ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgsfcl2 Unicode version

Theorem lgsfcl2 14885
Description: The function  F is closed in integers with absolute value less than  1 (namely  { -u
1 ,  0 ,  1 }, see zabsle1 14878). (Contributed by Mario Carneiro, 4-Feb-2015.)
Hypotheses
Ref Expression
lgsval.1  |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( if ( n  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( n  -  1 )  /  2 ) )  +  1 )  mod  n )  -  1 ) ) ^ (
n  pCnt  N )
) ,  1 ) )
lgsfcl2.z  |-  Z  =  { x  e.  ZZ  |  ( abs `  x
)  <_  1 }
Assertion
Ref Expression
lgsfcl2  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  F : NN --> Z )
Distinct variable groups:    A, n, x   
x, F    n, N, x    n, Z
Allowed substitution hints:    F( n)    Z( x)

Proof of Theorem lgsfcl2
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0z 9295 . . . . . . . . 9  |-  0  e.  ZZ
2 0le1 8469 . . . . . . . . 9  |-  0  <_  1
3 fveq2 5534 . . . . . . . . . . . 12  |-  ( x  =  0  ->  ( abs `  x )  =  ( abs `  0
) )
4 abs0 11102 . . . . . . . . . . . 12  |-  ( abs `  0 )  =  0
53, 4eqtrdi 2238 . . . . . . . . . . 11  |-  ( x  =  0  ->  ( abs `  x )  =  0 )
65breq1d 4028 . . . . . . . . . 10  |-  ( x  =  0  ->  (
( abs `  x
)  <_  1  <->  0  <_  1 ) )
7 lgsfcl2.z . . . . . . . . . 10  |-  Z  =  { x  e.  ZZ  |  ( abs `  x
)  <_  1 }
86, 7elrab2 2911 . . . . . . . . 9  |-  ( 0  e.  Z  <->  ( 0  e.  ZZ  /\  0  <_  1 ) )
91, 2, 8mpbir2an 944 . . . . . . . 8  |-  0  e.  Z
109a1i 9 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  0  e.  Z )
11 1z 9310 . . . . . . . . . 10  |-  1  e.  ZZ
12 1le1 8560 . . . . . . . . . 10  |-  1  <_  1
13 fveq2 5534 . . . . . . . . . . . . 13  |-  ( x  =  1  ->  ( abs `  x )  =  ( abs `  1
) )
14 abs1 11116 . . . . . . . . . . . . 13  |-  ( abs `  1 )  =  1
1513, 14eqtrdi 2238 . . . . . . . . . . . 12  |-  ( x  =  1  ->  ( abs `  x )  =  1 )
1615breq1d 4028 . . . . . . . . . . 11  |-  ( x  =  1  ->  (
( abs `  x
)  <_  1  <->  1  <_  1 ) )
1716, 7elrab2 2911 . . . . . . . . . 10  |-  ( 1  e.  Z  <->  ( 1  e.  ZZ  /\  1  <_  1 ) )
1811, 12, 17mpbir2an 944 . . . . . . . . 9  |-  1  e.  Z
1918a1i 9 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  1  e.  Z )
20 neg1z 9316 . . . . . . . . . 10  |-  -u 1  e.  ZZ
21 fveq2 5534 . . . . . . . . . . . . 13  |-  ( x  =  -u 1  ->  ( abs `  x )  =  ( abs `  -u 1
) )
22 ax-1cn 7935 . . . . . . . . . . . . . . 15  |-  1  e.  CC
2322absnegi 11191 . . . . . . . . . . . . . 14  |-  ( abs `  -u 1 )  =  ( abs `  1
)
2423, 14eqtri 2210 . . . . . . . . . . . . 13  |-  ( abs `  -u 1 )  =  1
2521, 24eqtrdi 2238 . . . . . . . . . . . 12  |-  ( x  =  -u 1  ->  ( abs `  x )  =  1 )
2625breq1d 4028 . . . . . . . . . . 11  |-  ( x  =  -u 1  ->  (
( abs `  x
)  <_  1  <->  1  <_  1 ) )
2726, 7elrab2 2911 . . . . . . . . . 10  |-  ( -u
1  e.  Z  <->  ( -u 1  e.  ZZ  /\  1  <_ 
1 ) )
2820, 12, 27mpbir2an 944 . . . . . . . . 9  |-  -u 1  e.  Z
2928a1i 9 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  -u 1  e.  Z )
30 simp1 999 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  A  e.  ZZ )
31 8nn 9117 . . . . . . . . . . . . . 14  |-  8  e.  NN
3231a1i 9 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  8  e.  NN )
3330, 32zmodcld 10378 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  ( A  mod  8 )  e. 
