ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrmaxltsup Unicode version

Theorem xrmaxltsup 11644
Description: Two ways of saying the maximum of two numbers is less than a third. (Contributed by Jim Kingdon, 30-Apr-2023.)
Assertion
Ref Expression
xrmaxltsup  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  ( sup ( { A ,  B } ,  RR* ,  <  )  <  C  <->  ( A  <  C  /\  B  < 
C ) ) )

Proof of Theorem xrmaxltsup
StepHypRef Expression
1 simpl1 1003 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  sup ( { A ,  B } ,  RR* ,  <  )  <  C )  ->  A  e.  RR* )
2 simpl2 1004 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  sup ( { A ,  B } ,  RR* ,  <  )  <  C )  ->  B  e.  RR* )
3 xrmaxcl 11638 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  sup ( { A ,  B } ,  RR* ,  <  )  e.  RR* )
41, 2, 3syl2anc 411 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  sup ( { A ,  B } ,  RR* ,  <  )  <  C )  ->  sup ( { A ,  B } ,  RR* ,  <  )  e.  RR* )
5 simpl3 1005 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  sup ( { A ,  B } ,  RR* ,  <  )  <  C )  ->  C  e.  RR* )
6 xrmax1sup 11639 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  A  <_  sup ( { A ,  B } ,  RR* ,  <  ) )
763adant3 1020 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  A  <_  sup ( { A ,  B } ,  RR* ,  <  ) )
87adantr 276 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  sup ( { A ,  B } ,  RR* ,  <  )  <  C )  ->  A  <_  sup ( { A ,  B } ,  RR* ,  <  ) )
9 simpr 110 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  sup ( { A ,  B } ,  RR* ,  <  )  <  C )  ->  sup ( { A ,  B } ,  RR* ,  <  )  <  C )
101, 4, 5, 8, 9xrlelttrd 9952 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  sup ( { A ,  B } ,  RR* ,  <  )  <  C )  ->  A  <  C )
11 xrmax2sup 11640 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  B  <_  sup ( { A ,  B } ,  RR* ,  <  ) )
121, 2, 11syl2anc 411 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  sup ( { A ,  B } ,  RR* ,  <  )  <  C )  ->  B  <_  sup ( { A ,  B } ,  RR* ,  <  ) )
132, 4, 5, 12, 9xrlelttrd 9952 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  sup ( { A ,  B } ,  RR* ,  <  )  <  C )  ->  B  <  C )
1410, 13jca 306 . 2  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  sup ( { A ,  B } ,  RR* ,  <  )  <  C )  -> 
( A  <  C  /\  B  <  C ) )
15 simplr 528 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  /\  C  e.  RR )  ->  A  e.  RR )
16 simpllr 534 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  /\  C  e.  RR )  ->  B  e.  RR )
17 xrmaxrecl 11641 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  sup ( { A ,  B } ,  RR* ,  <  )  =  sup ( { A ,  B } ,  RR ,  <  ) )
1815, 16, 17syl2anc 411 . . . . . 6  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  /\  C  e.  RR )  ->  sup ( { A ,  B } ,  RR* ,  <  )  =  sup ( { A ,  B } ,  RR ,  <  ) )
19 simp-4r 542 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  /\  C  e.  RR )  ->  ( A  < 
C  /\  B  <  C ) )
20 simpr 110 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  /\  C  e.  RR )  ->  C  e.  RR )
21 maxltsup 11604 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( sup ( { A ,  B } ,  RR ,  <  )  <  C  <->  ( A  <  C  /\  B  < 
C ) ) )
2215, 16, 20, 21syl3anc 1250 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  /\  C  e.  RR )  ->  ( sup ( { A ,  B } ,  RR ,  <  )  <  C  <->  ( A  < 
C  /\  B  <  C ) ) )
2319, 22mpbird 167 . . . . . 6  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  /\  C  e.  RR )  ->  sup ( { A ,  B } ,  RR ,  <  )  <  C
)
2418, 23eqbrtrd 4073 . . . . 5  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  /\  C  e.  RR )  ->  sup ( { A ,  B } ,  RR* ,  <  )  <  C
