| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lgsfcl2 | Unicode version | ||
| Description: The function |
| Ref | Expression |
|---|---|
| lgsval.1 |
|
| lgsfcl2.z |
|
| Ref | Expression |
|---|---|
| lgsfcl2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0z 9418 |
. . . . . . . . 9
| |
| 2 | 0le1 8589 |
. . . . . . . . 9
| |
| 3 | fveq2 5599 |
. . . . . . . . . . . 12
| |
| 4 | abs0 11484 |
. . . . . . . . . . . 12
| |
| 5 | 3, 4 | eqtrdi 2256 |
. . . . . . . . . . 11
|
| 6 | 5 | breq1d 4069 |
. . . . . . . . . 10
|
| 7 | lgsfcl2.z |
. . . . . . . . . 10
| |
| 8 | 6, 7 | elrab2 2939 |
. . . . . . . . 9
|
| 9 | 1, 2, 8 | mpbir2an 945 |
. . . . . . . 8
|
| 10 | 9 | a1i 9 |
. . . . . . 7
|
| 11 | 1z 9433 |
. . . . . . . . . 10
| |
| 12 | 1le1 8680 |
. . . . . . . . . 10
| |
| 13 | fveq2 5599 |
. . . . . . . . . . . . 13
| |
| 14 | abs1 11498 |
. . . . . . . . . . . . 13
| |
| 15 | 13, 14 | eqtrdi 2256 |
. . . . . . . . . . . 12
|
| 16 | 15 | breq1d 4069 |
. . . . . . . . . . 11
|
| 17 | 16, 7 | elrab2 2939 |
. . . . . . . . . 10
|
| 18 | 11, 12, 17 | mpbir2an 945 |
. . . . . . . . 9
|
| 19 | 18 | a1i 9 |
. . . . . . . 8
|
| 20 | neg1z 9439 |
. . . . . . . . . 10
| |
| 21 | fveq2 5599 |
. . . . . . . . . . . . 13
| |
| 22 | ax-1cn 8053 |
. . . . . . . . . . . . . . 15
| |
| 23 | 22 | absnegi 11573 |
. . . . . . . . . . . . . 14
|
| 24 | 23, 14 | eqtri 2228 |
. . . . . . . . . . . . 13
|
| 25 | 21, 24 | eqtrdi 2256 |
. . . . . . . . . . . 12
|
| 26 | 25 | breq1d 4069 |
. . . . . . . . . . 11
|
| 27 | 26, 7 | elrab2 2939 |
. . . . . . . . . 10
|
| 28 | 20, 12, 27 | mpbir2an 945 |
. . . . . . . . 9
|
| 29 | 28 | a1i 9 |
. . . . . . . 8
|
| 30 | simp1 1000 |
. . . . . . . . . . . . 13
| |
| 31 | 8nn 9239 |
. . . . . . . . . . . . . 14
| |
| 32 | 31 | a1i 9 |
. . . . . . . . . . . . 13
|
| 33 | 30, 32 | zmodcld 10527 |
. . . . . . . . . . . 12
|
| 34 | 33 | nn0zd 9528 |
. . . . . . . . . . 11
|
| 35 | zdceq 9483 |
. . . . . . . . . . 11
| |
| 36 | 34, 11, 35 | sylancl 413 |
. . . . . . . . . 10
|
| 37 | 7nn 9238 |
. . . . . . . . . . . 12
| |
| 38 | 37 | nnzi 9428 |
. . . . . . . . . . 11
|
| 39 | zdceq 9483 |
. . . . . . . . . . 11
| |
| 40 | 34, 38, 39 | sylancl 413 |
. . . . . . . . . 10
|
| 41 | dcor 938 |
. . . . . . . . . 10
| |
| 42 | 36, 40, 41 | sylc 62 |
. . . . . . . . 9
|
| 43 | elprg 3663 |
. . . . . . . . . . 11
| |
| 44 | 33, 43 | syl 14 |
. . . . . . . . . 10
|
| 45 | 44 | dcbid 840 |
. . . . . . . . 9
|
| 46 | 42, 45 | mpbird 167 |
. . . . . . . 8
|
| 47 | 19, 29, 46 | ifcldcd 3617 |
. . . . . . 7
|
| 48 | 2nn 9233 |
. . . . . . . . 9
| |
| 49 | 48 | a1i 9 |
. . . . . . . 8
|
| 50 | dvdsdc 12224 |
. . . . . . . 8
| |
| 51 | 49, 30, 50 | syl2anc 411 |
