| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nmzsubg | Unicode version | ||
| Description: The normalizer
NG(S) of a subset |
| Ref | Expression |
|---|---|
| elnmz.1 |
|
| nmzsubg.2 |
|
| nmzsubg.3 |
|
| Ref | Expression |
|---|---|
| nmzsubg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnmz.1 |
. . . 4
| |
| 2 | 1 | ssrab3 3310 |
. . 3
|
| 3 | 2 | a1i 9 |
. 2
|
| 4 | nmzsubg.2 |
. . . . 5
| |
| 5 | eqid 2229 |
. . . . 5
| |
| 6 | 4, 5 | grpidcl 13562 |
. . . 4
|
| 7 | nmzsubg.3 |
. . . . . . . 8
| |
| 8 | 4, 7, 5 | grplid 13564 |
. . . . . . 7
|
| 9 | 4, 7, 5 | grprid 13565 |
. . . . . . 7
|
| 10 | 8, 9 | eqtr4d 2265 |
. . . . . 6
|
| 11 | 10 | eleq1d 2298 |
. . . . 5
|
| 12 | 11 | ralrimiva 2603 |
. . . 4
|
| 13 | 1 | elnmz 13745 |
. . . 4
|
| 14 | 6, 12, 13 | sylanbrc 417 |
. . 3
|
| 15 | elex2 2816 |
. . 3
| |
| 16 | 14, 15 | syl 14 |
. 2
|
| 17 | id 19 |
. . . . . . . 8
| |
| 18 | 2 | sseli 3220 |
. . . . . . . 8
|
| 19 | 2 | sseli 3220 |
. . . . . . . 8
|
| 20 | 4, 7 | grpcl 13541 |
. . . . . . . 8
|
| 21 | 17, 18, 19, 20 | syl3an 1313 |
. . . . . . 7
|
| 22 | simpl1 1024 |
. . . . . . . . . . 11
| |
| 23 | simpl2 1025 |
. . . . . . . . . . . 12
| |
| 24 | 2, 23 | sselid 3222 |
. . . . . . . . . . 11
|
| 25 | simpl3 1026 |
. . . . . . . . . . . 12
| |
| 26 | 2, 25 | sselid 3222 |
. . . . . . . . . . 11
|
| 27 | simpr 110 |
. . . . . . . . . . 11
| |
| 28 | 4, 7 | grpass 13542 |
. . . . . . . . . . 11
|
| 29 | 22, 24, 26, 27, 28 | syl13anc 1273 |
. . . . . . . . . 10
|
| 30 | 29 | eleq1d 2298 |
. . . . . . . . 9
|
| 31 | 4, 7, 22, 26, 27 | grpcld 13547 |
. . . . . . . . . . 11
|
| 32 | 1 | nmzbi 13746 |
. . . . . . . . . . 11
|
| 33 | 23, 31, 32 | syl2anc 411 |
. . . . . . . . . 10
|
| 34 | 4, 7 | grpass 13542 |
. . . . . . . . . . . 12
|
| 35 | 22, 26, 27, 24, 34 | syl13anc 1273 |
. . . . . . . . . . 11
|
| 36 | 35 | eleq1d 2298 |
. . . . . . . . . 10
|
| 37 | 4, 7, 22, 27, 24 | grpcld 13547 |
. . . . . . . . . . 11
|
| 38 | 1 | nmzbi 13746 |
. . . . . . . . . . 11
|
| 39 | 25, 37, 38 | syl2anc 411 |
. . . . . . . . . 10
|
| 40 | 33, 36, 39 | 3bitrd 214 |
. . . . . . . . 9
|
| 41 | 4, 7 | grpass 13542 |
. . . . . . . . . . 11
|
| 42 | 22, 27, 24, 26, 41 | syl13anc 1273 |
. . . . . . . . . 10
|
| 43 | 42 | eleq1d 2298 |
. . . . . . . . 9
|
| 44 | 30, 40, 43 | 3bitrd 214 |
. . . . . . . 8
|
| 45 | 44 | ralrimiva 2603 |
. . . . . . 7
|
| 46 | 1 | elnmz 13745 |
. . . . . . 7
|
| 47 | 21, 45, 46 | sylanbrc 417 |
. . . . . 6
|
| 48 | 47 | 3expa 1227 |
. . . . 5
|
| 49 | 48 | ralrimiva 2603 |
. . . 4
|
| 50 | eqid 2229 |
. . . . . . 7
| |
