Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > supelti | Unicode version |
Description: Supremum membership in a set. (Contributed by Jim Kingdon, 16-Jan-2022.) |
Ref | Expression |
---|---|
supelti.ti | |
supelti.ex | |
supelti.ss |
Ref | Expression |
---|---|
supelti |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | supelti.ti | . . . . 5 | |
2 | supelti.ss | . . . . . 6 | |
3 | supelti.ex | . . . . . 6 | |
4 | ssrexv 3212 | . . . . . 6 | |
5 | 2, 3, 4 | sylc 62 | . . . . 5 |
6 | 1, 5 | supclti 6975 | . . . 4 |
7 | elisset 2744 | . . . 4 | |
8 | 6, 7 | syl 14 | . . 3 |
9 | eqcom 2172 | . . . 4 | |
10 | 9 | exbii 1598 | . . 3 |
11 | 8, 10 | sylib 121 | . 2 |
12 | simpr 109 | . . 3 | |
13 | 1, 5 | supval2ti 6972 | . . . . . . . 8 |
14 | 13 | eqeq1d 2179 | . . . . . . 7 |
15 | 14 | biimpa 294 | . . . . . 6 |
16 | 1, 5 | supeuti 6971 | . . . . . . . 8 |
17 | riota1 5827 | . . . . . . . 8 | |
18 | 16, 17 | syl 14 | . . . . . . 7 |
19 | 18 | adantr 274 | . . . . . 6 |
20 | 15, 19 | mpbird 166 | . . . . 5 |
21 | 20 | simpld 111 | . . . 4 |
22 | 2, 3, 16 | jca32 308 | . . . . 5 |
23 | 20 | simprd 113 | . . . . 5 |
24 | reupick 3411 | . . . . 5 | |
25 | 22, 23, 24 | syl2an2r 590 | . . . 4 |
26 | 21, 25 | mpbird 166 | . . 3 |
27 | 12, 26 | eqeltrd 2247 | . 2 |
28 | 11, 27 | exlimddv 1891 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wceq 1348 wex 1485 wcel 2141 wral 2448 wrex 2449 wreu 2450 wss 3121 class class class wbr 3989 crio 5808 csup 6959 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-iota 5160 df-riota 5809 df-sup 6961 |
This theorem is referenced by: zsupcl 11902 |
Copyright terms: Public domain | W3C validator |