| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > supelti | Unicode version | ||
| Description: Supremum membership in a set. (Contributed by Jim Kingdon, 16-Jan-2022.) |
| Ref | Expression |
|---|---|
| supelti.ti |
|
| supelti.ex |
|
| supelti.ss |
|
| Ref | Expression |
|---|---|
| supelti |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supelti.ti |
. . . . 5
| |
| 2 | supelti.ss |
. . . . . 6
| |
| 3 | supelti.ex |
. . . . . 6
| |
| 4 | ssrexv 3249 |
. . . . . 6
| |
| 5 | 2, 3, 4 | sylc 62 |
. . . . 5
|
| 6 | 1, 5 | supclti 7073 |
. . . 4
|
| 7 | elisset 2777 |
. . . 4
| |
| 8 | 6, 7 | syl 14 |
. . 3
|
| 9 | eqcom 2198 |
. . . 4
| |
| 10 | 9 | exbii 1619 |
. . 3
|
| 11 | 8, 10 | sylib 122 |
. 2
|
| 12 | simpr 110 |
. . 3
| |
| 13 | 1, 5 | supval2ti 7070 |
. . . . . . . 8
|
| 14 | 13 | eqeq1d 2205 |
. . . . . . 7
|
| 15 | 14 | biimpa 296 |
. . . . . 6
|
| 16 | 1, 5 | supeuti 7069 |
. . . . . . . 8
|
| 17 | riota1 5899 |
. . . . . . . 8
| |
| 18 | 16, 17 | syl 14 |
. . . . . . 7
|
| 19 | 18 | adantr 276 |
. . . . . 6
|
| 20 | 15, 19 | mpbird 167 |
. . . . 5
|
| 21 | 20 | simpld 112 |
. . . 4
|
| 22 | 2, 3, 16 | jca32 310 |
. . . . 5
|
| 23 | 20 | simprd 114 |
. . . . 5
|
| 24 | reupick 3448 |
. . . . 5
| |
| 25 | 22, 23, 24 | syl2an2r 595 |
. . . 4
|
| 26 | 21, 25 | mpbird 167 |
. . 3
|
| 27 | 12, 26 | eqeltrd 2273 |
. 2
|
| 28 | 11, 27 | exlimddv 1913 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-iota 5220 df-riota 5880 df-sup 7059 |
| This theorem is referenced by: zsupcl 10338 |
| Copyright terms: Public domain | W3C validator |