ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrmaxltsup Unicode version

Theorem xrmaxltsup 11268
Description: Two ways of saying the maximum of two numbers is less than a third. (Contributed by Jim Kingdon, 30-Apr-2023.)
Assertion
Ref Expression
xrmaxltsup  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  ( sup ( { A ,  B } ,  RR* ,  <  )  <  C  <->  ( A  <  C  /\  B  < 
C ) ) )

Proof of Theorem xrmaxltsup
StepHypRef Expression
1 simpl1 1000 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  sup ( { A ,  B } ,  RR* ,  <  )  <  C )  ->  A  e.  RR* )
2 simpl2 1001 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  sup ( { A ,  B } ,  RR* ,  <  )  <  C )  ->  B  e.  RR* )
3 xrmaxcl 11262 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  sup ( { A ,  B } ,  RR* ,  <  )  e.  RR* )
41, 2, 3syl2anc 411 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  sup ( { A ,  B } ,  RR* ,  <  )  <  C )  ->  sup ( { A ,  B } ,  RR* ,  <  )  e.  RR* )
5 simpl3 1002 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  sup ( { A ,  B } ,  RR* ,  <  )  <  C )  ->  C  e.  RR* )
6 xrmax1sup 11263 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  A  <_  sup ( { A ,  B } ,  RR* ,  <  ) )
763adant3 1017 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  A  <_  sup ( { A ,  B } ,  RR* ,  <  ) )
87adantr 276 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  sup ( { A ,  B } ,  RR* ,  <  )  <  C )  ->  A  <_  sup ( { A ,  B } ,  RR* ,  <  ) )
9 simpr 110 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  sup ( { A ,  B } ,  RR* ,  <  )  <  C )  ->  sup ( { A ,  B } ,  RR* ,  <  )  <  C )
101, 4, 5, 8, 9xrlelttrd 9812 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  sup ( { A ,  B } ,  RR* ,  <  )  <  C )  ->  A  <  C )
11 xrmax2sup 11264 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  B  <_  sup ( { A ,  B } ,  RR* ,  <  ) )
121, 2, 11syl2anc 411 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  sup ( { A ,  B } ,  RR* ,  <  )  <  C )  ->  B  <_  sup ( { A ,  B } ,  RR* ,  <  ) )
132, 4, 5, 12, 9xrlelttrd 9812 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  sup ( { A ,  B } ,  RR* ,  <  )  <  C )  ->  B  <  C )
1410, 13jca 306 . 2  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  sup ( { A ,  B } ,  RR* ,  <  )  <  C )  -> 
( A  <  C  /\  B  <  C ) )
15 simplr 528 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  /\  C  e.  RR )  ->  A  e.  RR )
16 simpllr 534 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  /\  C  e.  RR )  ->  B  e.  RR )
17 xrmaxrecl 11265 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  sup ( { A ,  B } ,  RR* ,  <  )  =  sup ( { A ,  B } ,  RR ,  <  ) )
1815, 16, 17syl2anc 411 . . . . . 6  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  /\  C  e.  RR )  ->  sup ( { A ,  B } ,  RR* ,  <  )  =  sup ( { A ,  B } ,  RR ,  <  ) )
19 simp-4r 542 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  /\  C  e.  RR )  ->  ( A  < 
C  /\  B  <  C ) )
20 simpr 110 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  /\  C  e.  RR )  ->  C  e.  RR )
21 maxltsup 11229 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( sup ( { A ,  B } ,  RR ,  <  )  <  C  <->  ( A  <  C  /\  B  < 
C ) ) )
2215, 16, 20, 21syl3anc 1238 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  /\  C  e.  RR )  ->  ( sup ( { A ,  B } ,  RR ,  <  )  <  C  <->  ( A  < 
C  /\  B  <  C ) ) )
2319, 22mpbird 167 . . . . . 6  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  /\  C  e.  RR )  ->  sup ( { A ,  B } ,  RR ,  <  )  <  C