. . . . . . 7
|
| 52 | 10, 47, 51 | ifcldcd 3617 |
. . . . . 6
|
| 53 | 52 | ad3antrrr 492 |
. . . . 5
|
| 54 | simpl1 1003 |
. . . . . . 7
| |
| 55 | 54 | ad2antrr 488 |
. . . . . 6
|
| 56 | simplr 528 |
. . . . . . 7
| |
| 57 | simpr 110 |
. . . . . . . 8
| |
| 58 | 57 | neqned 2385 |
. . . . . . 7
|
| 59 | eldifsn 3771 |
. . . . . . 7
| |
| 60 | 56, 58, 59 | sylanbrc 417 |
. . . . . 6
|
| 61 | 7 | lgslem4 15595 |
. . . . . 6
|
| 62 | 55, 60, 61 | syl2anc 411 |
. . . . 5
|
| 63 | simplr 528 |
. . . . . . 7
| |
| 64 | 63 | nnzd 9529 |
. . . . . 6
|
| 65 | 2z 9435 |
. . . . . 6
| |
| 66 | zdceq 9483 |
. . . . . 6
| |
| 67 | 64, 65, 66 | sylancl 413 |
. . . . 5
|
| 68 | 53, 62, 67 | ifcldadc 3609 |
. . . 4
|
| 69 | simpr 110 |
. . . . 5
| |
| 70 | simpll2 1040 |
. . . . 5
| |
| 71 | simpll3 1041 |
. . . . 5
| |
| 72 | pczcl 12736 |
. . . . 5
| |
| 73 | 69, 70, 71, 72 | syl12anc 1248 |
. . . 4
|
| 74 | 7 | ssrab3 3287 |
. . . . . 6
|
| 75 | zsscn 9415 |
. . . . . 6
| |
| 76 | 74, 75 | sstri 3210 |
. . . . 5
|
| 77 | 7 | lgslem3 15594 |
. . . . 5
|
| 78 | 76, 77, 18 | expcllem 10732 |
. . . 4
|
| 79 | 68, 73, 78 | syl2anc 411 |
. . 3
|
| 80 | 18 | a1i 9 |
. . 3
|
| 81 | simpr 110 |
. . . 4
| |
| 82 | prmdc 12567 |
. . . 4
| |
| 83 | 81, 82 | syl 14 |
. . 3
|
| 84 | 79, 80, 83 | ifcldadc 3609 |
. 2
|
| 85 | lgsval.1 |
. 2
| |
| 86 | 84, 85 | fmptd 5757 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulrcl 8059 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-precex 8070 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 ax-pre-mulgt0 8077 ax-pre-mulext 8078 ax-arch 8079 ax-caucvg 8080 |
| This theorem depends on definitions: df-bi 117 df-stab 833 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-xor 1396 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-po 4361 df-iso 4362 df-iord 4431 df-on 4433 df-ilim 4434 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-isom 5299 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-irdg 6479 df-frec 6500 df-1o 6525 df-2o 6526 df-oadd 6529 df-er 6643 df-en 6851 df-dom 6852 df-fin 6853 df-sup 7112 df-inf 7113 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-reap 8683 df-ap 8690 df-div 8781 df-inn 9072 df-2 9130 df-3 9131 df-4 9132 df-5 9133 df-6 9134 df-7 9135 df-8 9136 df-n0 9331 df-z 9408 df-uz 9684 df-q 9776 df-rp 9811 df-fz 10166 df-fzo 10300 df-fl 10450 df-mod 10505 df-seqfrec 10630 df-exp 10721 df-ihash 10958 df-cj 11268 df-re 11269 df-im 11270 df-rsqrt 11424 df-abs 11425 df-clim 11705 df-proddc 11977 df-dvds 12214 df-gcd 12390 df-prm 12545 df-phi 12648 df-pc 12723 |
| This theorem is referenced by: lgscllem 15599 lgsfcl 15600 lgsfle1 15601 |
| Copyright terms: Public domain | W3C validator |