| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nmzsubg | Unicode version | ||
| Description: The normalizer
NG(S) of a subset |
| Ref | Expression |
|---|---|
| elnmz.1 |
|
| nmzsubg.2 |
|
| nmzsubg.3 |
|
| Ref | Expression |
|---|---|
| nmzsubg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnmz.1 |
. . . 4
| |
| 2 | 1 | ssrab3 3270 |
. . 3
|
| 3 | 2 | a1i 9 |
. 2
|
| 4 | nmzsubg.2 |
. . . . 5
| |
| 5 | eqid 2196 |
. . . . 5
| |
| 6 | 4, 5 | grpidcl 13171 |
. . . 4
|
| 7 | nmzsubg.3 |
. . . . . . . 8
| |
| 8 | 4, 7, 5 | grplid 13173 |
. . . . . . 7
|
| 9 | 4, 7, 5 | grprid 13174 |
. . . . . . 7
|
| 10 | 8, 9 | eqtr4d 2232 |
. . . . . 6
|
| 11 | 10 | eleq1d 2265 |
. . . . 5
|
| 12 | 11 | ralrimiva 2570 |
. . . 4
|
| 13 | 1 | elnmz 13348 |
. . . 4
|
| 14 | 6, 12, 13 | sylanbrc 417 |
. . 3
|
| 15 | elex2 2779 |
. . 3
| |
| 16 | 14, 15 | syl 14 |
. 2
|
| 17 | id 19 |
. . . . . . . 8
| |
| 18 | 2 | sseli 3180 |
. . . . . . . 8
|
| 19 | 2 | sseli 3180 |
. . . . . . . 8
|
| 20 | 4, 7 | grpcl 13150 |
. . . . . . . 8
|
| 21 | 17, 18, 19, 20 | syl3an 1291 |
. . . . . . 7
|
| 22 | simpl1 1002 |
. . . . . . . . . . 11
| |
| 23 | simpl2 1003 |
. . . . . . . . . . . 12
| |
| 24 | 2, 23 | sselid 3182 |
. . . . . . . . . . 11
|
| 25 | simpl3 1004 |
. . . . . . . . . . . 12
| |
| 26 | 2, 25 | sselid 3182 |
. . . . . . . . . . 11
|
| 27 | simpr 110 |
. . . . . . . . . . 11
| |
| 28 | 4, 7 | grpass 13151 |
. . . . . . . . . . 11
|
| 29 | 22, 24, 26, 27, 28 | syl13anc 1251 |
. . . . . . . . . 10
|
| 30 | 29 | eleq1d 2265 |
. . . . . . . . 9
|
| 31 | 4, 7, 22, 26, 27 | grpcld 13156 |
. . . . . . . . . . 11
|
| 32 | 1 | nmzbi 13349 |
. . . . . . . . . . 11
|
| 33 | 23, 31, 32 | syl2anc 411 |
. . . . . . . . . 10
|
| 34 | 4, 7 | grpass 13151 |
. . . . . . . . . . . 12
|
| 35 | 22, 26, 27, 24, 34 | syl13anc 1251 |
. . . . . . . . . . 11
|
| 36 | 35 | eleq1d 2265 |
. . . . . . . . . 10
|
| 37 | 4, 7, 22, 27, 24 | grpcld 13156 |
. . . . . . . . . . 11
|
| 38 | 1 | nmzbi 13349 |
. . . . . . . . . . 11
|
| 39 | 25, 37, 38 | syl2anc 411 |
. . . . . . . . . 10
|
| 40 | 33, 36, 39 | 3bitrd 214 |
. . . . . . . . 9
|
| 41 | 4, 7 | grpass 13151 |
. . . . . . . . . . 11
|
| 42 | 22, 27, 24, 26, 41 | syl13anc 1251 |
. . . . . . . . . 10
|
| 43 | 42 | eleq1d 2265 |
. . . . . . . . 9
|
| 44 | 30, 40, 43 | 3bitrd 214 |
. . . . . . . 8
|
| 45 | 44 | ralrimiva 2570 |
. . . . . . 7
|
| 46 | 1 | elnmz 13348 |
. . . . . . 7
|
| 47 | 21, 45, 46 | sylanbrc 417 |
. . . . . 6
|
| 48 | 47 | 3expa 1205 |
. . . . 5
|
| 49 | 48 | ralrimiva 2570 |
. . . 4
|
| 50 | eqid 2196 |
. . . . . . 7
| |
| 51 | 4, 50 | grpinvcl 13190 |
. . . . . 6
|
| 52 | 18, 51 | sylan2 286 |
. . . . 5