)
2418, 23eqbrtrd 4027 . . . . 5  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  /\  C  e.  RR )  ->  sup ( { A ,  B } ,  RR* ,  <  )  <  C
)
25 simplr 528 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  /\  C  = +oo )  ->  A  e.  RR )
26 simpllr 534 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  /\  C  = +oo )  ->  B  e.  RR )
27 maxcl 11221 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  sup ( { A ,  B } ,  RR ,  <  )  e.  RR )
2825, 26, 27syl2anc 411 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  /\  C  = +oo )  ->  sup ( { A ,  B } ,  RR ,  <  )  e.  RR )
2917eleq1d 2246 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( sup ( { A ,  B } ,  RR* ,  <  )  e.  RR  <->  sup ( { A ,  B } ,  RR ,  <  )  e.  RR ) )
3025, 26, 29syl2anc 411 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  /\  C  = +oo )  ->  ( sup ( { A ,  B } ,  RR* ,  <  )  e.  RR  <->  sup ( { A ,  B } ,  RR ,  <  )  e.  RR ) )
3128, 30mpbird 167 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  /\  C  = +oo )  ->  sup ( { A ,  B } ,  RR* ,  <  )  e.  RR )
32 ltpnf 9782 . . . . . . 7  |-  ( sup ( { A ,  B } ,  RR* ,  <  )  e.  RR  ->  sup ( { A ,  B } ,  RR* ,  <  )  < +oo )
3331, 32syl 14 . . . . . 6  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  /\  C  = +oo )  ->  sup ( { A ,  B } ,  RR* ,  <  )  < +oo )
34 simpr 110 . . . . . 6  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  /\  C  = +oo )  ->  C  = +oo )
3533, 34breqtrrd 4033 . . . . 5  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  /\  C  = +oo )  ->  sup ( { A ,  B } ,  RR* ,  <  )  <  C
)
36 simprl 529 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  ( A  <  C  /\  B  <  C ) )  ->  A  <  C )
3736ad3antrrr 492 . . . . . 6  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  /\  C  = -oo )  ->  A  <  C
)
38 nltmnf 9790 . . . . . . . . 9  |-  ( A  e.  RR*  ->  -.  A  < -oo )
39383ad2ant1 1018 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  -.  A  < -oo )
4039ad4antr 494 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  /\  C  = -oo )  ->  -.  A  < -oo )
41 simpr 110 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  /\  C  = -oo )  ->  C  = -oo )
4241breq2d 4017 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  /\  C  = -oo )  ->  ( A  < 
C  <->  A  < -oo )
)
4340, 42mtbird 673 . . . . . 6  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  /\  C  = -oo )  ->  -.  A  <  C )
4437, 43pm2.21dd 620 . . . . 5  |-  ( ( ( ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  /\  C  = -oo )  ->  sup ( { A ,  B } ,  RR* ,  <  )  <  C
)
45 elxr 9778 . . . . . . . 8  |-  ( C  e.  RR*  <->  ( C  e.  RR  \/  C  = +oo  \/  C  = -oo ) )
4645biimpi 120 . . . . . . 7  |-  ( C  e.  RR*  ->  ( C  e.  RR  \/  C  = +oo  \/  C  = -oo ) )
47463ad2ant3 1020 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  ( C  e.  RR  \/  C  = +oo  \/  C  = -oo ) )
4847ad3antrrr 492 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  ->  ( C  e.  RR  \/  C  = +oo  \/  C  = -oo ) )
4924, 35, 44, 48mpjao3dan 1307 . . . 4  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  e.  RR )  ->  sup ( { A ,  B } ,  RR* ,  <  )  <  C
)
5036ad2antrr 488 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  = +oo )  ->  A  <  C
)
51 pnfnlt 9789 . . . . . . . 8  |-  ( C  e.  RR*  ->  -. +oo  <  C )
52513ad2ant3 1020 . . . . . . 7  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  -. +oo 
<  C )
5352ad3antrrr 492 . . . . . 6  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  = +oo )  ->  -. +oo  <  C
