ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrmaxltsup Unicode version

Theorem xrmaxltsup 11764
Description: Two ways of saying the maximum of two numbers is less than a third. (Contributed by Jim Kingdon, 30-Apr-2023.)
Assertion
Ref Expression
xrmaxltsup  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  ( sup ( { A ,  B } ,  RR* ,  <  )  <  C  <->  ( A  <  C  /\  B  < 
C ) ) )

Proof of Theorem xrmaxltsup
StepHypRef Expression
1 simpl1 1024 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  sup ( { A ,  B } ,  RR* ,  <  )  <  C )  ->  A  e.  RR* )
2 simpl2 1025 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  sup ( { A ,  B } ,  RR* ,  <  )  <  C )  ->  B  e.  RR* )
3 xrmaxcl 11758 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  sup ( { A ,  B } ,  RR* ,  <  )  e.  RR* )
41, 2, 3syl2anc 411 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  sup ( { A ,  B } ,  RR* ,  <  )  <  C )  ->  sup ( { A ,  B } ,  RR* ,  <  )  e.  RR* )
5 simpl3 1026 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  sup ( { A ,  B } ,  RR* ,  <  )  <  C )  ->  C  e.  RR* )
6 xrmax1sup 11759 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  A  <_  sup ( { A ,  B } ,  RR* ,  <  ) )
763adant3 1041 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  A  <_  sup ( { A ,  B } ,  RR* ,  <  ) )
87adantr 276 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  sup ( { A ,  B } ,  RR* ,  <  )  <  C )  ->  A  <_  sup ( { A ,  B } ,  RR* ,  <  ) )
9 simpr 110 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  sup ( { A ,  B } ,  RR* ,  <  )  <  C )  ->  sup ( { A ,  B } ,  RR* ,  <  )  <  C )
101, 4, 5, 8, 9xrlelttrd 10002 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  sup ( { A ,  B } ,  RR* ,  <  )  <  C )  ->  A  <  C )
11 xrmax2sup 11760 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  B  <_  sup ( { A ,  B } ,  RR* ,  <  ) )
121, 2, 11syl2anc 411 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  sup ( { A ,  B } ,  RR* ,  <  )  <  C )  ->  B  <_  sup ( { A ,  B } ,  RR* ,  <  ) )
132, 4, 5, 12, 9xrlelttrd 10002 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  sup ( { A ,  B } ,  RR* ,  <  )  <  C )  ->  B  <  C )
1410, 13jca 306 . 2  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  sup ( { A ,  B } ,  RR* ,  <  )  <  C )  -> 
( A  <  C  /\  B  <  C ) )
15 simplr 528 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  /\  C  e.  RR )  ->  A  e.  RR )
16 simpllr 534 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  /\  C  e.  RR )  ->  B  e.  RR )
17 xrmaxrecl 11761 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  sup ( { A ,  B } ,  RR* ,  <  )  =  sup ( { A ,  B } ,  RR ,  <  ) )
1815, 16, 17syl2anc 411 . . . . . 6  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  /\  C  e.  RR )  ->  sup ( { A ,  B } ,  RR* ,  <  )  =  sup ( { A ,  B } ,  RR ,  <  ) )
19 simp-4r 542 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  /\  C  e.  RR )  ->  ( A  < 
C  /\  B  <  C ) )
20 simpr 110 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  /\  C  e.  RR )  ->  C  e.  RR )
21 maxltsup 11724 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( sup ( { A ,  B } ,  RR ,  <  )  <  C  <->  ( A  <  C  /\  B  < 
C ) ) )
2215, 16, 20, 21syl3anc 1271 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  /\  C  e.  RR )  ->  ( sup ( { A ,  B } ,  RR ,  <  )  <  C  <->  ( A  < 
C  /\  B  <  C ) ) )
2319, 22mpbird 167 . . . . . 6  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  /\  C  e.  RR )  ->  sup ( { A ,  B } ,  RR ,  <  )  <  C
)
2418, 23eqbrtrd 4104 . . . . 5  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  /\  C  e.  RR )  ->  sup ( { A ,  B } ,  RR* ,  <  )  <  C
)
25 simplr 528 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  /\  C  = +oo )  ->  A  e.  RR )
26 simpllr 534 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  /\  C  = +oo )  ->  B  e.  RR )
27 maxcl 11716 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  sup ( { A ,  B } ,  RR ,  <  )  e.  RR )
2825, 26, 27syl2anc 411 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  /\  C  = +oo )  ->  sup ( { A ,  B } ,  RR ,  <  )  e.  RR )
2917eleq1d 2298 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( sup ( { A ,  B } ,  RR* ,  <  )  e.  RR  <->  sup ( { A ,  B } ,  RR ,  <  )  e.  RR ) )
3025, 26, 29syl2anc 411 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  /\  C  = +oo )  ->  ( sup ( { A ,  B } ,  RR* ,  <  )  e.  RR  <->  sup ( { A ,  B } ,  RR ,  <  )  e.  RR ) )
3128, 30mpbird 167 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  /\  C  = +oo )  ->  sup ( { A ,  B } ,  RR* ,  <  )  e.  RR )
