ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgsfcl2 Unicode version

Theorem lgsfcl2 15331
Description: The function  F is closed in integers with absolute value less than  1 (namely  { -u
1 ,  0 ,  1 }, see zabsle1 15324). (Contributed by Mario Carneiro, 4-Feb-2015.)
Hypotheses
Ref Expression
lgsval.1  |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( if ( n  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( n  -  1 )  /  2 ) )  +  1 )  mod  n )  -  1 ) ) ^ (
n  pCnt  N )
) ,  1 ) )
lgsfcl2.z  |-  Z  =  { x  e.  ZZ  |  ( abs `  x
)  <_  1 }
Assertion
Ref Expression
lgsfcl2  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  F : NN --> Z )
Distinct variable groups:    A, n, x   
x, F    n, N, x    n, Z
Allowed substitution hints:    F( n)    Z( x)

Proof of Theorem lgsfcl2
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0z 9354 . . . . . . . . 9  |-  0  e.  ZZ
2 0le1 8525 . . . . . . . . 9  |-  0  <_  1
3 fveq2 5561 . . . . . . . . . . . 12  |-  ( x  =  0  ->  ( abs `  x )  =  ( abs `  0
) )
4 abs0 11240 . . . . . . . . . . . 12  |-  ( abs `  0 )  =  0
53, 4eqtrdi 2245 . . . . . . . . . . 11  |-  ( x  =  0  ->  ( abs `  x )  =  0 )
65breq1d 4044 . . . . . . . . . 10  |-  ( x  =  0  ->  (
( abs `  x
)  <_  1  <->  0  <_  1 ) )
7 lgsfcl2.z . . . . . . . . . 10  |-  Z  =  { x  e.  ZZ  |  ( abs `  x
)  <_  1 }
86, 7elrab2 2923 . . . . . . . . 9  |-  ( 0  e.  Z  <->  ( 0  e.  ZZ  /\  0  <_  1 ) )
91, 2, 8mpbir2an 944 . . . . . . . 8  |-  0  e.  Z
109a1i 9 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  0  e.  Z )
11 1z 9369 . . . . . . . . . 10  |-  1  e.  ZZ
12 1le1 8616 . . . . . . . . . 10  |-  1  <_  1
13 fveq2 5561 . . . . . . . . . . . . 13  |-  ( x  =  1  ->  ( abs `  x )  =  ( abs `  1
) )
14 abs1 11254 . . . . . . . . . . . . 13  |-  ( abs `  1 )  =  1
1513, 14eqtrdi 2245 . . . . . . . . . . . 12  |-  ( x  =  1  ->  ( abs `  x )  =  1 )
1615breq1d 4044 . . . . . . . . . . 11  |-  ( x  =  1  ->  (
( abs `  x
)  <_  1  <->  1  <_  1 ) )
1716, 7elrab2 2923 . . . . . . . . . 10  |-  ( 1  e.  Z  <->  ( 1  e.  ZZ  /\  1  <_  1 ) )
1811, 12, 17mpbir2an 944 . . . . . . . . 9  |-  1  e.  Z
1918a1i 9 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  1  e.  Z )
20 neg1z 9375 . . . . . . . . . 10  |-  -u 1  e.  ZZ
21 fveq2 5561 . . . . . . . . . . . . 13  |-  ( x  =  -u 1  ->  ( abs `  x )  =  ( abs `  -u 1
) )
22 ax-1cn 7989 . . . . . . . . . . . . . . 15  |-  1  e.  CC
2322absnegi 11329 . . . . . . . . . . . . . 14  |-  ( abs `  -u 1 )  =  ( abs `  1
)
2423, 14eqtri 2217 . . . . . . . . . . . . 13  |-  ( abs `  -u 1 )  =  1
2521, 24eqtrdi 2245 . . . . . . . . . . . 12  |-  ( x  =  -u 1  ->  ( abs `  x )  =  1 )
2625breq1d 4044 . . . . . . . . . . 11  |-  ( x  =  -u 1  ->  (
( abs `  x
)  <_  1  <->  1  <_  1 ) )
2726, 7elrab2 2923 . . . . . . . . . 10  |-  ( -u
1  e.  Z  <->  ( -u 1  e.  ZZ  /\  1  <_ 
1 ) )
2820, 12, 27mpbir2an 944 . . . . . . . . 9  |-  -u 1  e.  Z
2928a1i 9 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  -u 1  e.  Z )
30 simp1 999 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  A  e.  ZZ )
31 8nn 9175 . . . . . . . . . . . . . 14  |-  8  e.  NN
3231a1i 9 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  8  e.  NN )
3330, 32zmodcld 10454 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  ( A  mod  8 )  e. 