NN0 )
3433nn0zd 9404 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  ( A  mod  8 )  e.  ZZ )
35 zdceq 9359 . . . . . . . . . . 11  |-  ( ( ( A  mod  8
)  e.  ZZ  /\  1  e.  ZZ )  -> DECID  ( A  mod  8 )  =  1 )
3634, 11, 35sylancl 413 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  -> DECID  ( A  mod  8
)  =  1 )
37 7nn 9116 . . . . . . . . . . . 12  |-  7  e.  NN
3837nnzi 9305 . . . . . . . . . . 11  |-  7  e.  ZZ
39 zdceq 9359 . . . . . . . . . . 11  |-  ( ( ( A  mod  8
)  e.  ZZ  /\  7  e.  ZZ )  -> DECID  ( A  mod  8 )  =  7 )
4034, 38, 39sylancl 413 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  -> DECID  ( A  mod  8
)  =  7 )
41 dcor 937 . . . . . . . . . 10  |-  (DECID  ( A  mod  8 )  =  1  ->  (DECID  ( A  mod  8 )  =  7  -> DECID 
( ( A  mod  8 )  =  1  \/  ( A  mod  8 )  =  7 ) ) )
4236, 40, 41sylc 62 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  -> DECID  ( ( A  mod  8 )  =  1  \/  ( A  mod  8 )  =  7 ) )
43 elprg 3627 . . . . . . . . . . 11  |-  ( ( A  mod  8 )  e.  NN0  ->  ( ( A  mod  8 )  e.  { 1 ,  7 }  <->  ( ( A  mod  8 )  =  1  \/  ( A  mod  8 )  =  7 ) ) )
4433, 43syl 14 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  (
( A  mod  8
)  e.  { 1 ,  7 }  <->  ( ( A  mod  8 )  =  1  \/  ( A  mod  8 )  =  7 ) ) )
4544dcbid 839 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  (DECID  ( A  mod  8 )  e. 
{ 1 ,  7 }  <-> DECID  ( ( A  mod  8 )  =  1  \/  ( A  mod  8 )  =  7 ) ) )
4642, 45mpbird 167 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  -> DECID  ( A  mod  8
)  e.  { 1 ,  7 } )
4719, 29, 46ifcldcd 3585 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 )  e.  Z
)
48 2nn 9111 . . . . . . . . 9  |-  2  e.  NN
4948a1i 9 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  2  e.  NN )
50 dvdsdc 11840 . . . . . . . 8  |-  ( ( 2  e.  NN  /\  A  e.  ZZ )  -> DECID  2 
||  A )
5149, 30, 50syl2anc 411 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  -> DECID  2  ||  A )
5210, 47, 51ifcldcd 3585 . . . . . 6  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) )  e.  Z )
5352ad3antrrr 492 . . . . 5  |-  ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  NN )  /\  n  e.  Prime )  /\  n  =  2 )  ->  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) )  e.  Z )
54 simpl1 1002 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  NN )  ->  A  e.  ZZ )
5554ad2antrr 488 . . . . . 6  |-  ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  NN )  /\  n  e.  Prime )  /\  -.  n  =  2 )  ->  A  e.  ZZ )
56 simplr 528 . . . . . . 7  |-  ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  NN )  /\  n  e.  Prime )  /\  -.  n  =  2 )  ->  n  e.  Prime )
57 simpr 110 . . . . . . . 8  |-  ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  NN )  /\  n  e.  Prime )  /\  -.  n  =  2 )  ->  -.  n  = 
2 )
5857neqned 2367 . . . . . . 7  |-  ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  NN )  /\  n  e.  Prime )  /\  -.  n  =  2 )  ->  n  =/=  2
)
59 eldifsn 3734 . . . . . . 7  |-  ( n  e.  ( Prime  \  {
2 } )  <->  ( n  e.  Prime  /\  n  =/=  2 ) )
6056, 58, 59sylanbrc 417 . . . . . 6  |-  ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  NN )  /\  n  e.  Prime )  /\  -.  n  =  2 )  ->  n  e.  ( Prime  \  { 2 } ) )
