| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > xrmaxltsup | Unicode version | ||
| Description: Two ways of saying the maximum of two numbers is less than a third. (Contributed by Jim Kingdon, 30-Apr-2023.) | 
| Ref | Expression | 
|---|---|
| xrmaxltsup | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simpl1 1002 | 
. . . 4
 | |
| 2 | simpl2 1003 | 
. . . . 5
 | |
| 3 | xrmaxcl 11417 | 
. . . . 5
 | |
| 4 | 1, 2, 3 | syl2anc 411 | 
. . . 4
 | 
| 5 | simpl3 1004 | 
. . . 4
 | |
| 6 | xrmax1sup 11418 | 
. . . . . 6
 | |
| 7 | 6 | 3adant3 1019 | 
. . . . 5
 | 
| 8 | 7 | adantr 276 | 
. . . 4
 | 
| 9 | simpr 110 | 
. . . 4
 | |
| 10 | 1, 4, 5, 8, 9 | xrlelttrd 9885 | 
. . 3
 | 
| 11 | xrmax2sup 11419 | 
. . . . 5
 | |
| 12 | 1, 2, 11 | syl2anc 411 | 
. . . 4
 | 
| 13 | 2, 4, 5, 12, 9 | xrlelttrd 9885 | 
. . 3
 | 
| 14 | 10, 13 | jca 306 | 
. 2
 | 
| 15 | simplr 528 | 
. . . . . . 7
 | |
| 16 | simpllr 534 | 
. . . . . . 7
 | |
| 17 | xrmaxrecl 11420 | 
. . . . . . 7
 | |
| 18 | 15, 16, 17 | syl2anc 411 | 
. . . . . 6
 | 
| 19 | simp-4r 542 | 
. . . . . . 7
 | |
| 20 | simpr 110 | 
. . . . . . . 8
 | |
| 21 | maxltsup 11383 | 
. . . . . . . 8
 | |
| 22 | 15, 16, 20, 21 | syl3anc 1249 | 
. . . . . . 7
 | 
| 23 | 19, 22 | mpbird 167 | 
. . . . . 6
 | 
| 24 | 18, 23 | eqbrtrd 4055 | 
. . . . 5
 | 
| 25 | simplr 528 | 
. . . . . . . . 9
 | |
| 26 | simpllr 534 | 
. . . . . . . . 9
 | |
| 27 | maxcl 11375 | 
. . . . . . . . 9
 | |
| 28 | 25, 26, 27 | syl2anc 411 | 
. . . . . . . 8
 | 
| 29 | 17 | eleq1d 2265 | 
. . . . . . . . 9
 | 
| 30 | 25, 26, 29 | syl2anc 411 | 
. . . . . . . 8
 | 
| 31 | 28, 30 | mpbird 167 | 
. . . . . . 7
 | 
| 32 | ltpnf 9855 | 
. . . . . . 7
 | |
| 33 | 31, 32 | syl 14 | 
. . . . . 6
 | 
| 34 | simpr 110 | 
. . . . . 6
 | |
| 35 | 33, 34 | breqtrrd 4061 | 
. . . . 5
 | 
| 36 | simprl 529 | 
. . . . . . 7
 | |
| 37 | 36 | ad3antrrr 492 | 
. . . . . 6
 | 
| 38 | nltmnf 9863 | 
. . . . . . . . 9
 | |
| 39 | 38 | 3ad2ant1 1020 | 
. . . . . . . 8
 | 
| 40 | 39 | ad4antr 494 | 
. . . . . . 7
 | 
| 41 | simpr 110 | 
. . . . . . . 8
 | |
| 42 | 41 | breq2d 4045 | 
. . . . . . 7
 | 
| 43 | 40, 42 | mtbird 674 | 
. . . . . 6
 | 
| 44 | 37, 43 | pm2.21dd 621 | 
. . . . 5
 | 
| 45 | elxr 9851 | 
. . . . . . . 8
 | |
| 46 | 45 | biimpi 120 | 
. . . . . . 7
 | 
| 47 | 46 | 3ad2ant3 1022 | 
. . . . . 6
 | 
| 48 | 47 | ad3antrrr 492 | 
. . . . 5
 | 
| 49 | 24, 35, 44, 48 | mpjao3dan 1318 | 
. . . 4
 | 
| 50 | 36 | ad2antrr 488 | 
. . . . 5
 | 
| 51 | pnfnlt 9862 | 
. . . . . . . 8
 | |
| 52 | 51 | 3ad2ant3 1022 | 
. . . . . . 7
 | 
| 53 | 52 | ad3antrrr 492 | 
. . . . . 6
 | 
| 54 | simpr 110 | 
