| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xrmaxltsup | Unicode version | ||
| Description: Two ways of saying the maximum of two numbers is less than a third. (Contributed by Jim Kingdon, 30-Apr-2023.) |
| Ref | Expression |
|---|---|
| xrmaxltsup |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 1002 |
. . . 4
| |
| 2 | simpl2 1003 |
. . . . 5
| |
| 3 | xrmaxcl 11436 |
. . . . 5
| |
| 4 | 1, 2, 3 | syl2anc 411 |
. . . 4
|
| 5 | simpl3 1004 |
. . . 4
| |
| 6 | xrmax1sup 11437 |
. . . . . 6
| |
| 7 | 6 | 3adant3 1019 |
. . . . 5
|
| 8 | 7 | adantr 276 |
. . . 4
|
| 9 | simpr 110 |
. . . 4
| |
| 10 | 1, 4, 5, 8, 9 | xrlelttrd 9904 |
. . 3
|
| 11 | xrmax2sup 11438 |
. . . . 5
| |
| 12 | 1, 2, 11 | syl2anc 411 |
. . . 4
|
| 13 | 2, 4, 5, 12, 9 | xrlelttrd 9904 |
. . 3
|
| 14 | 10, 13 | jca 306 |
. 2
|
| 15 | simplr 528 |
. . . . . . 7
| |
| 16 | simpllr 534 |
. . . . . . 7
| |
| 17 | xrmaxrecl 11439 |
. . . . . . 7
| |
| 18 | 15, 16, 17 | syl2anc 411 |
. . . . . 6
|
| 19 | simp-4r 542 |
. . . . . . 7
| |
| 20 | simpr 110 |
. . . . . . . 8
| |
| 21 | maxltsup 11402 |
. . . . . . . 8
| |
| 22 | 15, 16, 20, 21 | syl3anc 1249 |
. . . . . . 7
|
| 23 | 19, 22 | mpbird 167 |
. . . . . 6
|
| 24 | 18, 23 | eqbrtrd 4056 |
. . . . 5
|
| 25 | simplr 528 |
. . . . . . . . 9
| |
| 26 | simpllr 534 |
. . . . . . . . 9
| |
| 27 | maxcl 11394 |
. . . . . . . . 9
| |
| 28 | 25, 26, 27 | syl2anc 411 |
. . . . . . . 8
|
| 29 | 17 | eleq1d 2265 |
. . . . . . . . 9
|
| 30 | 25, 26, 29 | syl2anc 411 |
. . . . . . . 8
|
| 31 | 28, 30 | mpbird 167 |
. . . . . . 7
|
| 32 | ltpnf 9874 |
. . . . . . 7
| |
| 33 | 31, 32 | syl 14 |
. . . . . 6
|
| 34 | simpr 110 |
. . . . . 6
| |
| 35 | 33, 34 | breqtrrd 4062 |
. . . . 5
|
| 36 | simprl 529 |
. . . . . . 7
| |
| 37 | 36 | ad3antrrr 492 |
. . . . . 6
|
| 38 | nltmnf 9882 |
. . . . . . . . 9
| |
| 39 | 38 | 3ad2ant1 1020 |
. . . . . . . 8
|
| 40 | 39 | ad4antr 494 |
. . . . . . 7
|
| 41 | simpr 110 |
. . . . . . . 8
| |
| 42 | 41 | breq2d 4046 |
. . . . . . 7
|
| 43 | 40, 42 | mtbird 674 |
. . . . . 6
|
| 44 | 37, 43 | pm2.21dd 621 |
. . . . 5
|
| 45 | elxr 9870 |
. . . . . . . 8
| |
| 46 | 45 | biimpi 120 |
. . . . . . 7
|
| 47 | 46 | 3ad2ant3 1022 |
. . . . . 6
|
| 48 | 47 | ad3antrrr 492 |
. . . . 5
|
| 49 | 24, 35, 44, 48 | mpjao3dan 1318 |
. . . 4
|
| 50 | 36 | ad2antrr 488 |
. . . . 5
|
| 51 | pnfnlt 9881 |
. . . . . . . 8
| |
| 52 | 51 | 3ad2ant3 1022 |
. . . . . . 7
|
| 53 | 52 | ad3antrrr 492 |
. . . . . 6
|
| 54 | simpr 110 |
. . . . . . 7
| |
| 55 | 54 | breq1d 4044 |
. . . . . 6
|
| 56 | 53, 55 | mtbird 674 |
. . . . 5
|
| 57 | 50, 56 | pm2.21dd 621 |
. . . 4
|
| 58 | simpr 110 |
. . . . . . 7
| |
| 59 | mnfle 9886 |
. . . . . . . . 9
| |
| 60 | 59 | 3ad2ant2 1021 |
. . . . . . . 8
|
| 61 | 60 | ad3antrrr 492 |
. . . . . . 7
|