32 ltpnf 9972 . . . . . . 7  |-  ( sup ( { A ,  B } ,  RR* ,  <  )  e.  RR  ->  sup ( { A ,  B } ,  RR* ,  <  )  < +oo )
3331, 32syl 14 . . . . . 6  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  /\  C  = +oo )  ->  sup ( { A ,  B } ,  RR* ,  <  )  < +oo )
34 simpr 110 . . . . . 6  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  /\  C  = +oo )  ->  C  = +oo )
3533, 34breqtrrd 4110 . . . . 5  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  /\  C  = +oo )  ->  sup ( { A ,  B } ,  RR* ,  <  )  <  C
)
36 simprl 529 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  ( A  <  C  /\  B  <  C ) )  ->  A  <  C )
3736ad3antrrr 492 . . . . . 6  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  /\  C  = -oo )  ->  A  <  C
)
38 nltmnf 9980 . . . . . . . . 9  |-  ( A  e.  RR*  ->  -.  A  < -oo )
39383ad2ant1 1042 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  -.  A  < -oo )
4039ad4antr 494 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  /\  C  = -oo )  ->  -.  A  < -oo )
41 simpr 110 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  /\  C  = -oo )  ->  C  = -oo )
4241breq2d 4094 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  /\  C  = -oo )  ->  ( A  < 
C  <->  A  < -oo )
)
4340, 42mtbird 677 . . . . . 6  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  /\  C  = -oo )  ->  -.  A  <  C )
4437, 43pm2.21dd 623 . . . . 5  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  /\  C  = -oo )  ->  sup ( { A ,  B } ,  RR* ,  <  )  <  C
)
45 elxr 9968 . . . . . . . 8  |-  ( C  e.  RR*  <->  ( C  e.  RR  \/  C  = +oo  \/  C  = -oo ) )
4645biimpi 120 . . . . . . 7  |-  ( C  e.  RR*  ->  ( C  e.  RR  \/  C  = +oo  \/  C  = -oo ) )
47463ad2ant3 1044 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  ( C  e.  RR  \/  C  = +oo  \/  C  = -oo ) )
4847ad3antrrr 492 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  ->  ( C  e.  RR  \/  C  = +oo  \/  C  = -oo ) )
4924, 35, 44, 48mpjao3dan 1341 . . . 4  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  ->  sup ( { A ,  B } ,  RR* ,  <  )  <  C
)
5036ad2antrr 488 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  = +oo )  ->  A  <  C
)
51 pnfnlt 9979 . . . . . . . 8  |-  ( C  e.  RR*  ->  -. +oo  <  C )
52513ad2ant3 1044 . . . . . . 7  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  -. +oo 
<  C )
5352ad3antrrr 492 . . . . . 6  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  = +oo )  ->  -. +oo  <  C
)
54 simpr 110 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  = +oo )  ->  A  = +oo )
5554breq1d 4092 . . . . . 6  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  = +oo )  ->  ( A  < 
C  <-> +oo  <  C )
)
5653, 55mtbird 677 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  = +oo )  ->  -.  A  <  C )
5750, 56pm2.21dd 623 . . . 4  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  = +oo )  ->  sup ( { A ,  B } ,  RR* ,  <  )  <  C
)
58 simpr 110 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  = -oo )  ->  A  = -oo )
59 mnfle 9984 . . . . . . . . 9  |-  ( B  e.  RR*  -> -oo  <_  B )
60593ad2ant2 1043 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  -> -oo  <_  B )
6160ad3antrrr 492 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  = -oo )  -> -oo  <_  B )
6258, 61eqbrtrd 4104 . . . . . 6  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  = -oo )  ->  A  <_  B
)
63 simp1 1021 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  A  e.  RR* )
6463ad3antrrr 492 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  = -oo )  ->  A  e.  RR* )
65 simp2 1022 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  B  e.  RR* )
6665ad3antrrr 492 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  = -oo )  ->  B  e.  RR* )
67 xrmaxleim 11750 . . . . . . 7  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  <_  B  ->  sup ( { A ,  B } ,  RR* ,  <  )  =  B ) )
6864, 66, 67syl2anc 411 . . . . . 6  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  = -oo )  ->  ( A  <_  B  ->  sup ( { A ,  B } ,  RR* ,  <  )  =  B ) )
6962, 68mpd 13 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  = -oo )  ->  sup ( { A ,  B } ,  RR* ,  <  )  =  B )
70 simprr 531 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  ( A  <  C  /\  B  <  C ) )  ->  B  <  C )
7170ad2antrr 488 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  = -oo )  ->  B  <  C
)
7269, 71eqbrtrd 4104 . . . 4  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  = -oo )  ->  sup ( { A ,  B } ,  RR* ,  <  )  <  C
)
73 elxr 9968 . . . . . . 7  |-  ( A  e.  RR*  <->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
7473biimpi 120 . . . . . 6  |-  ( A  e.  RR*  ->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
