| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > supmaxti | Unicode version | ||
| Description: The greatest element of a set is its supremum. Note that the converse is not true; the supremum might not be an element of the set considered. (Contributed by Jim Kingdon, 24-Nov-2021.) |
| Ref | Expression |
|---|---|
| supmaxti.ti |
|
| supmaxti.2 |
|
| supmaxti.3 |
|
| supmaxti.4 |
|
| Ref | Expression |
|---|---|
| supmaxti |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supmaxti.ti |
. 2
| |
| 2 | supmaxti.2 |
. 2
| |
| 3 | supmaxti.4 |
. 2
| |
| 4 | supmaxti.3 |
. . 3
| |
| 5 | simprr 531 |
. . 3
| |
| 6 | breq2 4048 |
. . . 4
| |
| 7 | 6 | rspcev 2877 |
. . 3
|
| 8 | 4, 5, 7 | syl2an2r 595 |
. 2
|
| 9 | 1, 2, 3, 8 | eqsuptid 7099 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-un 3170 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-iota 5232 df-riota 5899 df-sup 7086 |
| This theorem is referenced by: supsnti 7107 sup3exmid 9030 maxleim 11516 xrmaxleim 11555 supfz 16010 |
| Copyright terms: Public domain | W3C validator |