617lgslem4 14882 . . . . . 6  |-  ( ( A  e.  ZZ  /\  n  e.  ( Prime  \  { 2 } ) )  ->  ( (
( ( A ^
( ( n  - 
1 )  /  2
) )  +  1 )  mod  n )  -  1 )  e.  Z )
6255, 60, 61syl2anc 411 . . . . 5  |-  ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  NN )  /\  n  e.  Prime )  /\  -.  n  =  2 )  ->  ( ( ( ( A ^ (
( n  -  1 )  /  2 ) )  +  1 )  mod  n )  - 
1 )  e.  Z
)
63 simplr 528 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  NN )  /\  n  e.  Prime )  ->  n  e.  NN )
6463nnzd 9405 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  NN )  /\  n  e.  Prime )  ->  n  e.  ZZ )
65 2z 9312 . . . . . 6  |-  2  e.  ZZ
66 zdceq 9359 . . . . . 6  |-  ( ( n  e.  ZZ  /\  2  e.  ZZ )  -> DECID  n  =  2 )
6764, 65, 66sylancl 413 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  NN )  /\  n  e.  Prime )  -> DECID  n  =  2
)
6853, 62, 67ifcldadc 3578 . . . 4  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  NN )  /\  n  e.  Prime )  ->  if ( n  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( n  -  1 )  /  2 ) )  +  1 )  mod  n )  -  1 ) )  e.  Z
)
69 simpr 110 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  NN )  /\  n  e.  Prime )  ->  n  e.  Prime )
70 simpll2 1039 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  NN )  /\  n  e.  Prime )  ->  N  e.  ZZ )
71 simpll3 1040 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  NN )  /\  n  e.  Prime )  ->  N  =/=  0 )
72 pczcl 12333 . . . . 5  |-  ( ( n  e.  Prime  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( n  pCnt  N
)  e.  NN0 )
7369, 70, 71, 72syl12anc 1247 . . . 4  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  NN )  /\  n  e.  Prime )  ->  (
n  pCnt  N )  e.  NN0 )
747ssrab3 3256 . . . . . 6  |-  Z  C_  ZZ
75 zsscn 9292 . . . . . 6  |-  ZZ  C_  CC
7674, 75sstri 3179 . . . . 5  |-  Z  C_  CC
777lgslem3 14881 . . . . 5  |-  ( ( a  e.  Z  /\  b  e.  Z )  ->  ( a  x.  b
)  e.  Z )
7876, 77, 18expcllem 10565 . . . 4  |-  ( ( if ( n  =  2 ,  if ( 2  ||  A , 
0 ,  if ( ( A  mod  8
)  e.  { 1 ,  7 } , 
1 ,  -u 1
) ) ,  ( ( ( ( A ^ ( ( n  -  1 )  / 
2 ) )  +  1 )  mod  n
)  -  1 ) )  e.  Z  /\  ( n  pCnt  N )  e.  NN0 )  -> 
( if ( n  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( n  -  1 )  /  2 ) )  +  1 )  mod  n )  -  1 ) ) ^ (
n  pCnt  N )
)  e.  Z )
7968, 73, 78syl2anc 411 . . 3  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  NN )  /\  n  e.  Prime )  ->  ( if ( n  =  2 ,  if ( 2 
||  A ,  0 ,  if ( ( A  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) ,  ( ( ( ( A ^ (
( n  -  1 )  /  2 ) )  +  1 )  mod  n )  - 
1 ) ) ^
( n  pCnt  N
) )  e.  Z
)
8018a1i 9 . . 3  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  NN )  /\  -.  n  e.  Prime )  -> 
1  e.  Z )
81 simpr 110 . . . 4  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  NN )  ->  n  e.  NN )
82 prmdc 12165 . . . 4  |-  ( n  e.  NN  -> DECID  n  e.  Prime )
8381, 82syl 14 . . 3  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  NN )  -> DECID  n  e.  Prime )
8479, 80, 83ifcldadc 3578 . 2  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  NN )  ->  if ( n  e. 
