ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrmaxltsup Unicode version

Theorem xrmaxltsup 11221
Description: Two ways of saying the maximum of two numbers is less than a third. (Contributed by Jim Kingdon, 30-Apr-2023.)
Assertion
Ref Expression
xrmaxltsup  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  ( sup ( { A ,  B } ,  RR* ,  <  )  <  C  <->  ( A  <  C  /\  B  < 
C ) ) )

Proof of Theorem xrmaxltsup
StepHypRef Expression
1 simpl1 995 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  sup ( { A ,  B } ,  RR* ,  <  )  <  C )  ->  A  e.  RR* )
2 simpl2 996 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  sup ( { A ,  B } ,  RR* ,  <  )  <  C )  ->  B  e.  RR* )
3 xrmaxcl 11215 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  sup ( { A ,  B } ,  RR* ,  <  )  e.  RR* )
41, 2, 3syl2anc 409 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  sup ( { A ,  B } ,  RR* ,  <  )  <  C )  ->  sup ( { A ,  B } ,  RR* ,  <  )  e.  RR* )
5 simpl3 997 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  sup ( { A ,  B } ,  RR* ,  <  )  <  C )  ->  C  e.  RR* )
6 xrmax1sup 11216 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  A  <_  sup ( { A ,  B } ,  RR* ,  <  ) )
763adant3 1012 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  A  <_  sup ( { A ,  B } ,  RR* ,  <  ) )
87adantr 274 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  sup ( { A ,  B } ,  RR* ,  <  )  <  C )  ->  A  <_  sup ( { A ,  B } ,  RR* ,  <  ) )
9 simpr 109 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  sup ( { A ,  B } ,  RR* ,  <  )  <  C )  ->  sup ( { A ,  B } ,  RR* ,  <  )  <  C )
101, 4, 5, 8, 9xrlelttrd 9767 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  sup ( { A ,  B } ,  RR* ,  <  )  <  C )  ->  A  <  C )
11 xrmax2sup 11217 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  B  <_  sup ( { A ,  B } ,  RR* ,  <  ) )
121, 2, 11syl2anc 409 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  sup ( { A ,  B } ,  RR* ,  <  )  <  C )  ->  B  <_  sup ( { A ,  B } ,  RR* ,  <  ) )
132, 4, 5, 12, 9xrlelttrd 9767 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  sup ( { A ,  B } ,  RR* ,  <  )  <  C )  ->  B  <  C )
1410, 13jca 304 . 2  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  sup ( { A ,  B } ,  RR* ,  <  )  <  C )  -> 
( A  <  C  /\  B  <  C ) )
15 simplr 525 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  /\  C  e.  RR )  ->  A  e.  RR )
16 simpllr 529 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  /\  C  e.  RR )  ->  B  e.  RR )
17 xrmaxrecl 11218 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  sup ( { A ,  B } ,  RR* ,  <  )  =  sup ( { A ,  B } ,  RR ,  <  ) )
1815, 16, 17syl2anc 409 . . . . . 6  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  /\  C  e.  RR )  ->  sup ( { A ,  B } ,  RR* ,  <  )  =  sup ( { A ,  B } ,  RR ,  <  ) )
19 simp-4r 537 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  /\  C  e.  RR )  ->  ( A  < 
C  /\  B  <  C ) )
20 simpr 109 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  /\  C  e.  RR )  ->  C  e.  RR )
21 maxltsup 11182 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( sup ( { A ,  B } ,  RR ,  <  )  <  C  <->  ( A  <  C  /\  B  < 
C ) ) )
2215, 16, 20, 21syl3anc 1233 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  /\  C  e.  RR )  ->  ( sup ( { A ,  B } ,  RR ,  <  )  <  C  <->  ( A  < 
C  /\  B  <  C ) ) )
2319, 22mpbird 166 . . . . . 6  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  /\  C  e.  RR )  ->  sup ( { A ,  B } ,  RR ,  <  )  <  C
)
2418, 23eqbrtrd 4011 . . . . 5  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  /\  C  e.  RR )  ->  sup ( { A ,  B } ,  RR* ,  <  )  <  C
)
25 simplr 525 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  /\  C  = +oo )  ->  A  e.  RR )
26 simpllr 529 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  /\  C  = +oo )  ->  B  e.  RR )
27 maxcl 11174 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  sup ( { A ,  B } ,  RR ,  <  )  e.  RR )
2825, 26, 27syl2anc 409 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  /\  C  = +oo )  ->  sup ( { A ,  B } ,  RR ,  <  )  e.  RR )
2917eleq1d 2239 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( sup ( { A ,  B } ,  RR* ,  <  )  e.  RR  <->  sup ( { A ,  B } ,  RR ,  <  )  e.  RR ) )
3025, 26, 29syl2anc 409 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  /\  C  = +oo )  ->  ( sup ( { A ,  B } ,  RR* ,  <  )  e.  RR  <->  sup ( { A ,  B } ,  RR ,  <  )  e.  RR ) )
3128, 30mpbird 166 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  /\  C  = +oo )  ->  sup ( { A ,  B } ,  RR* ,  <  )  e.  RR )