)
54 simpr 110 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  = +oo )  ->  A  = +oo )
5554breq1d 4015 . . . . . 6  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  = +oo )  ->  ( A  < 
C  <-> +oo  <  C )
)
5653, 55mtbird 673 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  = +oo )  ->  -.  A  <  C )
5750, 56pm2.21dd 620 . . . 4  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  = +oo )  ->  sup ( { A ,  B } ,  RR* ,  <  )  <  C
)
58 simpr 110 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  = -oo )  ->  A  = -oo )
59 mnfle 9794 . . . . . . . . 9  |-  ( B  e.  RR*  -> -oo  <_  B )
60593ad2ant2 1019 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  -> -oo  <_  B )
6160ad3antrrr 492 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  = -oo )  -> -oo  <_  B )
6258, 61eqbrtrd 4027 . . . . . 6  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  = -oo )  ->  A  <_  B
)
63 simp1 997 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  A  e.  RR* )
6463ad3antrrr 492 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  = -oo )  ->  A  e.  RR* )
65 simp2 998 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  B  e.  RR* )
6665ad3antrrr 492 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  = -oo )  ->  B  e.  RR* )
67 xrmaxleim 11254 . . . . . . 7  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  <_  B  ->  sup ( { A ,  B } ,  RR* ,  <  )  =  B ) )
6864, 66, 67syl2anc 411 . . . . . 6  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  = -oo )  ->  ( A  <_  B  ->  sup ( { A ,  B } ,  RR* ,  <  )  =  B ) )
6962, 68mpd 13 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  = -oo )  ->  sup ( { A ,  B } ,  RR* ,  <  )  =  B )
70 simprr 531 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  ( A  <  C  /\  B  <  C ) )  ->  B  <  C )
7170ad2antrr 488 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  = -oo )  ->  B  <  C
)
7269, 71eqbrtrd 4027 . . . 4  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  ( A  <  C  /\  B  <  C ) )  /\  B  e.  RR )  /\  A  = -oo )  ->  sup ( { A ,  B } ,  RR* ,  <  )  <  C
)
73 elxr 9778 . . . . . . 7  |-  ( A  e.  RR*  <->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
7473biimpi 120 . . . . . 6  |-  ( A  e.  RR*  ->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
75743ad2ant1 1018 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
7675ad2antrr 488 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A  < 
C  /\  B  <  C ) )  /\  B  e.  RR )  ->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
7749, 57, 72, 76mpjao3dan 1307 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A  < 
C  /\  B  <  C ) )  /\  B  e.  RR )  ->  sup ( { A ,  B } ,  RR* ,  <  )  <  C )
78 simplrr 536 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A  < 
C  /\  B  <  C ) )  /\  B  = +oo )  ->  B  <  C )
79 breq1 4008 . . . . . 6  |-  ( B  = +oo  ->  ( B  <  C  <-> +oo  <  C
) )
8079adantl 277 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A  < 
C  /\  B  <  C ) )  /\  B  = +oo )  ->  ( B  <  C  <-> +oo  <  C
) )
8178, 80mpbid 147 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A  < 
C  /\  B  <  C ) )  /\  B  = +oo )  -> +oo  <  C )
8252ad2antrr 488 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A  < 
C  /\  B  <  C ) )  /\  B  = +oo )  ->  -. +oo 
<  C )
8381, 82pm2.21dd 620 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A  < 
C  /\  B  <  C ) )  /\  B  = +oo )  ->  sup ( { A ,  B } ,  RR* ,  <  )  <  C )