. . . . . . 7
 | |
| 55 | 54 | breq1d 4043 | 
. . . . . 6
 | 
| 56 | 53, 55 | mtbird 674 | 
. . . . 5
 | 
| 57 | 50, 56 | pm2.21dd 621 | 
. . . 4
 | 
| 58 | simpr 110 | 
. . . . . . 7
 | |
| 59 | mnfle 9867 | 
. . . . . . . . 9
 | |
| 60 | 59 | 3ad2ant2 1021 | 
. . . . . . . 8
 | 
| 61 | 60 | ad3antrrr 492 | 
. . . . . . 7
 | 
| 62 | 58, 61 | eqbrtrd 4055 | 
. . . . . 6
 | 
| 63 | simp1 999 | 
. . . . . . . 8
 | |
| 64 | 63 | ad3antrrr 492 | 
. . . . . . 7
 | 
| 65 | simp2 1000 | 
. . . . . . . 8
 | |
| 66 | 65 | ad3antrrr 492 | 
. . . . . . 7
 | 
| 67 | xrmaxleim 11409 | 
. . . . . . 7
 | |
| 68 | 64, 66, 67 | syl2anc 411 | 
. . . . . 6
 | 
| 69 | 62, 68 | mpd 13 | 
. . . . 5
 | 
| 70 | simprr 531 | 
. . . . . 6
 | |
| 71 | 70 | ad2antrr 488 | 
. . . . 5
 | 
| 72 | 69, 71 | eqbrtrd 4055 | 
. . . 4
 | 
| 73 | elxr 9851 | 
. . . . . . 7
 | |
| 74 | 73 | biimpi 120 | 
. . . . . 6
 | 
| 75 | 74 | 3ad2ant1 1020 | 
. . . . 5
 | 
| 76 | 75 | ad2antrr 488 | 
. . . 4
 | 
| 77 | 49, 57, 72, 76 | mpjao3dan 1318 | 
. . 3
 | 
| 78 | simplrr 536 | 
. . . . 5
 | |
| 79 | breq1 4036 | 
. . . . . 6
 | |
| 80 | 79 | adantl 277 | 
. . . . 5
 | 
| 81 | 78, 80 | mpbid 147 | 
. . . 4
 | 
| 82 | 52 | ad2antrr 488 | 
. . . 4
 | 
| 83 | 81, 82 | pm2.21dd 621 | 
. . 3
 | 
| 84 | prcom 3698 | 
. . . . . 6
 | |
| 85 | 84 | supeq1i 7054 | 
. . . . 5
 | 
| 86 | simpr 110 | 
. . . . . . 7
 | |
| 87 | mnfle 9867 | 
. . . . . . . . 9
 | |
| 88 | 87 | 3ad2ant1 1020 | 
. . . . . . . 8
 | 
| 89 | 88 | ad2antrr 488 | 
. . . . . . 7
 | 
| 90 | 86, 89 | eqbrtrd 4055 | 
. . . . . 6
 | 
| 91 | simpll2 1039 | 
. . . . . . 7
 | |
| 92 | simpll1 1038 | 
. . . . . . 7
 | |
| 93 | xrmaxleim 11409 | 
. . . . . . 7
 | |
| 94 | 91, 92, 93 | syl2anc 411 | 
. . . . . 6
 | 
| 95 | 90, 94 | mpd 13 | 
. . . . 5
 | 
| 96 | 85, 95 | eqtr3id 2243 | 
. . . 4
 | 
| 97 | simplrl 535 | 
. . . 4
 | |
| 98 | 96, 97 | eqbrtrd 4055 | 
. . 3
 | 
| 99 | elxr 9851 | 
. . . . . 6
 | |
| 100 | 99 | biimpi 120 | 
. . . . 5
 | 
| 101 | 100 | 3ad2ant2 1021 | 
. . . 4
 | 
| 102 | 101 | adantr 276 | 
. . 3
 | 
| 103 | 77, 83, 98, 102 | mpjao3dan 1318 | 
. 2
 | 
| 104 | 14, 103 | impbida 596 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 ax-arch 7998 ax-caucvg 7999 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-frec 6449 df-sup 7050 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-n0 9250 df-z 9327 df-uz 9602 df-rp 9729 df-seqfrec 10540 df-exp 10631 df-cj 11007 df-re 11008 df-im 11009 df-rsqrt 11163 df-abs 11164 | 
| This theorem is referenced by: xrmaxadd 11426 xrltmininf 11435 iooinsup 11442 xmetxpbl 14744 txmetcnp 14754 | 
| Copyright terms: Public domain | W3C validator |