ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrmaxltsup Unicode version

Theorem xrmaxltsup 11059
Description: Two ways of saying the maximum of two numbers is less than a third. (Contributed by Jim Kingdon, 30-Apr-2023.)
Assertion
Ref Expression
xrmaxltsup  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  ( sup ( { A ,  B } ,  RR* ,  <  )  <  C  <->  ( A  <  C  /\  B  < 
C ) ) )

Proof of Theorem xrmaxltsup
StepHypRef Expression
1 simpl1 985 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  sup ( { A ,  B } ,  RR* ,  <  )  <  C )  ->  A  e.  RR* )
2 simpl2 986 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  sup ( { A ,  B } ,  RR* ,  <  )  <  C )  ->  B  e.  RR* )
3 xrmaxcl 11053 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  sup ( { A ,  B } ,  RR* ,  <  )  e.  RR* )
41, 2, 3syl2anc 409 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  sup ( { A ,  B } ,  RR* ,  <  )  <  C )  ->  sup ( { A ,  B } ,  RR* ,  <  )  e.  RR* )
5 simpl3 987 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  sup ( { A ,  B } ,  RR* ,  <  )  <  C )  ->  C  e.  RR* )
6 xrmax1sup 11054 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  A  <_  sup ( { A ,  B } ,  RR* ,  <  ) )
763adant3 1002 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  A  <_  sup ( { A ,  B } ,  RR* ,  <  ) )
87adantr 274 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  sup ( { A ,  B } ,  RR* ,  <  )  <  C )  ->  A  <_  sup ( { A ,  B } ,  RR* ,  <  ) )
9 simpr 109 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  sup ( { A ,  B } ,  RR* ,  <  )  <  C )  ->  sup ( { A ,  B } ,  RR* ,  <  )  <  C )
101, 4, 5, 8, 9xrlelttrd 9623 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  sup ( { A ,  B } ,  RR* ,  <  )  <  C )  ->  A  <  C )
11 xrmax2sup 11055 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  B  <_  sup ( { A ,  B } ,  RR* ,  <  ) )
121, 2, 11syl2anc 409 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  sup ( { A ,  B } ,  RR* ,  <  )  <  C )  ->  B  <_  sup ( { A ,  B } ,  RR* ,  <  ) )
132, 4, 5, 12, 9xrlelttrd 9623 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  sup ( { A ,  B } ,  RR* ,  <  )  <  C )  ->  B  <  C )
1410, 13jca 304 . 2  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  sup ( { A ,  B } ,  RR* ,  <  )  <  C )  -> 
( A  <  C  /\  B  <  C ) )
15 simplr 520 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  /\  C  e.  RR )  ->  A  e.  RR )
16 simpllr 524 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  /\  C  e.  RR )  ->  B  e.  RR )
17 xrmaxrecl 11056 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  sup ( { A ,  B } ,  RR* ,  <  )  =  sup ( { A ,  B } ,  RR ,  <  ) )
1815, 16, 17syl2anc 409 . . . . . 6  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  /\  C  e.  RR )  ->  sup ( { A ,  B } ,  RR* ,  <  )  =  sup ( { A ,  B } ,  RR ,  <  ) )
19 simp-4r 532 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  /\  C  e.  RR )  ->  ( A  < 
C  /\  B  <  C ) )
20 simpr 109 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  /\  C  e.  RR )  ->  C  e.  RR )
21 maxltsup 11022 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( sup ( { A ,  B } ,  RR ,  <  )  <  C  <->  ( A  <  C  /\  B  < 
C ) ) )
2215, 16, 20, 21syl3anc 1217 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  /\  C  e.  RR )  ->  ( sup ( { A ,  B } ,  RR ,  <  )  <  C  <->  ( A  < 
C  /\  B  <  C ) ) )
2319, 22mpbird 166 . . . . . 6  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  /\  C  e.  RR )  ->  sup ( { A ,  B } ,  RR ,  <  )  <  C
)
2418, 23eqbrtrd 3958 . . . . 5  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  /\  C  e.  RR )  ->  sup ( { A ,  B } ,  RR* ,  <  )  <  C
)
25 simplr 520 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  /\  C  = +oo )  ->  A  e.  RR )
26 simpllr 524 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  /\  C  = +oo )  ->  B  e.  RR )
27 maxcl 11014 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  sup ( { A ,  B } ,  RR ,  <  )  e.  RR )
2825, 26, 27syl2anc 409 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  /\  C  = +oo )  ->  sup ( { A ,  B } ,  RR ,  <  )  e.  RR )
2917eleq1d 2209 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( sup ( { A ,  B } ,  RR* ,  <  )  e.  RR  <->  sup ( { A ,  B } ,  RR ,  <  )  e.  RR ) )
3025, 26, 29syl2anc 409 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  /\  C  = +oo )  ->  ( sup ( { A ,  B } ,  RR* ,  <  )  e.  RR  <->  sup ( { A ,  B } ,  RR ,  <  )  e.  RR ) )
3128, 30mpbird 166 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  /\  C  = +oo )  ->  sup ( { A ,  B } ,  RR* ,  <  )  e.  RR )
