| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nmzsubg | Unicode version | ||
| Description: The normalizer
NG(S) of a subset |
| Ref | Expression |
|---|---|
| elnmz.1 |
|
| nmzsubg.2 |
|
| nmzsubg.3 |
|
| Ref | Expression |
|---|---|
| nmzsubg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnmz.1 |
. . . 4
| |
| 2 | 1 | ssrab3 3287 |
. . 3
|
| 3 | 2 | a1i 9 |
. 2
|
| 4 | nmzsubg.2 |
. . . . 5
| |
| 5 | eqid 2207 |
. . . . 5
| |
| 6 | 4, 5 | grpidcl 13476 |
. . . 4
|
| 7 | nmzsubg.3 |
. . . . . . . 8
| |
| 8 | 4, 7, 5 | grplid 13478 |
. . . . . . 7
|
| 9 | 4, 7, 5 | grprid 13479 |
. . . . . . 7
|
| 10 | 8, 9 | eqtr4d 2243 |
. . . . . 6
|
| 11 | 10 | eleq1d 2276 |
. . . . 5
|
| 12 | 11 | ralrimiva 2581 |
. . . 4
|
| 13 | 1 | elnmz 13659 |
. . . 4
|
| 14 | 6, 12, 13 | sylanbrc 417 |
. . 3
|
| 15 | elex2 2793 |
. . 3
| |
| 16 | 14, 15 | syl 14 |
. 2
|
| 17 | id 19 |
. . . . . . . 8
| |
| 18 | 2 | sseli 3197 |
. . . . . . . 8
|
| 19 | 2 | sseli 3197 |
. . . . . . . 8
|
| 20 | 4, 7 | grpcl 13455 |
. . . . . . . 8
|
| 21 | 17, 18, 19, 20 | syl3an 1292 |
. . . . . . 7
|
| 22 | simpl1 1003 |
. . . . . . . . . . 11
| |
| 23 | simpl2 1004 |
. . . . . . . . . . . 12
| |
| 24 | 2, 23 | sselid 3199 |
. . . . . . . . . . 11
|
| 25 | simpl3 1005 |
. . . . . . . . . . . 12
| |
| 26 | 2, 25 | sselid 3199 |
. . . . . . . . . . 11
|
| 27 | simpr 110 |
. . . . . . . . . . 11
| |
| 28 | 4, 7 | grpass 13456 |
. . . . . . . . . . 11
|
| 29 | 22, 24, 26, 27, 28 | syl13anc 1252 |
. . . . . . . . . 10
|
| 30 | 29 | eleq1d 2276 |
. . . . . . . . 9
|
| 31 | 4, 7, 22, 26, 27 | grpcld 13461 |
. . . . . . . . . . 11
|
| 32 | 1 | nmzbi 13660 |
. . . . . . . . . . 11
|
| 33 | 23, 31, 32 | syl2anc 411 |
. . . . . . . . . 10
|
| 34 | 4, 7 | grpass 13456 |
. . . . . . . . . . . 12
|
| 35 | 22, 26, 27, 24, 34 | syl13anc 1252 |
. . . . . . . . . . 11
|
| 36 | 35 | eleq1d 2276 |
. . . . . . . . . 10
|
| 37 | 4, 7, 22, 27, 24 | grpcld 13461 |
. . . . . . . . . . 11
|
| 38 | 1 | nmzbi 13660 |
. . . . . . . . . . 11
|
| 39 | 25, 37, 38 | syl2anc 411 |
. . . . . . . . . 10
|
| 40 | 33, 36, 39 | 3bitrd 214 |
. . . . . . . . 9
|
| 41 | 4, 7 | grpass 13456 |
. . . . . . . . . . 11
|
| 42 | 22, 27, 24, 26, 41 | syl13anc 1252 |
. . . . . . . . . 10
|
| 43 | 42 | eleq1d 2276 |
. . . . . . . . 9
|
| 44 | 30, 40, 43 | 3bitrd 214 |
. . . . . . . 8
|
| 45 | 44 | ralrimiva 2581 |
. . . . . . 7
|
| 46 | 1 | elnmz 13659 |
. . . . . . 7
|
| 47 | 21, 45, 46 | sylanbrc 417 |
. . . . . 6
|
| 48 | 47 | 3expa 1206 |
. . . . 5
|
| 49 | 48 | ralrimiva 2581 |
. . . 4
|
| 50 | eqid 2207 |