|
| 53 | simplr 528 |
. . . . . . . 8
| |
| 54 | simpll 527 |
. . . . . . . . 9
| |
| 55 | 52 | adantr 276 |
. . . . . . . . 9
|
| 56 | simpr 110 |
. . . . . . . . . 10
| |
| 57 | 4, 7, 54, 56, 55 | grpcld 13156 |
. . . . . . . . 9
|
| 58 | 4, 7, 54, 55, 57 | grpcld 13156 |
. . . . . . . 8
|
| 59 | 1 | nmzbi 13349 |
. . . . . . . 8
|
| 60 | 53, 58, 59 | syl2anc 411 |
. . . . . . 7
|
| 61 | 2, 53 | sselid 3182 |
. . . . . . . . . . 11
|
| 62 | 4, 7, 5, 50 | grprinv 13193 |
. . . . . . . . . . 11
|
| 63 | 54, 61, 62 | syl2anc 411 |
. . . . . . . . . 10
|
| 64 | 63 | oveq1d 5938 |
. . . . . . . . 9
|
| 65 | 4, 7 | grpass 13151 |
. . . . . . . . . 10
|
| 66 | 54, 61, 55, 57, 65 | syl13anc 1251 |
. . . . . . . . 9
|
| 67 | 4, 7, 5 | grplid 13173 |
. . . . . . . . . 10
|
| 68 | 54, 57, 67 | syl2anc 411 |
. . . . . . . . 9
|
| 69 | 64, 66, 68 | 3eqtr3d 2237 |
. . . . . . . 8
|
| 70 | 69 | eleq1d 2265 |
. . . . . . 7
|
| 71 | 4, 7 | grpass 13151 |
. . . . . . . . . 10
|
| 72 | 54, 55, 57, 61, 71 | syl13anc 1251 |
. . . . . . . . 9
|
| 73 | 4, 7 | grpass 13151 |
. . . . . . . . . . . 12
|
| 74 | 54, 56, 55, 61, 73 | syl13anc 1251 |
. . . . . . . . . . 11
|
| 75 | 4, 7, 5, 50 | grplinv 13192 |
. . . . . . . . . . . . 13
|
| 76 | 54, 61, 75 | syl2anc 411 |
. . . . . . . . . . . 12
|
| 77 | 76 | oveq2d 5939 |
. . . . . . . . . . 11
|
| 78 | 4, 7, 5 | grprid 13174 |
. . . . . . . . . . . 12
|
| 79 | 54, 56, 78 | syl2anc 411 |
. . . . . . . . . . 11
|
| 80 | 74, 77, 79 | 3eqtrd 2233 |
. . . . . . . . . 10
|
| 81 | 80 | oveq2d 5939 |
. . . . . . . . 9
|
| 82 | 72, 81 | eqtrd 2229 |
. . . . . . . 8
|
| 83 | 82 | eleq1d 2265 |
. . . . . . 7
|
| 84 | 60, 70, 83 | 3bitr3rd 219 |
. . . . . 6
|
| 85 | 84 | ralrimiva 2570 |
. . . . 5
|
| 86 | 1 | elnmz 13348 |
. . . . 5
|
| 87 | 52, 85, 86 | sylanbrc 417 |
. . . 4
|
| 88 | 49, 87 | jca 306 |
. . 3
|
| 89 | 88 | ralrimiva 2570 |
. 2
|
| 90 | 4, 7, 50 | issubg2m 13329 |
. 2
|
| 91 | 3, 16, 89, 90 | mpbir3and 1182 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7972 ax-resscn 7973 ax-1cn 7974 ax-1re 7975 ax-icn 7976 ax-addcl 7977 ax-addrcl 7978 ax-mulcl 7979 ax-addcom 7981 ax-addass 7983 ax-i2m1 7986 ax-0lt1 7987 ax-0id 7989 ax-rnegex 7990 ax-pre-ltirr 7993 ax-pre-ltadd 7997 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5878 df-ov 5926 df-oprab 5927 df-mpo 5928 df-pnf 8065 df-mnf 8066 df-ltxr 8068 df-inn 8993 df-2 9051 df-ndx 12691 df-slot 12692 df-base 12694 df-sets 12695 df-iress 12696 df-plusg 12778 df-0g 12939 df-mgm 13009 df-sgrp 13055 df-mnd 13068 df-grp 13145 df-minusg 13146 df-subg 13310 |
| This theorem is referenced by: nmznsg 13353 |
| Copyright terms: Public domain | W3C validator |