| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xrmaxltsup | Unicode version | ||
| Description: Two ways of saying the maximum of two numbers is less than a third. (Contributed by Jim Kingdon, 30-Apr-2023.) |
| Ref | Expression |
|---|---|
| xrmaxltsup |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 1003 |
. . . 4
| |
| 2 | simpl2 1004 |
. . . . 5
| |
| 3 | xrmaxcl 11638 |
. . . . 5
| |
| 4 | 1, 2, 3 | syl2anc 411 |
. . . 4
|
| 5 | simpl3 1005 |
. . . 4
| |
| 6 | xrmax1sup 11639 |
. . . . . 6
| |
| 7 | 6 | 3adant3 1020 |
. . . . 5
|
| 8 | 7 | adantr 276 |
. . . 4
|
| 9 | simpr 110 |
. . . 4
| |
| 10 | 1, 4, 5, 8, 9 | xrlelttrd 9952 |
. . 3
|
| 11 | xrmax2sup 11640 |
. . . . 5
| |
| 12 | 1, 2, 11 | syl2anc 411 |
. . . 4
|
| 13 | 2, 4, 5, 12, 9 | xrlelttrd 9952 |
. . 3
|
| 14 | 10, 13 | jca 306 |
. 2
|
| 15 | simplr 528 |
. . . . . . 7
| |
| 16 | simpllr 534 |
. . . . . . 7
| |
| 17 | xrmaxrecl 11641 |
. . . . . . 7
| |
| 18 | 15, 16, 17 | syl2anc 411 |
. . . . . 6
|
| 19 | simp-4r 542 |
. . . . . . 7
| |
| 20 | simpr 110 |
. . . . . . . 8
| |
| 21 | maxltsup 11604 |
. . . . . . . 8
| |
| 22 | 15, 16, 20, 21 | syl3anc 1250 |
. . . . . . 7
|
| 23 | 19, 22 | mpbird 167 |
. . . . . 6
|
| 24 | 18, 23 | eqbrtrd 4073 |
. . . . 5
|
| 25 | simplr 528 |
. . . . . . . . 9
| |
| 26 | simpllr 534 |
. . . . . . . . 9
| |
| 27 | maxcl 11596 |
. . . . . . . . 9
| |
| 28 | 25, 26, 27 | syl2anc 411 |
. . . . . . . 8
|
| 29 | 17 | eleq1d 2275 |
. . . . . . . . 9
|
| 30 | 25, 26, 29 | syl2anc 411 |
. . . . . . . 8
|
| 31 | 28, 30 | mpbird 167 |
. . . . . . 7
|
| 32 | ltpnf 9922 |
. . . . . . 7
| |
| 33 | 31, 32 | syl 14 |
. . . . . 6
|
| 34 | simpr 110 |
. . . . . 6
| |
| 35 | 33, 34 | breqtrrd 4079 |
. . . . 5
|
| 36 | simprl 529 |
. . . . . . 7
| |
| 37 | 36 | ad3antrrr 492 |
. . . . . 6
|
| 38 | nltmnf 9930 |
. . . . . . . . 9
| |
| 39 | 38 | 3ad2ant1 1021 |
. . . . . . . 8
|
| 40 | 39 | ad4antr 494 |
. . . . . . 7
|
| 41 | simpr 110 |
. . . . . . . 8
| |
| 42 | 41 | breq2d 4063 |
. . . . . . 7
|
| 43 | 40, 42 | mtbird 675 |
. . . . . 6
|
| 44 | 37, 43 | pm2.21dd 621 |
. . . . 5
|
| 45 | elxr 9918 |
. . . . . . . 8
| |
| 46 | 45 | biimpi 120 |
. . . . . . 7
|
| 47 | 46 | 3ad2ant3 1023 |
. . . . . 6
|
| 48 | 47 | ad3antrrr 492 |
. . . . 5
|
| 49 | 24, 35, 44, 48 | mpjao3dan 1320 |
. . . 4
|
| 50 | 36 | ad2antrr 488 |
. . . . 5
|
| 51 | pnfnlt 9929 |
. . . . . . . 8
| |
| 52 | 51 | 3ad2ant3 1023 |
. . . . . . 7
|
| 53 | 52 | ad3antrrr 492 |
. . . . . 6
|
| 54 | simpr 110 |
. . . . . . 7
| |
| 55 | 54 | breq1d 4061 |
. . . . . 6
|
| 56 | 53, 55 | mtbird 675 |
. . . . 5
|
| 57 | 50, 56 | pm2.21dd 621 |
. . . 4
|
| 58 | simpr 110 |
. . . . . . 7
| |
| 59 | mnfle 9934 |
. . . . . . . . 9
| |
| 60 | 59 | 3ad2ant2 1022 |
. . . . . . . 8
|
| 61 | 60 | ad3antrrr 492 |
. . . . . . 7
|
| 62 | 58, 61 | eqbrtrd 4073 |
. . . . . 6
|
| 63 | simp1 1000 |
. . . . . . . 8
| |
| 64 | 63 | ad3antrrr 492 |
. . . . . . 7