| 51 | 4, 50 | grpinvcl 13581 |
. . . . . 6
|
| 52 | 18, 51 | sylan2 286 |
. . . . 5
|
| 53 | simplr 528 |
. . . . . . . 8
| |
| 54 | simpll 527 |
. . . . . . . . 9
| |
| 55 | 52 | adantr 276 |
. . . . . . . . 9
|
| 56 | simpr 110 |
. . . . . . . . . 10
| |
| 57 | 4, 7, 54, 56, 55 | grpcld 13547 |
. . . . . . . . 9
|
| 58 | 4, 7, 54, 55, 57 | grpcld 13547 |
. . . . . . . 8
|
| 59 | 1 | nmzbi 13746 |
. . . . . . . 8
|
| 60 | 53, 58, 59 | syl2anc 411 |
. . . . . . 7
|
| 61 | 2, 53 | sselid 3222 |
. . . . . . . . . . 11
|
| 62 | 4, 7, 5, 50 | grprinv 13584 |
. . . . . . . . . . 11
|
| 63 | 54, 61, 62 | syl2anc 411 |
. . . . . . . . . 10
|
| 64 | 63 | oveq1d 6016 |
. . . . . . . . 9
|
| 65 | 4, 7 | grpass 13542 |
. . . . . . . . . 10
|
| 66 | 54, 61, 55, 57, 65 | syl13anc 1273 |
. . . . . . . . 9
|
| 67 | 4, 7, 5 | grplid 13564 |
. . . . . . . . . 10
|
| 68 | 54, 57, 67 | syl2anc 411 |
. . . . . . . . 9
|
| 69 | 64, 66, 68 | 3eqtr3d 2270 |
. . . . . . . 8
|
| 70 | 69 | eleq1d 2298 |
. . . . . . 7
|
| 71 | 4, 7 | grpass 13542 |
. . . . . . . . . 10
|
| 72 | 54, 55, 57, 61, 71 | syl13anc 1273 |
. . . . . . . . 9
|
| 73 | 4, 7 | grpass 13542 |
. . . . . . . . . . . 12
|
| 74 | 54, 56, 55, 61, 73 | syl13anc 1273 |
. . . . . . . . . . 11
|
| 75 | 4, 7, 5, 50 | grplinv 13583 |
. . . . . . . . . . . . 13
|
| 76 | 54, 61, 75 | syl2anc 411 |
. . . . . . . . . . . 12
|
| 77 | 76 | oveq2d 6017 |
. . . . . . . . . . 11
|
| 78 | 4, 7, 5 | grprid 13565 |
. . . . . . . . . . . 12
|
| 79 | 54, 56, 78 | syl2anc 411 |
. . . . . . . . . . 11
|
| 80 | 74, 77, 79 | 3eqtrd 2266 |
. . . . . . . . . 10
|
| 81 | 80 | oveq2d 6017 |
. . . . . . . . 9
|
| 82 | 72, 81 | eqtrd 2262 |
. . . . . . . 8
|
| 83 | 82 | eleq1d 2298 |
. . . . . . 7
|
| 84 | 60, 70, 83 | 3bitr3rd 219 |
. . . . . 6
|
| 85 | 84 | ralrimiva 2603 |
. . . . 5
|
| 86 | 1 | elnmz 13745 |
. . . . 5
|
| 87 | 52, 85, 86 | sylanbrc 417 |
. . . 4
|
| 88 | 49, 87 | jca 306 |
. . 3
|
| 89 | 88 | ralrimiva 2603 |
. 2
|
| 90 | 4, 7, 50 | issubg2m 13726 |
. 2
|
| 91 | 3, 16, 89, 90 | mpbir3and 1204 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-addass 8101 ax-i2m1 8104 ax-0lt1 8105 ax-0id 8107 ax-rnegex 8108 ax-pre-ltirr 8111 ax-pre-ltadd 8115 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-pnf 8183 df-mnf 8184 df-ltxr 8186 df-inn 9111 df-2 9169 df-ndx 13035 df-slot 13036 df-base 13038 df-sets 13039 df-iress 13040 df-plusg 13123 df-0g 13291 df-mgm 13389 df-sgrp 13435 df-mnd 13450 df-grp 13536 df-minusg 13537 df-subg 13707 |
| This theorem is referenced by: nmznsg 13750 |
| Copyright terms: Public domain | W3C validator |