75743ad2ant1 1042 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
7675ad2antrr 488 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A  < 
C  /\  B  <  C ) )  /\  B  e.  RR )  ->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
7749, 57, 72, 76mpjao3dan 1341 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A  < 
C  /\  B  <  C ) )  /\  B  e.  RR )  ->  sup ( { A ,  B } ,  RR* ,  <  )  <  C )
78 simplrr 536 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A  < 
C  /\  B  <  C ) )  /\  B  = +oo )  ->  B  <  C )
79 breq1 4085 . . . . . 6  |-  ( B  = +oo  ->  ( B  <  C  <-> +oo  <  C
) )
8079adantl 277 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A  < 
C  /\  B  <  C ) )  /\  B  = +oo )  ->  ( B  <  C  <-> +oo  <  C
) )
8178, 80mpbid 147 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A  < 
C  /\  B  <  C ) )  /\  B  = +oo )  -> +oo  <  C )
8252ad2antrr 488 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A  < 
C  /\  B  <  C ) )  /\  B  = +oo )  ->  -. +oo 
<  C )
8381, 82pm2.21dd 623 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A  < 
C  /\  B  <  C ) )  /\  B  = +oo )  ->  sup ( { A ,  B } ,  RR* ,  <  )  <  C )
84 prcom 3742 . . . . . 6  |-  { B ,  A }  =  { A ,  B }
8584supeq1i 7151 . . . . 5  |-  sup ( { B ,  A } ,  RR* ,  <  )  =  sup ( { A ,  B } ,  RR* ,  <  )
86 simpr 110 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A  < 
C  /\  B  <  C ) )  /\  B  = -oo )  ->  B  = -oo )
87 mnfle 9984 . . . . . . . . 9  |-  ( A  e.  RR*  -> -oo  <_  A )
88873ad2ant1 1042 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  -> -oo  <_  A )
8988ad2antrr 488 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A  < 
C  /\  B  <  C ) )  /\  B  = -oo )  -> -oo  <_  A )
9086, 89eqbrtrd 4104 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A  < 
C  /\  B  <  C ) )  /\  B  = -oo )  ->  B  <_  A )
91 simpll2 1061 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A  < 
C  /\  B  <  C ) )  /\  B  = -oo )  ->  B  e.  RR* )
92 simpll1 1060 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A  < 
C  /\  B  <  C ) )  /\  B  = -oo )  ->  A  e.  RR* )
93 xrmaxleim 11750 . . . . . . 7  |-  ( ( B  e.  RR*  /\  A  e.  RR* )  ->  ( B  <_  A  ->  sup ( { B ,  A } ,  RR* ,  <  )  =  A ) )
9491, 92, 93syl2anc 411 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A  < 
C  /\  B  <  C ) )  /\  B  = -oo )  ->  ( B  <_  A  ->  sup ( { B ,  A } ,  RR* ,  <  )  =  A ) )
9590, 94mpd 13 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A  < 
C  /\  B  <  C ) )  /\  B  = -oo )  ->  sup ( { B ,  A } ,  RR* ,  <  )  =  A )
9685, 95eqtr3id 2276 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A  < 
C  /\  B  <  C ) )  /\  B  = -oo )  ->  sup ( { A ,  B } ,  RR* ,  <  )  =  A )
97 simplrl 535 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A  < 
C  /\  B  <  C ) )  /\  B  = -oo )  ->  A  <  C )
9896, 97eqbrtrd 4104 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A  < 
C  /\  B  <  C ) )  /\  B  = -oo )  ->  sup ( { A ,  B } ,  RR* ,  <  )  <  C )
99 elxr 9968 . . . . . 6  |-  ( B  e.  RR*  <->  ( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )
10099biimpi 120 . . . . 5  |-  ( B  e.  RR*  ->  ( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )
1011003ad2ant2 1043 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  ( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )
102101adantr 276 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  ( A  <  C  /\  B  <  C ) )  -> 
( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )
10377, 83, 98, 102mpjao3dan 1341 . 2  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  ( A  <  C  /\  B  <  C ) )  ->  sup ( { A ,  B } ,  RR* ,  <  )  <  C )
10414, 103impbida 598 1  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  ( sup ( { A ,  B } ,  RR* ,  <  )  <  C  <->  ( A  <  C  /\  B  < 
C ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ w3o 1001    /\ w3a 1002    = wceq 1395    e. wcel 2200   {cpr 3667   class class class wbr 4082   supcsup 7145   RRcr 7994   +oocpnf 8174   -oocmnf 8175   RR*cxr 8176    < clt 8177    <_ cle 8178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113  ax-arch 8114  ax-caucvg 8115
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-sup 7147  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-n0 9366  df-z 9443  df-uz 9719  df-rp 9846  df-seqfrec 10665  df-exp 10756  df-cj 11348  df-re 11349  df-im 11350  df-rsqrt 11504  df-abs 11505
This theorem is referenced by:  xrmaxadd  11767  xrltmininf  11776  iooinsup  11783  xmetxpbl  15176  txmetcnp  15186
  Copyright terms: Public domain W3C validator