| 62 | 58, 61 | eqbrtrd 4056 |
. . . . . 6
|
| 63 | simp1 999 |
. . . . . . . 8
| |
| 64 | 63 | ad3antrrr 492 |
. . . . . . 7
|
| 65 | simp2 1000 |
. . . . . . . 8
| |
| 66 | 65 | ad3antrrr 492 |
. . . . . . 7
|
| 67 | xrmaxleim 11428 |
. . . . . . 7
| |
| 68 | 64, 66, 67 | syl2anc 411 |
. . . . . 6
|
| 69 | 62, 68 | mpd 13 |
. . . . 5
|
| 70 | simprr 531 |
. . . . . 6
| |
| 71 | 70 | ad2antrr 488 |
. . . . 5
|
| 72 | 69, 71 | eqbrtrd 4056 |
. . . 4
|
| 73 | elxr 9870 |
. . . . . . 7
| |
| 74 | 73 | biimpi 120 |
. . . . . 6
|
| 75 | 74 | 3ad2ant1 1020 |
. . . . 5
|
| 76 | 75 | ad2antrr 488 |
. . . 4
|
| 77 | 49, 57, 72, 76 | mpjao3dan 1318 |
. . 3
|
| 78 | simplrr 536 |
. . . . 5
| |
| 79 | breq1 4037 |
. . . . . 6
| |
| 80 | 79 | adantl 277 |
. . . . 5
|
| 81 | 78, 80 | mpbid 147 |
. . . 4
|
| 82 | 52 | ad2antrr 488 |
. . . 4
|
| 83 | 81, 82 | pm2.21dd 621 |
. . 3
|
| 84 | prcom 3699 |
. . . . . 6
| |
| 85 | 84 | supeq1i 7063 |
. . . . 5
|
| 86 | simpr 110 |
. . . . . . 7
| |
| 87 | mnfle 9886 |
. . . . . . . . 9
| |
| 88 | 87 | 3ad2ant1 1020 |
. . . . . . . 8
|
| 89 | 88 | ad2antrr 488 |
. . . . . . 7
|
| 90 | 86, 89 | eqbrtrd 4056 |
. . . . . 6
|
| 91 | simpll2 1039 |
. . . . . . 7
| |
| 92 | simpll1 1038 |
. . . . . . 7
| |
| 93 | xrmaxleim 11428 |
. . . . . . 7
| |
| 94 | 91, 92, 93 | syl2anc 411 |
. . . . . 6
|
| 95 | 90, 94 | mpd 13 |
. . . . 5
|
| 96 | 85, 95 | eqtr3id 2243 |
. . . 4
|
| 97 | simplrl 535 |
. . . 4
| |
| 98 | 96, 97 | eqbrtrd 4056 |
. . 3
|
| 99 | elxr 9870 |
. . . . . 6
| |
| 100 | 99 | biimpi 120 |
. . . . 5
|
| 101 | 100 | 3ad2ant2 1021 |
. . . 4
|
| 102 | 101 | adantr 276 |
. . 3
|
| 103 | 77, 83, 98, 102 | mpjao3dan 1318 |
. 2
|
| 104 | 14, 103 | impbida 596 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7989 ax-resscn 7990 ax-1cn 7991 ax-1re 7992 ax-icn 7993 ax-addcl 7994 ax-addrcl 7995 ax-mulcl 7996 ax-mulrcl 7997 ax-addcom 7998 ax-mulcom 7999 ax-addass 8000 ax-mulass 8001 ax-distr 8002 ax-i2m1 8003 ax-0lt1 8004 ax-1rid 8005 ax-0id 8006 ax-rnegex 8007 ax-precex 8008 ax-cnre 8009 ax-pre-ltirr 8010 ax-pre-ltwlin 8011 ax-pre-lttrn 8012 ax-pre-apti 8013 ax-pre-ltadd 8014 ax-pre-mulgt0 8015 ax-pre-mulext 8016 ax-arch 8017 ax-caucvg 8018 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-po 4332 df-iso 4333 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-recs 6372 df-frec 6458 df-sup 7059 df-pnf 8082 df-mnf 8083 df-xr 8084 df-ltxr 8085 df-le 8086 df-sub 8218 df-neg 8219 df-reap 8621 df-ap 8628 df-div 8719 df-inn 9010 df-2 9068 df-3 9069 df-4 9070 df-n0 9269 df-z 9346 df-uz 9621 df-rp 9748 df-seqfrec 10559 df-exp 10650 df-cj 11026 df-re 11027 df-im 11028 df-rsqrt 11182 df-abs 11183 |
| This theorem is referenced by: xrmaxadd 11445 xrltmininf 11454 iooinsup 11461 xmetxpbl 14852 txmetcnp 14862 |
| Copyright terms: Public domain | W3C validator |