32 ltpnf 9737 . . . . . . 7  |-  ( sup ( { A ,  B } ,  RR* ,  <  )  e.  RR  ->  sup ( { A ,  B } ,  RR* ,  <  )  < +oo )
3331, 32syl 14 . . . . . 6  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  /\  C  = +oo )  ->  sup ( { A ,  B } ,  RR* ,  <  )  < +oo )
34 simpr 109 . . . . . 6  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  /\  C  = +oo )  ->  C  = +oo )
3533, 34breqtrrd 4017 . . . . 5  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  /\  C  = +oo )  ->  sup ( { A ,  B } ,  RR* ,  <  )  <  C
)
36 simprl 526 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  ( A  <  C  /\  B  <  C ) )  ->  A  <  C )
3736ad3antrrr 489 . . . . . 6  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  /\  C  = -oo )  ->  A  <  C
)
38 nltmnf 9745 . . . . . . . . 9  |-  ( A  e.  RR*  ->  -.  A  < -oo )
39383ad2ant1 1013 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  -.  A  < -oo )
4039ad4antr 491 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  /\  C  = -oo )  ->  -.  A  < -oo )
41 simpr 109 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  /\  C  = -oo )  ->  C  = -oo )
4241breq2d 4001 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  /\  C  = -oo )  ->  ( A  < 
C  <->  A  < -oo )
)
4340, 42mtbird 668 . . . . . 6  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  /\  C  = -oo )  ->  -.  A  <  C )
4437, 43pm2.21dd 615 . . . . 5  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  /\  C  = -oo )  ->  sup ( { A ,  B } ,  RR* ,  <  )  <  C
)
45 elxr 9733 . . . . . . . 8  |-  ( C  e.  RR*  <->  ( C  e.  RR  \/  C  = +oo  \/  C  = -oo ) )
4645biimpi 119 . . . . . . 7  |-  ( C  e.  RR*  ->  ( C  e.  RR  \/  C  = +oo  \/  C  = -oo ) )
47463ad2ant3 1015 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  ( C  e.  RR  \/  C  = +oo  \/  C  = -oo ) )
4847ad3antrrr 489 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  ->  ( C  e.  RR  \/  C  = +oo  \/  C  = -oo ) )
4924, 35, 44, 48mpjao3dan 1302 . . . 4  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  ->  sup ( { A ,  B } ,  RR* ,  <  )  <  C
)
5036ad2antrr 485 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  = +oo )  ->  A  <  C
)
51 pnfnlt 9744 . . . . . . . 8  |-  ( C  e.  RR*  ->  -. +oo  <  C )
52513ad2ant3 1015 . . . . . . 7  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  -. +oo 
<  C )
5352ad3antrrr 489 . . . . . 6  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  = +oo )  ->  -. +oo  <  C
)
54 simpr 109 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  = +oo )  ->  A  = +oo )
5554breq1d 3999 . . . . . 6  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  = +oo )  ->  ( A  < 
C  <-> +oo  <  C )
)
5653, 55mtbird 668 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  = +oo )  ->  -.  A  <  C )
5750, 56pm2.21dd 615 . . . 4  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  = +oo )  ->  sup ( { A ,  B } ,  RR* ,  <  )  <  C
)
58 simpr 109 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  = -oo )  ->  A  = -oo )
59 mnfle 9749 . . . . . . . . 9  |-  ( B  e.  RR*  -> -oo  <_  B )
60593ad2ant2 1014 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  -> -oo  <_  B )
6160ad3antrrr 489 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  = -oo )  -> -oo  <_  B )
6258, 61eqbrtrd 4011 . . . . . 6  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  = -oo )  ->  A  <_  B
)
63 simp1 992 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  A  e.  RR* )
6463ad3antrrr 489 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  = -oo )  ->  A  e.  RR* )
65 simp2 993 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  B  e.  RR* )
6665ad3antrrr 489 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  = -oo )  ->  B  e.  RR* )
67 xrmaxleim 11207 . . . . . . 7  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  <_  B  ->  sup ( { A ,  B } ,  RR* ,  <  )  =  B ) )
6864, 66, 67syl2anc 409 . . . . . 6  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  = -oo )  ->  ( A  <_  B  ->  sup ( { A ,  B } ,  RR* ,  <  )  =  B ) )
6962, 68mpd 13 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  = -oo )  ->  sup ( { A ,  B } ,  RR* ,  <  )  =  B )
70 simprr 527 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  ( A  <  C  /\  B  <  C ) )  ->  B  <  C )
7170ad2antrr 485 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  = -oo )  ->  B  <  C
)
7269, 71eqbrtrd 4011 . . . 4  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  = -oo )  ->  sup ( { A ,  B } ,  RR* ,  <  )  <  C
)
73 elxr 9733 . . . . . . 7  |-  ( A  e.  RR*  <->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