32 ltpnf 9597 . . . . . . 7  |-  ( sup ( { A ,  B } ,  RR* ,  <  )  e.  RR  ->  sup ( { A ,  B } ,  RR* ,  <  )  < +oo )
3331, 32syl 14 . . . . . 6  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  /\  C  = +oo )  ->  sup ( { A ,  B } ,  RR* ,  <  )  < +oo )
34 simpr 109 . . . . . 6  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  /\  C  = +oo )  ->  C  = +oo )
3533, 34breqtrrd 3964 . . . . 5  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  /\  C  = +oo )  ->  sup ( { A ,  B } ,  RR* ,  <  )  <  C
)
36 simprl 521 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  ( A  <  C  /\  B  <  C ) )  ->  A  <  C )
3736ad3antrrr 484 . . . . . 6  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  /\  C  = -oo )  ->  A  <  C
)
38 nltmnf 9604 . . . . . . . . 9  |-  ( A  e.  RR*  ->  -.  A  < -oo )
39383ad2ant1 1003 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  -.  A  < -oo )
4039ad4antr 486 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  /\  C  = -oo )  ->  -.  A  < -oo )
41 simpr 109 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  /\  C  = -oo )  ->  C  = -oo )
4241breq2d 3949 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  /\  C  = -oo )  ->  ( A  < 
C  <->  A  < -oo )
)
4340, 42mtbird 663 . . . . . 6  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  /\  C  = -oo )  ->  -.  A  <  C )
4437, 43pm2.21dd 610 . . . . 5  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  /\  C  = -oo )  ->  sup ( { A ,  B } ,  RR* ,  <  )  <  C
)
45 elxr 9593 . . . . . . . 8  |-  ( C  e.  RR*  <->  ( C  e.  RR  \/  C  = +oo  \/  C  = -oo ) )
4645biimpi 119 . . . . . . 7  |-  ( C  e.  RR*  ->  ( C  e.  RR  \/  C  = +oo  \/  C  = -oo ) )
47463ad2ant3 1005 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  ( C  e.  RR  \/  C  = +oo  \/  C  = -oo ) )
4847ad3antrrr 484 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  ->  ( C  e.  RR  \/  C  = +oo  \/  C  = -oo ) )
4924, 35, 44, 48mpjao3dan 1286 . . . 4  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  ->  sup ( { A ,  B } ,  RR* ,  <  )  <  C
)
5036ad2antrr 480 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  = +oo )  ->  A  <  C
)
51 pnfnlt 9603 . . . . . . . 8  |-  ( C  e.  RR*  ->  -. +oo  <  C )
52513ad2ant3 1005 . . . . . . 7  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  -. +oo 
<  C )
5352ad3antrrr 484 . . . . . 6  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  = +oo )  ->  -. +oo  <  C
)
54 simpr 109 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  = +oo )  ->  A  = +oo )
5554breq1d 3947 . . . . . 6  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  = +oo )  ->  ( A  < 
C  <-> +oo  <  C )
)
5653, 55mtbird 663 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  = +oo )  ->  -.  A  <  C )
5750, 56pm2.21dd 610 . . . 4  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  = +oo )  ->  sup ( { A ,  B } ,  RR* ,  <  )  <  C
)
58 simpr 109 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  = -oo )  ->  A  = -oo )
59 mnfle 9608 . . . . . . . . 9  |-  ( B  e.  RR*  -> -oo  <_  B )
60593ad2ant2 1004 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  -> -oo  <_  B )
6160ad3antrrr 484 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  = -oo )  -> -oo  <_  B )
6258, 61eqbrtrd 3958 . . . . . 6  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  = -oo )  ->  A  <_  B
)
63 simp1 982 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  A  e.  RR* )
6463ad3antrrr 484 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  = -oo )  ->  A  e.  RR* )
65 simp2 983 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  B  e.  RR* )
6665ad3antrrr 484 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  = -oo )  ->  B  e.  RR* )
67 xrmaxleim 11045 . . . . . . 7  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  <_  B  ->  sup ( { A ,  B } ,  RR* ,  <  )  =  B ) )
6864, 66, 67syl2anc 409 . . . . . 6  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  = -oo )  ->  ( A  <_  B  ->  sup ( { A ,  B } ,  RR* ,  <  )  =  B ) )
6962, 68mpd 13 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  = -oo )  ->  sup ( { A ,  B } ,  RR* ,  <  )  =  B )
70 simprr 522 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  ( A  <  C  /\  B  <  C ) )  ->  B  <  C )
7170ad2antrr 480 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  = -oo )  ->  B  <  C
)
7269, 71eqbrtrd 3958 . . . 4  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  = -oo )  ->  sup ( { A ,  B } ,  RR* ,  <  )  <  C
)
73 elxr 9593 . . . . . . 7  |-  ( A  e.  RR*  <->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
7473biimpi 119 . . . . . 6  |-  ( A  e.  RR*  ->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