)
25 simplr 528 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  /\  C  = +oo )  ->  A  e.  RR )
26 simpllr 534 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  /\  C  = +oo )  ->  B  e.  RR )
27 maxcl 11596 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  sup ( { A ,  B } ,  RR ,  <  )  e.  RR )
2825, 26, 27syl2anc 411 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  /\  C  = +oo )  ->  sup ( { A ,  B } ,  RR ,  <  )  e.  RR )
2917eleq1d 2275 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( sup ( { A ,  B } ,  RR* ,  <  )  e.  RR  <->  sup ( { A ,  B } ,  RR ,  <  )  e.  RR ) )
3025, 26, 29syl2anc 411 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  /\  C  = +oo )  ->  ( sup ( { A ,  B } ,  RR* ,  <  )  e.  RR  <->  sup ( { A ,  B } ,  RR ,  <  )  e.  RR ) )
3128, 30mpbird 167 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  /\  C  = +oo )  ->  sup ( { A ,  B } ,  RR* ,  <  )  e.  RR )
32 ltpnf 9922 . . . . . . 7  |-  ( sup ( { A ,  B } ,  RR* ,  <  )  e.  RR  ->  sup ( { A ,  B } ,  RR* ,  <  )  < +oo )
3331, 32syl 14 . . . . . 6  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  /\  C  = +oo )  ->  sup ( { A ,  B } ,  RR* ,  <  )  < +oo )
34 simpr 110 . . . . . 6  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  /\  C  = +oo )  ->  C  = +oo )
3533, 34breqtrrd 4079 . . . . 5  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  /\  C  = +oo )  ->  sup ( { A ,  B } ,  RR* ,  <  )  <  C
)
36 simprl 529 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  ( A  <  C  /\  B  <  C ) )  ->  A  <  C )
3736ad3antrrr 492 . . . . . 6  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  /\  C  = -oo )  ->  A  <  C
)
38 nltmnf 9930 . . . . . . . . 9  |-  ( A  e.  RR*  ->  -.  A  < -oo )
39383ad2ant1 1021 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  -.  A  < -oo )
4039ad4antr 494 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  /\  C  = -oo )  ->  -.  A  < -oo )
41 simpr 110 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  /\  C  = -oo )  ->  C  = -oo )
4241breq2d 4063 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  /\  C  = -oo )  ->  ( A  < 
C  <->  A  < -oo )
)
4340, 42mtbird 675 . . . . . 6  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  /\  C  = -oo )  ->  -.  A  <  C )
4437, 43pm2.21dd 621 . . . . 5  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  /\  C  = -oo )  ->  sup ( { A ,  B } ,  RR* ,  <  )  <  C
)
45 elxr 9918 . . . . . . . 8  |-  ( C  e.  RR*  <->  ( C  e.  RR  \/  C  = +oo  \/  C  = -oo ) )
4645biimpi 120 . . . . . . 7  |-  ( C  e.  RR*  ->  ( C  e.  RR  \/  C  = +oo  \/  C  = -oo ) )
47463ad2ant3 1023 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  ( C  e.  RR  \/  C  = +oo  \/  C  = -oo ) )
4847ad3antrrr 492 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  ->  ( C  e.  RR  \/  C  = +oo  \/  C  = -oo ) )
4924, 35, 44, 48mpjao3dan 1320 . . . 4  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  ->  sup ( { A ,  B } ,  RR* ,  <  )  <  C
)
5036ad2antrr 488 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  = +oo )  ->  A  <  C
)
51 pnfnlt 9929 . . . . . . . 8  |-  ( C  e.  RR*  ->  -. +oo  <  C )
52513ad2ant3 1023 . . . . . . 7  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  -. +oo 
<  C )
5352ad3antrrr 492 . . . . . 6  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  = +oo )  ->  -. +oo  <  C
)
54 simpr 110 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  = +oo )  ->  A  = +oo )
5554breq1d 4061 . . . . . 6  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  = +oo )  ->  ( A  < 
C  <-> +oo  <  C )
)