NN0 )
3433nn0zd 9463 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  ( A  mod  8 )  e.  ZZ )
35 zdceq 9418 . . . . . . . . . . 11  |-  ( ( ( A  mod  8
)  e.  ZZ  /\  1  e.  ZZ )  -> DECID  ( A  mod  8 )  =  1 )
3634, 11, 35sylancl 413 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  -> DECID  ( A  mod  8
)  =  1 )
37 7nn 9174 . . . . . . . . . . . 12  |-  7  e.  NN
3837nnzi 9364 . . . . . . . . . . 11  |-  7  e.  ZZ
39 zdceq 9418 . . . . . . . . . . 11  |-  ( ( ( A  mod  8
)  e.  ZZ  /\  7  e.  ZZ )  -> DECID  ( A  mod  8 )  =  7 )
4034, 38, 39sylancl 413 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  -> DECID  ( A  mod  8
)  =  7 )
41 dcor 937 . . . . . . . . . 10  |-  (DECID  ( A  mod  8 )  =  1  ->  (DECID  ( A  mod  8 )  =  7  -> DECID 
( ( A  mod  8 )  =  1  \/  ( A  mod  8 )  =  7 ) ) )
4236, 40, 41sylc 62 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  -> DECID  ( ( A  mod  8 )  =  1  \/  ( A  mod  8 )  =  7 ) )
43 elprg 3643 . . . . . . . . . . 11  |-  ( ( A  mod  8 )  e.  NN0  ->  ( ( A  mod  8 )  e.  { 1 ,  7 }  <->  ( ( A  mod  8 )  =  1  \/  ( A  mod  8 )  =  7 ) ) )
4433, 43syl 14 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  (
( A  mod  8
)  e.  { 1 ,  7 }  <->  ( ( A  mod  8 )  =  1  \/  ( A  mod  8 )  =  7 ) ) )
4544dcbid 839 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  (DECID  ( A  mod  8 )  e. 
{ 1 ,  7 }  <-> DECID  ( ( A  mod  8 )  =  1  \/  ( A  mod  8 )  =  7 ) ) )
4642, 45mpbird 167 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  -> DECID  ( A  mod  8
)  e.  { 1 ,  7 } )
4719, 29, 46ifcldcd 3598 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 )  e.  Z
)
48 2nn 9169 . . . . . . . . 9  |-  2  e.  NN
4948a1i 9 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  2  e.  NN )
50 dvdsdc 11980 . . . . . . . 8  |-  ( ( 2  e.  NN  /\  A  e.  ZZ )  -> DECID  2 
||  A )
5149, 30, 50syl2anc 411 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  -> DECID  2  ||  A )
5210, 47, 51ifcldcd 3598 . . . . . 6  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) )  e.  Z )
5352ad3antrrr 492 . . . . 5  |-  ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  NN )  /\  n  e.  Prime )  /\  n  =  2 )  ->  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) )  e.  Z )
54 simpl1 1002 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  NN )  ->  A  e.  ZZ )
5554ad2antrr 488 . . . . . 6  |-  ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  NN )  /\  n  e.  Prime )  /\  -.  n  =  2 )  ->  A  e.  ZZ )
56 simplr 528 . . . . . . 7  |-  ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  NN )  /\  n  e.  Prime )  /\  -.  n  =  2 )  ->  n  e.  Prime )
57 simpr 110 . . . . . . . 8  |-  ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  NN )  /\  n  e.  Prime )  /\  -.  n  =  2 )  ->  -.  n  = 
2 )
5857neqned 2374 . . . . . . 7  |-  ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  NN )  /\  n  e.  Prime )  /\  -.  n  =  2 )  ->  n  =/=  2
)
59 eldifsn 3750 . . . . . . 7  |-  ( n  e.  ( Prime  \  {
2 } )  <->  ( n  e.  Prime  /\  n  =/=  2 ) )
6056, 58, 59sylanbrc 417 . . . . . 6  |-  ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  NN )  /\  n  e.  Prime )  /\  -.  n  =  2 )  ->  n  e.  ( Prime  \  { 2 } ) )
617lgslem4 15328 . . . . . 6  |-  ( ( A  e.  ZZ  /\  n  e.  ( Prime  \  { 2 } ) )  ->  ( (
( ( A ^
( ( n  - 
1 )  /  2
) )  +  1 )  mod  n )  -  1 )  e.  Z )
6255, 60, 61syl2anc 411 . . . . 5  |-  ( ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  NN )  /\  n  e.  Prime )  /\  -.  n  =  2 )  ->  ( ( ( ( A ^ (
( n  -  1 )  /  2 ) )  +  1 )  mod  n )  - 
1 )  e.  Z
)
63 simplr 528 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  NN )  /\  n  e.  Prime )  ->  n  e.  NN )
6463nnzd 9464 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  NN )  /\  n  e.  Prime )  ->  n  e.  ZZ )
65 2z 9371 . . . . . 6  |-  2  e.  ZZ
66 zdceq 9418 . . . . . 6  |-  ( ( n  e.  ZZ  /\  2  e.  ZZ )  -> DECID  n  =  2 )
6764, 65, 66sylancl 413 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  NN )  /\  n  e.  Prime )  -> DECID  n  =  2
)