7473biimpi 119 . . . . . 6  |-  ( A  e.  RR*  ->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
75743ad2ant1 1013 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
7675ad2antrr 485 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A  < 
C  /\  B  <  C ) )  /\  B  e.  RR )  ->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
7749, 57, 72, 76mpjao3dan 1302 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A  < 
C  /\  B  <  C ) )  /\  B  e.  RR )  ->  sup ( { A ,  B } ,  RR* ,  <  )  <  C )
78 simplrr 531 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A  < 
C  /\  B  <  C ) )  /\  B  = +oo )  ->  B  <  C )
79 breq1 3992 . . . . . 6  |-  ( B  = +oo  ->  ( B  <  C  <-> +oo  <  C
) )
8079adantl 275 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A  < 
C  /\  B  <  C ) )  /\  B  = +oo )  ->  ( B  <  C  <-> +oo  <  C
) )
8178, 80mpbid 146 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A  < 
C  /\  B  <  C ) )  /\  B  = +oo )  -> +oo  <  C )
8252ad2antrr 485 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A  < 
C  /\  B  <  C ) )  /\  B  = +oo )  ->  -. +oo 
<  C )
8381, 82pm2.21dd 615 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A  < 
C  /\  B  <  C ) )  /\  B  = +oo )  ->  sup ( { A ,  B } ,  RR* ,  <  )  <  C )
84 prcom 3659 . . . . . 6  |-  { B ,  A }  =  { A ,  B }
8584supeq1i 6965 . . . . 5  |-  sup ( { B ,  A } ,  RR* ,  <  )  =  sup ( { A ,  B } ,  RR* ,  <  )
86 simpr 109 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A  < 
C  /\  B  <  C ) )  /\  B  = -oo )  ->  B  = -oo )
87 mnfle 9749 . . . . . . . . 9  |-  ( A  e.  RR*  -> -oo  <_  A )
88873ad2ant1 1013 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  -> -oo  <_  A )
8988ad2antrr 485 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A  < 
C  /\  B  <  C ) )  /\  B  = -oo )  -> -oo  <_  A )
9086, 89eqbrtrd 4011 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A  < 
C  /\  B  <  C ) )  /\  B  = -oo )  ->  B  <_  A )
91 simpll2 1032 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A  < 
C  /\  B  <  C ) )  /\  B  = -oo )  ->  B  e.  RR* )
92 simpll1 1031 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A  < 
C  /\  B  <  C ) )  /\  B  = -oo )  ->  A  e.  RR* )
93 xrmaxleim 11207 . . . . . . 7  |-  ( ( B  e.  RR*  /\  A  e.  RR* )  ->  ( B  <_  A  ->  sup ( { B ,  A } ,  RR* ,  <  )  =  A ) )
9491, 92, 93syl2anc 409 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A  < 
C  /\  B  <  C ) )  /\  B  = -oo )  ->  ( B  <_  A  ->  sup ( { B ,  A } ,  RR* ,  <  )  =  A ) )
9590, 94mpd 13 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A  < 
C  /\  B  <  C ) )  /\  B  = -oo )  ->  sup ( { B ,  A } ,  RR* ,  <  )  =  A )
9685, 95eqtr3id 2217 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A  < 
C  /\  B  <  C ) )  /\  B  = -oo )  ->  sup ( { A ,  B } ,  RR* ,  <  )  =  A )
97 simplrl 530 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A  < 
C  /\  B  <  C ) )  /\  B  = -oo )  ->  A  <  C )
9896, 97eqbrtrd 4011 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A  < 
C  /\  B  <  C ) )  /\  B  = -oo )  ->  sup ( { A ,  B } ,  RR* ,  <  )  <  C )
99 elxr 9733 . . . . . 6  |-  ( B  e.  RR*  <->  ( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )
10099biimpi 119 . . . . 5  |-  ( B  e.  RR*  ->  ( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )
1011003ad2ant2 1014 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  ( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )
102101adantr 274 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  ( A  <  C  /\  B  <  C ) )  -> 
( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )
10377, 83, 98, 102mpjao3dan 1302 . 2  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  ( A  <  C  /\  B  <  C ) )  ->  sup ( { A ,  B } ,  RR* ,  <  )  <  C )
10414, 103impbida 591 1  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  ( sup ( { A ,  B } ,  RR* ,  <  )  <  C  <->  ( A  <  C  /\  B  < 
C ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ w3o 972    /\ w3a 973    = wceq 1348    e. wcel 2141   {cpr 3584   class class class wbr 3989   supcsup 6959   RRcr 7773   +oocpnf 7951   -oocmnf 7952   RR*cxr 7953    < clt 7954    <_ cle 7955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-sup 6961  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-rp 9611  df-seqfrec 10402  df-exp 10476  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963
This theorem is referenced by:  xrmaxadd  11224  xrltmininf  11233  iooinsup  11240  xmetxpbl  13302  txmetcnp  13312
  Copyright terms: Public domain W3C validator