ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  supelti Unicode version

Theorem supelti 7068
Description: Supremum membership in a set. (Contributed by Jim Kingdon, 16-Jan-2022.)
Hypotheses
Ref Expression
supelti.ti  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( u  =  v  <-> 
( -.  u R v  /\  -.  v R u ) ) )
supelti.ex  |-  ( ph  ->  E. x  e.  C  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) ) )
supelti.ss  |-  ( ph  ->  C  C_  A )
Assertion
Ref Expression
supelti  |-  ( ph  ->  sup ( B ,  A ,  R )  e.  C )
Distinct variable groups:    u, A, v, x    y, A, z, x    x, B, y, z    x, C    u, R, v, x    y, R, z    ph, u, v, x
Allowed substitution hints:    ph( y, z)    B( v, u)    C( y, z, v, u)

Proof of Theorem supelti
StepHypRef Expression
1 supelti.ti . . . . 5  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( u  =  v  <-> 
( -.  u R v  /\  -.  v R u ) ) )
2 supelti.ss . . . . . 6  |-  ( ph  ->  C  C_  A )
3 supelti.ex . . . . . 6  |-  ( ph  ->  E. x  e.  C  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) ) )
4 ssrexv 3248 . . . . . 6  |-  ( C 
C_  A  ->  ( E. x  e.  C  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) )  ->  E. x  e.  A  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) ) ) )
52, 3, 4sylc 62 . . . . 5  |-  ( ph  ->  E. x  e.  A  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) ) )
61, 5supclti 7064 . . . 4  |-  ( ph  ->  sup ( B ,  A ,  R )  e.  A )
7 elisset 2777 . . . 4  |-  ( sup ( B ,  A ,  R )  e.  A  ->  E. x  x  =  sup ( B ,  A ,  R )
)
86, 7syl 14 . . 3  |-  ( ph  ->  E. x  x  =  sup ( B ,  A ,  R )
)
9 eqcom 2198 . . . 4  |-  ( x  =  sup ( B ,  A ,  R
)  <->  sup ( B ,  A ,  R )  =  x )
109exbii 1619 . . 3  |-  ( E. x  x  =  sup ( B ,  A ,  R )  <->  E. x sup ( B ,  A ,  R )  =  x )
118, 10sylib 122 . 2  |-  ( ph  ->  E. x sup ( B ,  A ,  R )  =  x )
12 simpr 110 . . 3  |-  ( (
ph  /\  sup ( B ,  A ,  R )  =  x )  ->  sup ( B ,  A ,  R )  =  x )
131, 5supval2ti 7061 . . . . . . . 8  |-  ( ph  ->  sup ( B ,  A ,  R )  =  ( iota_ x  e.  A  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  (
y R x  ->  E. z  e.  B  y R z ) ) ) )
1413eqeq1d 2205 . . . . . . 7  |-  ( ph  ->  ( sup ( B ,  A ,  R
)  =  x  <->  ( iota_ x  e.  A  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  (
y R x  ->  E. z  e.  B  y R z ) ) )  =  x ) )
1514biimpa 296 . . . . . 6  |-  ( (
ph  /\  sup ( B ,  A ,  R )  =  x )  ->  ( iota_ x  e.  A  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  (
y R x  ->  E. z  e.  B  y R z ) ) )  =  x )
161, 5supeuti 7060 . . . . . . . 8  |-  ( ph  ->  E! x  e.  A  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) ) )
17 riota1 5896 . . . . . . . 8  |-  ( E! x  e.  A  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) )  ->  ( ( x  e.  A  /\  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) ) )  <->  ( iota_ x  e.  A  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  (
y R x  ->  E. z  e.  B  y R z ) ) )  =  x ) )
1816, 17syl 14 . . . . . . 7  |-  ( ph  ->  ( ( x  e.  A  /\  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  (
y R x  ->  E. z  e.  B  y R z ) ) )  <->  ( iota_ x  e.  A  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  (
y R x  ->  E. z  e.  B  y R z ) ) )  =  x ) )
1918adantr 276 . . . . . 6  |-  ( (
ph  /\  sup ( B ,  A ,  R )  =  x )  ->  ( (
x  e.  A  /\  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) ) )  <->  ( iota_ x  e.  A  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  (
y R x  ->  E. z  e.  B  y R z ) ) )  =  x ) )
2015, 19mpbird 167 . . . . 5  |-  ( (
ph  /\  sup ( B ,  A ,  R )  =  x )  ->  ( x  e.  A  /\  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) ) ) )
2120simpld 112 . . . 4  |-  ( (
ph  /\  sup ( B ,  A ,  R )  =  x )  ->  x  e.  A )
222, 3, 16jca32 310 . . . . 5  |-  ( ph  ->  ( C  C_  A  /\  ( E. x  e.  C  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  (
y R x  ->  E. z  e.  B  y R z ) )  /\  E! x  e.  A  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  (
y R x  ->  E. z  e.  B  y R z ) ) ) ) )
2320simprd 114 . . . . 5  |-  ( (
ph  /\  sup ( B ,  A ,  R )  =  x )  ->  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  (
y R x  ->  E. z  e.  B  y R z ) ) )
24 reupick 3447 . . . . 5  |-  ( ( ( C  C_  A  /\  ( E. x  e.  C  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  (
y R x  ->  E. z  e.  B  y R z ) )  /\  E! x  e.  A  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  (
y R x  ->  E. z  e.  B  y R z ) ) ) )  /\  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) ) )  ->  ( x  e.  C  <->  x  e.  A
) )
2522, 23, 24syl2an2r 595 . . . 4  |-  ( (
ph  /\  sup ( B ,  A ,  R )  =  x )  ->  ( x  e.  C  <->  x  e.  A
) )
2621, 25mpbird 167 . . 3  |-  ( (
ph  /\  sup ( B ,  A ,  R )  =  x )  ->  x  e.  C )
2712, 26eqeltrd 2273 . 2  |-  ( (
ph  /\  sup ( B ,  A ,  R )  =  x )  ->  sup ( B ,  A ,  R )  e.  C
)
2811, 27exlimddv 1913 1  |-  ( ph  ->  sup ( B ,  A ,  R )  e.  C )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364   E.wex 1506    e. wcel 2167   A.wral 2475   E.wrex 2476   E!wreu 2477    C_ wss 3157   class class class wbr 4033   iota_crio 5876   supcsup 7048
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-iota 5219  df-riota 5877  df-sup 7050
This theorem is referenced by:  zsupcl  10321
  Copyright terms: Public domain W3C validator