6853, 62, 67ifcldadc 3591 . . . 4  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  NN )  /\  n  e.  Prime )  ->  if ( n  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( n  -  1 )  /  2 ) )  +  1 )  mod  n )  -  1 ) )  e.  Z
)
69 simpr 110 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  NN )  /\  n  e.  Prime )  ->  n  e.  Prime )
70 simpll2 1039 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  NN )  /\  n  e.  Prime )  ->  N  e.  ZZ )
71 simpll3 1040 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  NN )  /\  n  e.  Prime )  ->  N  =/=  0 )
72 pczcl 12492 . . . . 5  |-  ( ( n  e.  Prime  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( n  pCnt  N
)  e.  NN0 )
7369, 70, 71, 72syl12anc 1247 . . . 4  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  NN )  /\  n  e.  Prime )  ->  (
n  pCnt  N )  e.  NN0 )
747ssrab3 3270 . . . . . 6  |-  Z  C_  ZZ
75 zsscn 9351 . . . . . 6  |-  ZZ  C_  CC
7674, 75sstri 3193 . . . . 5  |-  Z  C_  CC
777lgslem3 15327 . . . . 5  |-  ( ( a  e.  Z  /\  b  e.  Z )  ->  ( a  x.  b
)  e.  Z )
7876, 77, 18expcllem 10659 . . . 4  |-  ( ( if ( n  =  2 ,  if ( 2  ||  A , 
0 ,  if ( ( A  mod  8
)  e.  { 1 ,  7 } , 
1 ,  -u 1
) ) ,  ( ( ( ( A ^ ( ( n  -  1 )  / 
2 ) )  +  1 )  mod  n
)  -  1 ) )  e.  Z  /\  ( n  pCnt  N )  e.  NN0 )  -> 
( if ( n  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( n  -  1 )  /  2 ) )  +  1 )  mod  n )  -  1 ) ) ^ (
n  pCnt  N )
)  e.  Z )
7968, 73, 78syl2anc 411 . . 3  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  NN )  /\  n  e.  Prime )  ->  ( if ( n  =  2 ,  if ( 2 
||  A ,  0 ,  if ( ( A  mod  8 )  e.  { 1 ,  7 } ,  1 ,  -u 1 ) ) ,  ( ( ( ( A ^ (
( n  -  1 )  /  2 ) )  +  1 )  mod  n )  - 
1 ) ) ^
( n  pCnt  N
) )  e.  Z
)
8018a1i 9 . . 3  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  NN )  /\  -.  n  e.  Prime )  -> 
1  e.  Z )
81 simpr 110 . . . 4  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  NN )  ->  n  e.  NN )
82 prmdc 12323 . . . 4  |-  ( n  e.  NN  -> DECID  n  e.  Prime )
8381, 82syl 14 . . 3  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  NN )  -> DECID  n  e.  Prime )
8479, 80, 83ifcldadc 3591 . 2  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  /\  n  e.  NN )  ->  if ( n  e. 
Prime ,  ( if ( n  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( n  -  1 )  /  2 ) )  +  1 )  mod  n )  -  1 ) ) ^ (
n  pCnt  N )
) ,  1 )  e.  Z )
85 lgsval.1 . 2  |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( if ( n  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( n  -  1 )  /  2 ) )  +  1 )  mod  n )  -  1 ) ) ^ (
n  pCnt  N )
) ,  1 ) )
8684, 85fmptd 5719 1  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  F : NN --> Z )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709  DECID wdc 835    /\ w3a 980    = wceq 1364    e. wcel 2167    =/= wne 2367   {crab 2479    \ cdif 3154   ifcif 3562   {csn 3623   {cpr 3624   class class class wbr 4034    |-> cmpt 4095   -->wf 5255   ` cfv 5259  (class class class)co 5925   CCcc 7894   0cc0 7896   1c1 7897    + caddc 7899    <_ cle 8079    - cmin 8214   -ucneg 8215    / cdiv 8716   NNcn 9007   2c2 9058   7c7 9063   8c8 9064   NN0cn0 9266   ZZcz 9343    mod cmo 10431   ^cexp 10647   abscabs 11179    || cdvds 11969   Primecprime 12300    pCnt cpc 12478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015  ax-caucvg 8016
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-xor 1387  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-frec 6458  df-1o 6483  df-2o 6484  df-oadd 6487  df-er 6601  df-en 6809  df-dom 6810  df-fin 6811  df-sup 7059  df-inf 7060  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-5 9069  df-6 9070  df-7 9071  df-8 9072  df-n0 9267  df-z 9344  df-uz 9619  df-q 9711  df-rp 9746  df-fz 10101  df-fzo 10235  df-fl 10377  df-mod 10432  df-seqfrec 10557  df-exp 10648  df-ihash 10885  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181  df-clim 11461  df-proddc 11733  df-dvds 11970  df-gcd 12146  df-prm 12301  df-phi 12404  df-pc 12479
This theorem is referenced by:  lgscllem  15332  lgsfcl  15333  lgsfle1  15334
  Copyright terms: Public domain W3C validator