5653, 55mtbird 675 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  = +oo )  ->  -.  A  <  C )
5750, 56pm2.21dd 621 . . . 4  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  = +oo )  ->  sup ( { A ,  B } ,  RR* ,  <  )  <  C
)
58 simpr 110 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  = -oo )  ->  A  = -oo )
59 mnfle 9934 . . . . . . . . 9  |-  ( B  e.  RR*  -> -oo  <_  B )
60593ad2ant2 1022 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  -> -oo  <_  B )
6160ad3antrrr 492 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  = -oo )  -> -oo  <_  B )
6258, 61eqbrtrd 4073 . . . . . 6  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  = -oo )  ->  A  <_  B
)
63 simp1 1000 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  A  e.  RR* )
6463ad3antrrr 492 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  = -oo )  ->  A  e.  RR* )
65 simp2 1001 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  B  e.  RR* )
6665ad3antrrr 492 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  = -oo )  ->  B  e.  RR* )
67 xrmaxleim 11630 . . . . . . 7  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  <_  B  ->  sup ( { A ,  B } ,  RR* ,  <  )  =  B ) )
6864, 66, 67syl2anc 411 . . . . . 6  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  = -oo )  ->  ( A  <_  B  ->  sup ( { A ,  B } ,  RR* ,  <  )  =  B ) )
6962, 68mpd 13 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  = -oo )  ->  sup ( { A ,  B } ,  RR* ,  <  )  =  B )
70 simprr 531 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  ( A  <  C  /\  B  <  C ) )  ->  B  <  C )
7170ad2antrr 488 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  = -oo )  ->  B  <  C
)
7269, 71eqbrtrd 4073 . . . 4  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  = -oo )  ->  sup ( { A ,  B } ,  RR* ,  <  )  <  C
)
73 elxr 9918 . . . . . . 7  |-  ( A  e.  RR*  <->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
7473biimpi 120 . . . . . 6  |-  ( A  e.  RR*  ->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
75743ad2ant1 1021 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
7675ad2antrr 488 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A  < 
C  /\  B  <  C ) )  /\  B  e.  RR )  ->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
7749, 57, 72, 76mpjao3dan 1320 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A  < 
C  /\  B  <  C ) )  /\  B  e.  RR )  ->  sup ( { A ,  B } ,  RR* ,  <  )  <  C )
78 simplrr 536 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A  < 
C  /\  B  <  C ) )  /\  B  = +oo )  ->  B  <  C )
79 breq1 4054 . . . . . 6  |-  ( B  = +oo  ->  ( B  <  C  <-> +oo  <  C
) )
8079adantl 277 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A  < 
C  /\  B  <  C ) )  /\  B  = +oo )  ->  ( B  <  C  <-> +oo  <  C
) )
8178, 80mpbid 147 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A  < 
C  /\  B  <  C ) )  /\  B  = +oo )  -> +oo  <  C )
8252ad2antrr 488 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A  < 
C  /\  B  <  C ) )  /\  B  = +oo )  ->  -. +oo 
<  C )
8381, 82pm2.21dd 621 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A  < 
C  /\  B  <  C ) )  /\  B  = +oo )  ->  sup ( { A ,  B } ,  RR* ,  <  )  <  C )
84 prcom 3714 . . . . . 6  |-  { B ,  A }  =  { A ,  B }
8584supeq1i 7105 . . . . 5  |-  sup ( { B ,  A } ,  RR* ,  <  )  =  sup ( { A ,  B } ,  RR* ,  <  )
86 simpr 110 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A  < 
C  /\  B  <  C ) )  /\  B  = -oo )  ->  B  = -oo )
87 mnfle 9934 . . . . . . . . 9  |-  ( A  e.  RR*  -> -oo  <_  A )
88873ad2ant1 1021 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  -> -oo  <_  A )
8988ad2antrr 488 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A  < 
