| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xrmaxltsup | Unicode version | ||
| Description: Two ways of saying the maximum of two numbers is less than a third. (Contributed by Jim Kingdon, 30-Apr-2023.) |
| Ref | Expression |
|---|---|
| xrmaxltsup |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 1002 |
. . . 4
| |
| 2 | simpl2 1003 |
. . . . 5
| |
| 3 | xrmaxcl 11482 |
. . . . 5
| |
| 4 | 1, 2, 3 | syl2anc 411 |
. . . 4
|
| 5 | simpl3 1004 |
. . . 4
| |
| 6 | xrmax1sup 11483 |
. . . . . 6
| |
| 7 | 6 | 3adant3 1019 |
. . . . 5
|
| 8 | 7 | adantr 276 |
. . . 4
|
| 9 | simpr 110 |
. . . 4
| |
| 10 | 1, 4, 5, 8, 9 | xrlelttrd 9914 |
. . 3
|
| 11 | xrmax2sup 11484 |
. . . . 5
| |
| 12 | 1, 2, 11 | syl2anc 411 |
. . . 4
|
| 13 | 2, 4, 5, 12, 9 | xrlelttrd 9914 |
. . 3
|
| 14 | 10, 13 | jca 306 |
. 2
|
| 15 | simplr 528 |
. . . . . . 7
| |
| 16 | simpllr 534 |
. . . . . . 7
| |
| 17 | xrmaxrecl 11485 |
. . . . . . 7
| |
| 18 | 15, 16, 17 | syl2anc 411 |
. . . . . 6
|
| 19 | simp-4r 542 |
. . . . . . 7
| |
| 20 | simpr 110 |
. . . . . . . 8
| |
| 21 | maxltsup 11448 |
. . . . . . . 8
| |
| 22 | 15, 16, 20, 21 | syl3anc 1249 |
. . . . . . 7
|
| 23 | 19, 22 | mpbird 167 |
. . . . . 6
|
| 24 | 18, 23 | eqbrtrd 4065 |
. . . . 5
|
| 25 | simplr 528 |
. . . . . . . . 9
| |
| 26 | simpllr 534 |
. . . . . . . . 9
| |
| 27 | maxcl 11440 |
. . . . . . . . 9
| |
| 28 | 25, 26, 27 | syl2anc 411 |
. . . . . . . 8
|
| 29 | 17 | eleq1d 2273 |
. . . . . . . . 9
|
| 30 | 25, 26, 29 | syl2anc 411 |
. . . . . . . 8
|
| 31 | 28, 30 | mpbird 167 |
. . . . . . 7
|
| 32 | ltpnf 9884 |
. . . . . . 7
| |
| 33 | 31, 32 | syl 14 |
. . . . . 6
|
| 34 | simpr 110 |
. . . . . 6
| |
| 35 | 33, 34 | breqtrrd 4071 |
. . . . 5
|
| 36 | simprl 529 |
. . . . . . 7
| |
| 37 | 36 | ad3antrrr 492 |
. . . . . 6
|
| 38 | nltmnf 9892 |
. . . . . . . . 9
| |
| 39 | 38 | 3ad2ant1 1020 |
. . . . . . . 8
|
| 40 | 39 | ad4antr 494 |
. . . . . . 7
|
| 41 | simpr 110 |
. . . . . . . 8
| |
| 42 | 41 | breq2d 4055 |
. . . . . . 7
|
| 43 | 40, 42 | mtbird 674 |
. . . . . 6
|
| 44 | 37, 43 | pm2.21dd 621 |
. . . . 5
|
| 45 | elxr 9880 |
. . . . . . . 8
| |
| 46 | 45 | biimpi 120 |
. . . . . . 7
|
| 47 | 46 | 3ad2ant3 1022 |
. . . . . 6
|
| 48 | 47 | ad3antrrr 492 |
. . . . 5
|
| 49 | 24, 35, 44, 48 | mpjao3dan 1319 |
. . . 4
|
| 50 | 36 | ad2antrr 488 |
. . . . 5
|
| 51 | pnfnlt 9891 |
. . . . . . . 8
| |
| 52 | 51 | 3ad2ant3 1022 |
. . . . . . 7
|
| 53 | 52 | ad3antrrr 492 |
. . . . . 6
|
| 54 | simpr 110 |
. . . . . . 7
| |
| 55 | 54 | breq1d 4053 |
. . . . . 6
|
| 56 | 53, 55 | mtbird 674 |
. . . . 5
|
| 57 | 50, 56 | pm2.21dd 621 |
. . . 4
|
| 58 | simpr 110 |
. . . . . . 7
| |
| 59 | mnfle 9896 |
. . . . . . . . 9
| |
| 60 | 59 | 3ad2ant2 1021 |
. . . . . . . 8
|
| 61 | 60 | ad3antrrr 492 |
. . . . . . 7
|
| 62 | 58, 61 | eqbrtrd 4065 |
. . . . . 6
|
| 63 | simp1 999 |
. . . . . . . 8
| |
| 64 | 63 | ad3antrrr 492 |
. . . . . . 7
|
| 65 | simp2 1000 |
. . . . . . . 8
| |
| 66 | 65 | ad3antrrr 492 |