75743ad2ant1 1003 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
7675ad2antrr 480 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A  < 
C  /\  B  <  C ) )  /\  B  e.  RR )  ->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
7749, 57, 72, 76mpjao3dan 1286 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A  < 
C  /\  B  <  C ) )  /\  B  e.  RR )  ->  sup ( { A ,  B } ,  RR* ,  <  )  <  C )
78 simplrr 526 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A  < 
C  /\  B  <  C ) )  /\  B  = +oo )  ->  B  <  C )
79 breq1 3940 . . . . . 6  |-  ( B  = +oo  ->  ( B  <  C  <-> +oo  <  C
) )
8079adantl 275 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A  < 
C  /\  B  <  C ) )  /\  B  = +oo )  ->  ( B  <  C  <-> +oo  <  C
) )
8178, 80mpbid 146 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A  < 
C  /\  B  <  C ) )  /\  B  = +oo )  -> +oo  <  C )
8252ad2antrr 480 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A  < 
C  /\  B  <  C ) )  /\  B  = +oo )  ->  -. +oo 
<  C )
8381, 82pm2.21dd 610 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A  < 
C  /\  B  <  C ) )  /\  B  = +oo )  ->  sup ( { A ,  B } ,  RR* ,  <  )  <  C )
84 prcom 3607 . . . . . 6  |-  { B ,  A }  =  { A ,  B }
8584supeq1i 6883 . . . . 5  |-  sup ( { B ,  A } ,  RR* ,  <  )  =  sup ( { A ,  B } ,  RR* ,  <  )
86 simpr 109 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A  < 
C  /\  B  <  C ) )  /\  B  = -oo )  ->  B  = -oo )
87 mnfle 9608 . . . . . . . . 9  |-  ( A  e.  RR*  -> -oo  <_  A )
88873ad2ant1 1003 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  -> -oo  <_  A )
8988ad2antrr 480 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A  < 
C  /\  B  <  C ) )  /\  B  = -oo )  -> -oo  <_  A )
9086, 89eqbrtrd 3958 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A  < 
C  /\  B  <  C ) )  /\  B  = -oo )  ->  B  <_  A )
91 simpll2 1022 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A  < 
C  /\  B  <  C ) )  /\  B  = -oo )  ->  B  e.  RR* )
92 simpll1 1021 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A  < 
C  /\  B  <  C ) )  /\  B  = -oo )  ->  A  e.  RR* )
93 xrmaxleim 11045 . . . . . . 7  |-  ( ( B  e.  RR*  /\  A  e.  RR* )  ->  ( B  <_  A  ->  sup ( { B ,  A } ,  RR* ,  <  )  =  A ) )
9491, 92, 93syl2anc 409 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A  < 
C  /\  B  <  C ) )  /\  B  = -oo )  ->  ( B  <_  A  ->  sup ( { B ,  A } ,  RR* ,  <  )  =  A ) )
9590, 94mpd 13 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A  < 
C  /\  B  <  C ) )  /\  B  = -oo )  ->  sup ( { B ,  A } ,  RR* ,  <  )  =  A )
9685, 95syl5eqr 2187 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A  < 
C  /\  B  <  C ) )  /\  B  = -oo )  ->  sup ( { A ,  B } ,  RR* ,  <  )  =  A )
97 simplrl 525 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A  < 
C  /\  B  <  C ) )  /\  B  = -oo )  ->  A  <  C )
9896, 97eqbrtrd 3958 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A  < 
C  /\  B  <  C ) )  /\  B  = -oo )  ->  sup ( { A ,  B } ,  RR* ,  <  )  <  C )
99 elxr 9593 . . . . . 6  |-  ( B  e.  RR*  <->  ( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )
10099biimpi 119 . . . . 5  |-  ( B  e.  RR*  ->  ( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )
1011003ad2ant2 1004 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  ( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )
102101adantr 274 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  ( A  <  C  /\  B  <  C ) )  -> 
( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )
10377, 83, 98, 102mpjao3dan 1286 . 2  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  ( A  <  C  /\  B  <  C ) )  ->  sup ( { A ,  B } ,  RR* ,  <  )  <  C )
10414, 103impbida 586 1  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  ( sup ( { A ,  B } ,  RR* ,  <  )  <  C  <->  ( A  <  C  /\  B  < 
C ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ w3o 962    /\ w3a 963    = wceq 1332    e. wcel 1481   {cpr 3533   class class class wbr 3937   supcsup 6877   RRcr 7643   +oocpnf 7821   -oocmnf 7822   RR*cxr 7823    < clt 7824    <_ cle 7825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762  ax-arch 7763  ax-caucvg 7764
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-frec 6296  df-sup 6879  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-2 8803  df-3 8804  df-4 8805  df-n0 9002  df-z 9079  df-uz 9351  df-rp 9471  df-seqfrec 10250  df-exp 10324  df-cj 10646  df-re 10647  df-im 10648  df-rsqrt 10802  df-abs 10803
This theorem is referenced by:  xrmaxadd  11062  xrltmininf  11071  iooinsup  11078  xmetxpbl  12716  txmetcnp  12726
  Copyright terms: Public domain W3C validator