C  /\  B  <  C ) )  /\  B  = -oo )  -> -oo  <_  A )
9086, 89eqbrtrd 4073 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A  < 
C  /\  B  <  C ) )  /\  B  = -oo )  ->  B  <_  A )
91 simpll2 1040 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A  < 
C  /\  B  <  C ) )  /\  B  = -oo )  ->  B  e.  RR* )
92 simpll1 1039 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A  < 
C  /\  B  <  C ) )  /\  B  = -oo )  ->  A  e.  RR* )
93 xrmaxleim 11630 . . . . . . 7  |-  ( ( B  e.  RR*  /\  A  e.  RR* )  ->  ( B  <_  A  ->  sup ( { B ,  A } ,  RR* ,  <  )  =  A ) )
9491, 92, 93syl2anc 411 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A  < 
C  /\  B  <  C ) )  /\  B  = -oo )  ->  ( B  <_  A  ->  sup ( { B ,  A } ,  RR* ,  <  )  =  A ) )
9590, 94mpd 13 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A  < 
C  /\  B  <  C ) )  /\  B  = -oo )  ->  sup ( { B ,  A } ,  RR* ,  <  )  =  A )
9685, 95eqtr3id 2253 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A  < 
C  /\  B  <  C ) )  /\  B  = -oo )  ->  sup ( { A ,  B } ,  RR* ,  <  )  =  A )
97 simplrl 535 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A  < 
C  /\  B  <  C ) )  /\  B  = -oo )  ->  A  <  C )
9896, 97eqbrtrd 4073 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A  < 
C  /\  B  <  C ) )  /\  B  = -oo )  ->  sup ( { A ,  B } ,  RR* ,  <  )  <  C )
99 elxr 9918 . . . . . 6  |-  ( B  e.  RR*  <->  ( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )
10099biimpi 120 . . . . 5  |-  ( B  e.  RR*  ->  ( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )
1011003ad2ant2 1022 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  ( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )
102101adantr 276 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  ( A  <  C  /\  B  <  C ) )  -> 
( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )
10377, 83, 98, 102mpjao3dan 1320 . 2  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  ( A  <  C  /\  B  <  C ) )  ->  sup ( { A ,  B } ,  RR* ,  <  )  <  C )
10414, 103impbida 596 1  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  ( sup ( { A ,  B } ,  RR* ,  <  )  <  C  <->  ( A  <  C  /\  B  < 
C ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ w3o 980    /\ w3a 981    = wceq 1373    e. wcel 2177   {cpr 3639   class class class wbr 4051   supcsup 7099   RRcr 7944   +oocpnf 8124   -oocmnf 8125   RR*cxr 8126    < clt 8127    <_ cle 8128
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-iinf 4644  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-mulrcl 8044  ax-addcom 8045  ax-mulcom 8046  ax-addass 8047  ax-mulass 8048  ax-distr 8049  ax-i2m1 8050  ax-0lt1 8051  ax-1rid 8052  ax-0id 8053  ax-rnegex 8054  ax-precex 8055  ax-cnre 8056  ax-pre-ltirr 8057  ax-pre-ltwlin 8058  ax-pre-lttrn 8059  ax-pre-apti 8060  ax-pre-ltadd 8061  ax-pre-mulgt0 8062  ax-pre-mulext 8063  ax-arch 8064  ax-caucvg 8065
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-tr 4151  df-id 4348  df-po 4351  df-iso 4352  df-iord 4421  df-on 4423  df-ilim 4424  df-suc 4426  df-iom 4647  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240  df-recs 6404  df-frec 6490  df-sup 7101  df-pnf 8129  df-mnf 8130  df-xr 8131  df-ltxr 8132  df-le 8133  df-sub 8265  df-neg 8266  df-reap 8668  df-ap 8675  df-div 8766  df-inn 9057  df-2 9115  df-3 9116  df-4 9117  df-n0 9316  df-z 9393  df-uz 9669  df-rp 9796  df-seqfrec 10615  df-exp 10706  df-cj 11228  df-re 11229  df-im 11230  df-rsqrt 11384  df-abs 11385
This theorem is referenced by:  xrmaxadd  11647  xrltmininf  11656  iooinsup  11663  xmetxpbl  15055  txmetcnp  15065
  Copyright terms: Public domain W3C validator