8982  df-7 8983  df-8 8984  df-n0 9177  df-z 9254  df-uz 9529  df-q 9620  df-rp 9654  df-fz 10009  df-fzo 10143  df-fl 10270  df-mod 10323  df-seqfrec 10446  df-exp 10520  df-ihash 10756  df-cj 10851  df-re 10852  df-im 10853  df-rsqrt 11007  df-abs 11008  df-clim 11287  df-proddc 11559  df-dvds 11795  df-gcd 11944  df-prm 12108  df-phi 12211  df-pc 12285
This theorem is referenced by:  lgscllem  14411  lgsfcl  14412  lgsfle1  14413
  Copyright terms: Public domain W3C validator