|
| 65 | simp2 1001 |
. . . . . . . 8
| |
| 66 | 65 | ad3antrrr 492 |
. . . . . . 7
|
| 67 | xrmaxleim 11630 |
. . . . . . 7
| |
| 68 | 64, 66, 67 | syl2anc 411 |
. . . . . 6
|
| 69 | 62, 68 | mpd 13 |
. . . . 5
|
| 70 | simprr 531 |
. . . . . 6
| |
| 71 | 70 | ad2antrr 488 |
. . . . 5
|
| 72 | 69, 71 | eqbrtrd 4073 |
. . . 4
|
| 73 | elxr 9918 |
. . . . . . 7
| |
| 74 | 73 | biimpi 120 |
. . . . . 6
|
| 75 | 74 | 3ad2ant1 1021 |
. . . . 5
|
| 76 | 75 | ad2antrr 488 |
. . . 4
|
| 77 | 49, 57, 72, 76 | mpjao3dan 1320 |
. . 3
|
| 78 | simplrr 536 |
. . . . 5
| |
| 79 | breq1 4054 |
. . . . . 6
| |
| 80 | 79 | adantl 277 |
. . . . 5
|
| 81 | 78, 80 | mpbid 147 |
. . . 4
|
| 82 | 52 | ad2antrr 488 |
. . . 4
|
| 83 | 81, 82 | pm2.21dd 621 |
. . 3
|
| 84 | prcom 3714 |
. . . . . 6
| |
| 85 | 84 | supeq1i 7105 |
. . . . 5
|
| 86 | simpr 110 |
. . . . . . 7
| |
| 87 | mnfle 9934 |
. . . . . . . . 9
| |
| 88 | 87 | 3ad2ant1 1021 |
. . . . . . . 8
|
| 89 | 88 | ad2antrr 488 |
. . . . . . 7
|
| 90 | 86, 89 | eqbrtrd 4073 |
. . . . . 6
|
| 91 | simpll2 1040 |
. . . . . . 7
| |
| 92 | simpll1 1039 |
. . . . . . 7
| |
| 93 | xrmaxleim 11630 |
. . . . . . 7
| |
| 94 | 91, 92, 93 | syl2anc 411 |
. . . . . 6
|
| 95 | 90, 94 | mpd 13 |
. . . . 5
|
| 96 | 85, 95 | eqtr3id 2253 |
. . . 4
|
| 97 | simplrl 535 |
. . . 4
| |
| 98 | 96, 97 | eqbrtrd 4073 |
. . 3
|
| 99 | elxr 9918 |
. . . . . 6
| |
| 100 | 99 | biimpi 120 |
. . . . 5
|
| 101 | 100 | 3ad2ant2 1022 |
. . . 4
|
| 102 | 101 | adantr 276 |
. . 3
|
| 103 | 77, 83, 98, 102 | mpjao3dan 1320 |
. 2
|
| 104 | 14, 103 | impbida 596 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4167 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-iinf 4644 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-mulrcl 8044 ax-addcom 8045 ax-mulcom 8046 ax-addass 8047 ax-mulass 8048 ax-distr 8049 ax-i2m1 8050 ax-0lt1 8051 ax-1rid 8052 ax-0id 8053 ax-rnegex 8054 ax-precex 8055 ax-cnre 8056 ax-pre-ltirr 8057 ax-pre-ltwlin 8058 ax-pre-lttrn 8059 ax-pre-apti 8060 ax-pre-ltadd 8061 ax-pre-mulgt0 8062 ax-pre-mulext 8063 ax-arch 8064 ax-caucvg 8065 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-if 3576 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-tr 4151 df-id 4348 df-po 4351 df-iso 4352 df-iord 4421 df-on 4423 df-ilim 4424 df-suc 4426 df-iom 4647 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-riota 5912 df-ov 5960 df-oprab 5961 df-mpo 5962 df-1st 6239 df-2nd 6240 df-recs 6404 df-frec 6490 df-sup 7101 df-pnf 8129 df-mnf 8130 df-xr 8131 df-ltxr 8132 df-le 8133 df-sub 8265 df-neg 8266 df-reap 8668 df-ap 8675 df-div 8766 df-inn 9057 df-2 9115 df-3 9116 df-4 9117 df-n0 9316 df-z 9393 df-uz 9669 df-rp 9796 df-seqfrec 10615 df-exp 10706 df-cj 11228 df-re 11229 df-im 11230 df-rsqrt 11384 df-abs 11385 |
| This theorem is referenced by: xrmaxadd 11647 xrltmininf 11656 iooinsup 11663 xmetxpbl 15055 txmetcnp 15065 |
| Copyright terms: Public domain | W3C validator |