84 prcom 3670 . . . . . 6  |-  { B ,  A }  =  { A ,  B }
8584supeq1i 6989 . . . . 5  |-  sup ( { B ,  A } ,  RR* ,  <  )  =  sup ( { A ,  B } ,  RR* ,  <  )
86 simpr 110 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A  < 
C  /\  B  <  C ) )  /\  B  = -oo )  ->  B  = -oo )
87 mnfle 9794 . . . . . . . . 9  |-  ( A  e.  RR*  -> -oo  <_  A )
88873ad2ant1 1018 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  -> -oo  <_  A )
8988ad2antrr 488 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A  < 
C  /\  B  <  C ) )  /\  B  = -oo )  -> -oo  <_  A )
9086, 89eqbrtrd 4027 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A  < 
C  /\  B  <  C ) )  /\  B  = -oo )  ->  B  <_  A )
91 simpll2 1037 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A  < 
C  /\  B  <  C ) )  /\  B  = -oo )  ->  B  e.  RR* )
92 simpll1 1036 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A  < 
C  /\  B  <  C ) )  /\  B  = -oo )  ->  A  e.  RR* )
93 xrmaxleim 11254 . . . . . . 7  |-  ( ( B  e.  RR*  /\  A  e.  RR* )  ->  ( B  <_  A  ->  sup ( { B ,  A } ,  RR* ,  <  )  =  A ) )
9491, 92, 93syl2anc 411 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A  < 
C  /\  B  <  C ) )  /\  B  = -oo )  ->  ( B  <_  A  ->  sup ( { B ,  A } ,  RR* ,  <  )  =  A ) )
9590, 94mpd 13 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A  < 
C  /\  B  <  C ) )  /\  B  = -oo )  ->  sup ( { B ,  A } ,  RR* ,  <  )  =  A )
9685, 95eqtr3id 2224 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A  < 
C  /\  B  <  C ) )  /\  B  = -oo )  ->  sup ( { A ,  B } ,  RR* ,  <  )  =  A )
97 simplrl 535 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A  < 
C  /\  B  <  C ) )  /\  B  = -oo )  ->  A  <  C )
9896, 97eqbrtrd 4027 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A  < 
C  /\  B  <  C ) )  /\  B  = -oo )  ->  sup ( { A ,  B } ,  RR* ,  <  )  <  C )
99 elxr 9778 . . . . . 6  |-  ( B  e.  RR*  <->  ( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )
10099biimpi 120 . . . . 5  |-  ( B  e.  RR*  ->  ( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )
1011003ad2ant2 1019 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  ( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )
102101adantr 276 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  ( A  <  C  /\  B  <  C ) )  -> 
( B  e.  RR  \/  B  = +oo  \/  B  = -oo ) )
10377, 83, 98, 102mpjao3dan 1307 . 2  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  ( A  <  C  /\  B  <  C ) )  ->  sup ( { A ,  B } ,  RR* ,  <  )  <  C )
10414, 103impbida 596 1  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  ( sup ( { A ,  B } ,  RR* ,  <  )  <  C  <->  ( A  <  C  /\  B  < 
C ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ w3o 977    /\ w3a 978    = wceq 1353    e. wcel 2148   {cpr 3595   class class class wbr 4005   supcsup 6983   RRcr 7812   +oocpnf 7991   -oocmnf 7992   RR*cxr 7993    < clt 7994    <_ cle 7995
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930  ax-pre-mulext 7931  ax-arch 7932  ax-caucvg 7933
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-frec 6394  df-sup 6985  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-reap 8534  df-ap 8541  df-div 8632  df-inn 8922  df-2 8980  df-3 8981  df-4 8982  df-n0 9179  df-z 9256  df-uz 9531  df-rp 9656  df-seqfrec 10448  df-exp 10522  df-cj 10853  df-re 10854  df-im 10855  df-rsqrt 11009  df-abs 11010
This theorem is referenced by:  xrmaxadd  11271  xrltmininf  11280  iooinsup  11287  xmetxpbl  14047  txmetcnp  14057
  Copyright terms: Public domain W3C validator