Prime ,  ( if ( n  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( n  -  1 )  /  2 ) )  +  1 )  mod  n )  -  1 ) ) ^ (
n  pCnt  N )
) ,  1 )  e.  Z )
85 lgsval.1 . 2  |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( if ( n  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( n  -  1 )  /  2 ) )  +  1 )  mod  n )  -  1 ) ) ^ (
n  pCnt  N )
) ,  1 ) )
8684, 85fmptd 5691 1  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  F : NN --> Z )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709  DECID wdc 835    /\ w3a 980    = wceq 1364    e. wcel 2160    =/= wne 2360   {crab 2472    \ cdif 3141   ifcif 3549   {csn 3607   {cpr 3608   class class class wbr 4018    |-> cmpt 4079   -->wf 5231   ` cfv 5235  (class class class)co 5897   CCcc 7840   0cc0 7842   1c1 7843    + caddc 7845    <_ cle 8024    - cmin 8159   -ucneg 8160    / cdiv 8660   NNcn 8950   2c2 9001   7c7 9006   8c8 9007   NN0cn0 9207   ZZcz 9284    mod cmo 10355   ^cexp 10553   abscabs 11041    || cdvds 11829   Primecprime 12142    pCnt cpc 12319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605  ax-cnex 7933  ax-resscn 7934  ax-1cn 7935  ax-1re 7936  ax-icn 7937  ax-addcl 7938  ax-addrcl 7939  ax-mulcl 7940  ax-mulrcl 7941  ax-addcom 7942  ax-mulcom 7943  ax-addass 7944  ax-mulass 7945  ax-distr 7946  ax-i2m1 7947  ax-0lt1 7948  ax-1rid 7949  ax-0id 7950  ax-rnegex 7951  ax-precex 7952  ax-cnre 7953  ax-pre-ltirr 7954  ax-pre-ltwlin 7955  ax-pre-lttrn 7956  ax-pre-apti 7957  ax-pre-ltadd 7958  ax-pre-mulgt0 7959  ax-pre-mulext 7960  ax-arch 7961  ax-caucvg 7962
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-xor 1387  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-po 4314  df-iso 4315  df-iord 4384  df-on 4386  df-ilim 4387  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-isom 5244  df-riota 5852  df-ov 5900  df-oprab 5901  df-mpo 5902  df-1st 6166  df-2nd 6167  df-recs 6331  df-irdg 6396  df-frec 6417  df-1o 6442  df-2o 6443  df-oadd 6446  df-er 6560  df-en 6768  df-dom 6769  df-fin 6770  df-sup 7014  df-inf 7015  df-pnf 8025  df-mnf 8026  df-xr 8027  df-ltxr 8028  df-le 8029  df-sub 8161  df-neg 8162  df-reap 8563  df-ap 8570  df-div 8661  df-inn 8951  df-2 9009  df-3 9010  df-4 9011  df-5 9012  df-6 9013  df-7 9014  df-8 9015  df-n0 9208  df-z 9285  df-uz 9560  df-q 9652  df-rp 9686  df-fz 10041  df-fzo 10175  df-fl 10303  df-mod 10356  df-seqfrec 10479  df-exp 10554  df-ihash 10791  df-cj 10886  df-re 10887  df-im 10888  df-rsqrt 11042  df-abs 11043  df-clim 11322  df-proddc 11594  df-dvds 11830  df-gcd 11979  df-prm 12143  df-phi 12246  df-pc 12320
This theorem is referenced by:  lgscllem  14886  lgsfcl  14887  lgsfle1  14888
  Copyright terms: Public domain W3C validator