ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  supmaxti Unicode version

Theorem supmaxti 7106
Description: The greatest element of a set is its supremum. Note that the converse is not true; the supremum might not be an element of the set considered. (Contributed by Jim Kingdon, 24-Nov-2021.)
Hypotheses
Ref Expression
supmaxti.ti  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( u  =  v  <-> 
( -.  u R v  /\  -.  v R u ) ) )
supmaxti.2  |-  ( ph  ->  C  e.  A )
supmaxti.3  |-  ( ph  ->  C  e.  B )
supmaxti.4  |-  ( (
ph  /\  y  e.  B )  ->  -.  C R y )
Assertion
Ref Expression
supmaxti  |-  ( ph  ->  sup ( B ,  A ,  R )  =  C )
Distinct variable groups:    u, A, v, y    u, B, v, y    u, C, v, y    u, R, v, y    ph, u, v, y

Proof of Theorem supmaxti
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 supmaxti.ti . 2  |-  ( (
ph  /\  ( u  e.  A  /\  v  e.  A ) )  -> 
( u  =  v  <-> 
( -.  u R v  /\  -.  v R u ) ) )
2 supmaxti.2 . 2  |-  ( ph  ->  C  e.  A )
3 supmaxti.4 . 2  |-  ( (
ph  /\  y  e.  B )  ->  -.  C R y )
4 supmaxti.3 . . 3  |-  ( ph  ->  C  e.  B )
5 simprr 531 . . 3  |-  ( (
ph  /\  ( y  e.  A  /\  y R C ) )  -> 
y R C )
6 breq2 4048 . . . 4  |-  ( x  =  C  ->  (
y R x  <->  y R C ) )
76rspcev 2877 . . 3  |-  ( ( C  e.  B  /\  y R C )  ->  E. x  e.  B  y R x )
84, 5, 7syl2an2r 595 . 2  |-  ( (
ph  /\  ( y  e.  A  /\  y R C ) )  ->  E. x  e.  B  y R x )
91, 2, 3, 8eqsuptid 7099 1  |-  ( ph  ->  sup ( B ,  A ,  R )  =  C )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2176   E.wrex 2485   class class class wbr 4044   supcsup 7084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-un 3170  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-iota 5232  df-riota 5899  df-sup 7086
This theorem is referenced by:  supsnti  7107  sup3exmid  9030  maxleim  11516  xrmaxleim  11555  supfz  16010
  Copyright terms: Public domain W3C validator