. . . . . . 7
| |
| 51 | 4, 50 | grpinvcl 13495 |
. . . . . 6
|
| 52 | 18, 51 | sylan2 286 |
. . . . 5
|
| 53 | simplr 528 |
. . . . . . . 8
| |
| 54 | simpll 527 |
. . . . . . . . 9
| |
| 55 | 52 | adantr 276 |
. . . . . . . . 9
|
| 56 | simpr 110 |
. . . . . . . . . 10
| |
| 57 | 4, 7, 54, 56, 55 | grpcld 13461 |
. . . . . . . . 9
|
| 58 | 4, 7, 54, 55, 57 | grpcld 13461 |
. . . . . . . 8
|
| 59 | 1 | nmzbi 13660 |
. . . . . . . 8
|
| 60 | 53, 58, 59 | syl2anc 411 |
. . . . . . 7
|
| 61 | 2, 53 | sselid 3199 |
. . . . . . . . . . 11
|
| 62 | 4, 7, 5, 50 | grprinv 13498 |
. . . . . . . . . . 11
|
| 63 | 54, 61, 62 | syl2anc 411 |
. . . . . . . . . 10
|
| 64 | 63 | oveq1d 5982 |
. . . . . . . . 9
|
| 65 | 4, 7 | grpass 13456 |
. . . . . . . . . 10
|
| 66 | 54, 61, 55, 57, 65 | syl13anc 1252 |
. . . . . . . . 9
|
| 67 | 4, 7, 5 | grplid 13478 |
. . . . . . . . . 10
|
| 68 | 54, 57, 67 | syl2anc 411 |
. . . . . . . . 9
|
| 69 | 64, 66, 68 | 3eqtr3d 2248 |
. . . . . . . 8
|
| 70 | 69 | eleq1d 2276 |
. . . . . . 7
|
| 71 | 4, 7 | grpass 13456 |
. . . . . . . . . 10
|
| 72 | 54, 55, 57, 61, 71 | syl13anc 1252 |
. . . . . . . . 9
|
| 73 | 4, 7 | grpass 13456 |
. . . . . . . . . . . 12
|
| 74 | 54, 56, 55, 61, 73 | syl13anc 1252 |
. . . . . . . . . . 11
|
| 75 | 4, 7, 5, 50 | grplinv 13497 |
. . . . . . . . . . . . 13
|
| 76 | 54, 61, 75 | syl2anc 411 |
. . . . . . . . . . . 12
|
| 77 | 76 | oveq2d 5983 |
. . . . . . . . . . 11
|
| 78 | 4, 7, 5 | grprid 13479 |
. . . . . . . . . . . 12
|
| 79 | 54, 56, 78 | syl2anc 411 |
. . . . . . . . . . 11
|
| 80 | 74, 77, 79 | 3eqtrd 2244 |
. . . . . . . . . 10
|
| 81 | 80 | oveq2d 5983 |
. . . . . . . . 9
|
| 82 | 72, 81 | eqtrd 2240 |
. . . . . . . 8
|
| 83 | 82 | eleq1d 2276 |
. . . . . . 7
|
| 84 | 60, 70, 83 | 3bitr3rd 219 |
. . . . . 6
|
| 85 | 84 | ralrimiva 2581 |
. . . . 5
|
| 86 | 1 | elnmz 13659 |
. . . . 5
|
| 87 | 52, 85, 86 | sylanbrc 417 |
. . . 4
|
| 88 | 49, 87 | jca 306 |
. . 3
|
| 89 | 88 | ralrimiva 2581 |
. 2
|
| 90 | 4, 7, 50 | issubg2m 13640 |
. 2
|
| 91 | 3, 16, 89, 90 | mpbir3and 1183 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-i2m1 8065 ax-0lt1 8066 ax-0id 8068 ax-rnegex 8069 ax-pre-ltirr 8072 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-pnf 8144 df-mnf 8145 df-ltxr 8147 df-inn 9072 df-2 9130 df-ndx 12950 df-slot 12951 df-base 12953 df-sets 12954 df-iress 12955 df-plusg 13037 df-0g 13205 df-mgm 13303 df-sgrp 13349 df-mnd 13364 df-grp 13450 df-minusg 13451 df-subg 13621 |
| This theorem is referenced by: nmznsg 13664 |
| Copyright terms: Public domain | W3C validator |