| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > supmaxti | Unicode version | ||
| Description: The greatest element of a set is its supremum. Note that the converse is not true; the supremum might not be an element of the set considered. (Contributed by Jim Kingdon, 24-Nov-2021.) |
| Ref | Expression |
|---|---|
| supmaxti.ti |
|
| supmaxti.2 |
|
| supmaxti.3 |
|
| supmaxti.4 |
|
| Ref | Expression |
|---|---|
| supmaxti |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supmaxti.ti |
. 2
| |
| 2 | supmaxti.2 |
. 2
| |
| 3 | supmaxti.4 |
. 2
| |
| 4 | supmaxti.3 |
. . 3
| |
| 5 | simprr 531 |
. . 3
| |
| 6 | breq2 4038 |
. . . 4
| |
| 7 | 6 | rspcev 2868 |
. . 3
|
| 8 | 4, 5, 7 | syl2an2r 595 |
. 2
|
| 9 | 1, 2, 3, 8 | eqsuptid 7072 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-un 3161 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-iota 5220 df-riota 5880 df-sup 7059 |
| This theorem is referenced by: supsnti 7080 sup3exmid 9001 maxleim 11387 xrmaxleim 11426 supfz 15802 |
| Copyright terms: Public domain | W3C validator |