Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > supelti | Unicode version |
Description: Supremum membership in a set. (Contributed by Jim Kingdon, 16-Jan-2022.) |
Ref | Expression |
---|---|
supelti.ti | |
supelti.ex | |
supelti.ss |
Ref | Expression |
---|---|
supelti |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | supelti.ti | . . . . 5 | |
2 | supelti.ss | . . . . . 6 | |
3 | supelti.ex | . . . . . 6 | |
4 | ssrexv 3207 | . . . . . 6 | |
5 | 2, 3, 4 | sylc 62 | . . . . 5 |
6 | 1, 5 | supclti 6963 | . . . 4 |
7 | elisset 2740 | . . . 4 | |
8 | 6, 7 | syl 14 | . . 3 |
9 | eqcom 2167 | . . . 4 | |
10 | 9 | exbii 1593 | . . 3 |
11 | 8, 10 | sylib 121 | . 2 |
12 | simpr 109 | . . 3 | |
13 | 1, 5 | supval2ti 6960 | . . . . . . . 8 |
14 | 13 | eqeq1d 2174 | . . . . . . 7 |
15 | 14 | biimpa 294 | . . . . . 6 |
16 | 1, 5 | supeuti 6959 | . . . . . . . 8 |
17 | riota1 5816 | . . . . . . . 8 | |
18 | 16, 17 | syl 14 | . . . . . . 7 |
19 | 18 | adantr 274 | . . . . . 6 |
20 | 15, 19 | mpbird 166 | . . . . 5 |
21 | 20 | simpld 111 | . . . 4 |
22 | 2, 3, 16 | jca32 308 | . . . . 5 |
23 | 20 | simprd 113 | . . . . 5 |
24 | reupick 3406 | . . . . 5 | |
25 | 22, 23, 24 | syl2an2r 585 | . . . 4 |
26 | 21, 25 | mpbird 166 | . . 3 |
27 | 12, 26 | eqeltrd 2243 | . 2 |
28 | 11, 27 | exlimddv 1886 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wceq 1343 wex 1480 wcel 2136 wral 2444 wrex 2445 wreu 2446 wss 3116 class class class wbr 3982 crio 5797 csup 6947 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-iota 5153 df-riota 5798 df-sup 6949 |
This theorem is referenced by: zsupcl 11880 |
Copyright terms: Public domain | W3C validator |