. . . . . . 7
|
| 67 | xrmaxleim 11474 |
. . . . . . 7
| |
| 68 | 64, 66, 67 | syl2anc 411 |
. . . . . 6
|
| 69 | 62, 68 | mpd 13 |
. . . . 5
|
| 70 | simprr 531 |
. . . . . 6
| |
| 71 | 70 | ad2antrr 488 |
. . . . 5
|
| 72 | 69, 71 | eqbrtrd 4065 |
. . . 4
|
| 73 | elxr 9880 |
. . . . . . 7
| |
| 74 | 73 | biimpi 120 |
. . . . . 6
|
| 75 | 74 | 3ad2ant1 1020 |
. . . . 5
|
| 76 | 75 | ad2antrr 488 |
. . . 4
|
| 77 | 49, 57, 72, 76 | mpjao3dan 1319 |
. . 3
|
| 78 | simplrr 536 |
. . . . 5
| |
| 79 | breq1 4046 |
. . . . . 6
| |
| 80 | 79 | adantl 277 |
. . . . 5
|
| 81 | 78, 80 | mpbid 147 |
. . . 4
|
| 82 | 52 | ad2antrr 488 |
. . . 4
|
| 83 | 81, 82 | pm2.21dd 621 |
. . 3
|
| 84 | prcom 3708 |
. . . . . 6
| |
| 85 | 84 | supeq1i 7072 |
. . . . 5
|
| 86 | simpr 110 |
. . . . . . 7
| |
| 87 | mnfle 9896 |
. . . . . . . . 9
| |
| 88 | 87 | 3ad2ant1 1020 |
. . . . . . . 8
|
| 89 | 88 | ad2antrr 488 |
. . . . . . 7
|
| 90 | 86, 89 | eqbrtrd 4065 |
. . . . . 6
|
| 91 | simpll2 1039 |
. . . . . . 7
| |
| 92 | simpll1 1038 |
. . . . . . 7
| |
| 93 | xrmaxleim 11474 |
. . . . . . 7
| |
| 94 | 91, 92, 93 | syl2anc 411 |
. . . . . 6
|
| 95 | 90, 94 | mpd 13 |
. . . . 5
|
| 96 | 85, 95 | eqtr3id 2251 |
. . . 4
|
| 97 | simplrl 535 |
. . . 4
| |
| 98 | 96, 97 | eqbrtrd 4065 |
. . 3
|
| 99 | elxr 9880 |
. . . . . 6
| |
| 100 | 99 | biimpi 120 |
. . . . 5
|
| 101 | 100 | 3ad2ant2 1021 |
. . . 4
|
| 102 | 101 | adantr 276 |
. . 3
|
| 103 | 77, 83, 98, 102 | mpjao3dan 1319 |
. 2
|
| 104 | 14, 103 | impbida 596 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-setind 4583 ax-iinf 4634 ax-cnex 7998 ax-resscn 7999 ax-1cn 8000 ax-1re 8001 ax-icn 8002 ax-addcl 8003 ax-addrcl 8004 ax-mulcl 8005 ax-mulrcl 8006 ax-addcom 8007 ax-mulcom 8008 ax-addass 8009 ax-mulass 8010 ax-distr 8011 ax-i2m1 8012 ax-0lt1 8013 ax-1rid 8014 ax-0id 8015 ax-rnegex 8016 ax-precex 8017 ax-cnre 8018 ax-pre-ltirr 8019 ax-pre-ltwlin 8020 ax-pre-lttrn 8021 ax-pre-apti 8022 ax-pre-ltadd 8023 ax-pre-mulgt0 8024 ax-pre-mulext 8025 ax-arch 8026 ax-caucvg 8027 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-if 3571 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4338 df-po 4341 df-iso 4342 df-iord 4411 df-on 4413 df-ilim 4414 df-suc 4416 df-iom 4637 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-res 4685 df-ima 4686 df-iota 5229 df-fun 5270 df-fn 5271 df-f 5272 df-f1 5273 df-fo 5274 df-f1o 5275 df-fv 5276 df-riota 5889 df-ov 5937 df-oprab 5938 df-mpo 5939 df-1st 6216 df-2nd 6217 df-recs 6381 df-frec 6467 df-sup 7068 df-pnf 8091 df-mnf 8092 df-xr 8093 df-ltxr 8094 df-le 8095 df-sub 8227 df-neg 8228 df-reap 8630 df-ap 8637 df-div 8728 df-inn 9019 df-2 9077 df-3 9078 df-4 9079 df-n0 9278 df-z 9355 df-uz 9631 df-rp 9758 df-seqfrec 10574 df-exp 10665 df-cj 11072 df-re 11073 df-im 11074 df-rsqrt 11228 df-abs 11229 |
| This theorem is referenced by: xrmaxadd 11491 xrltmininf 11500 iooinsup 11507 xmetxpbl 14898 txmetcnp 14908 |
| Copyright terms: Public domain | W3C validator |