ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infrenegsupex Unicode version

Theorem infrenegsupex 9532
Description: The infimum of a set of reals  A is the negative of the supremum of the negatives of its elements. (Contributed by Jim Kingdon, 14-Jan-2022.)
Hypotheses
Ref Expression
infrenegsupex.ex  |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  A  -.  y  <  x  /\  A. y  e.  RR  (
x  <  y  ->  E. z  e.  A  z  <  y ) ) )
infrenegsupex.ss  |-  ( ph  ->  A  C_  RR )
Assertion
Ref Expression
infrenegsupex  |-  ( ph  -> inf ( A ,  RR ,  <  )  =  -u sup ( { z  e.  RR  |  -u z  e.  A } ,  RR ,  <  ) )
Distinct variable groups:    x, A, y, z    ph, x, y, z

Proof of Theorem infrenegsupex
Dummy variables  f  g  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lttri3 7978 . . . . . 6  |-  ( ( f  e.  RR  /\  g  e.  RR )  ->  ( f  =  g  <-> 
( -.  f  < 
g  /\  -.  g  <  f ) ) )
21adantl 275 . . . . 5  |-  ( (
ph  /\  ( f  e.  RR  /\  g  e.  RR ) )  -> 
( f  =  g  <-> 
( -.  f  < 
g  /\  -.  g  <  f ) ) )
3 infrenegsupex.ex . . . . 5  |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  A  -.  y  <  x  /\  A. y  e.  RR  (
x  <  y  ->  E. z  e.  A  z  <  y ) ) )
42, 3infclti 6988 . . . 4  |-  ( ph  -> inf ( A ,  RR ,  <  )  e.  RR )
54recnd 7927 . . 3  |-  ( ph  -> inf ( A ,  RR ,  <  )  e.  CC )
65negnegd 8200 . 2  |-  ( ph  -> 
-u -uinf ( A ,  RR ,  <  )  = inf ( A ,  RR ,  <  ) )
7 negeq 8091 . . . . . . . . 9  |-  ( w  =  z  ->  -u w  =  -u z )
87cbvmptv 4078 . . . . . . . 8  |-  ( w  e.  RR  |->  -u w
)  =  ( z  e.  RR  |->  -u z
)
98mptpreima 5097 . . . . . . 7  |-  ( `' ( w  e.  RR  |->  -u w ) " A
)  =  { z  e.  RR  |  -u z  e.  A }
10 eqid 2165 . . . . . . . . . 10  |-  ( w  e.  RR  |->  -u w
)  =  ( w  e.  RR  |->  -u w
)
1110negiso 8850 . . . . . . . . 9  |-  ( ( w  e.  RR  |->  -u w )  Isom  <  ,  `'  <  ( RR ,  RR )  /\  `' ( w  e.  RR  |->  -u w )  =  ( w  e.  RR  |->  -u w ) )
1211simpri 112 . . . . . . . 8  |-  `' ( w  e.  RR  |->  -u w )  =  ( w  e.  RR  |->  -u w )
1312imaeq1i 4943 . . . . . . 7  |-  ( `' ( w  e.  RR  |->  -u w ) " A
)  =  ( ( w  e.  RR  |->  -u w ) " A
)
149, 13eqtr3i 2188 . . . . . 6  |-  { z  e.  RR  |  -u z  e.  A }  =  ( ( w  e.  RR  |->  -u w
) " A )
1514supeq1i 6953 . . . . 5  |-  sup ( { z  e.  RR  |  -u z  e.  A } ,  RR ,  <  )  =  sup (
( ( w  e.  RR  |->  -u w ) " A ) ,  RR ,  <  )
1611simpli 110 . . . . . . . . 9  |-  ( w  e.  RR  |->  -u w
)  Isom  <  ,  `'  <  ( RR ,  RR )
17 isocnv 5779 . . . . . . . . 9  |-  ( ( w  e.  RR  |->  -u w )  Isom  <  ,  `'  <  ( RR ,  RR )  ->  `' ( w  e.  RR  |->  -u w )  Isom  `'  <  ,  <  ( RR ,  RR ) )
1816, 17ax-mp 5 . . . . . . . 8  |-  `' ( w  e.  RR  |->  -u w )  Isom  `'  <  ,  <  ( RR ,  RR )
19 isoeq1 5769 . . . . . . . . 9  |-  ( `' ( w  e.  RR  |->  -u w )  =  ( w  e.  RR  |->  -u w )  ->  ( `' ( w  e.  RR  |->  -u w )  Isom  `'  <  ,  <  ( RR ,  RR )  <->  ( w  e.  RR  |->  -u w )  Isom  `'  <  ,  <  ( RR ,  RR ) ) )
2012, 19ax-mp 5 . . . . . . . 8  |-  ( `' ( w  e.  RR  |->  -u w )  Isom  `'  <  ,  <  ( RR ,  RR )  <->  ( w  e.  RR  |->  -u w )  Isom  `'  <  ,  <  ( RR ,  RR )
)
2118, 20mpbi 144 . . . . . . 7  |-  ( w  e.  RR  |->  -u w
)  Isom  `'  <  ,  <  ( RR ,  RR )
2221a1i 9 . . . . . 6  |-  ( ph  ->  ( w  e.  RR  |->  -u w )  Isom  `'  <  ,  <  ( RR ,  RR ) )
23 infrenegsupex.ss . . . . . 6  |-  ( ph  ->  A  C_  RR )
243cnvinfex 6983 . . . . . 6  |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  A  -.  x `'  <  y  /\  A. y  e.  RR  ( y `'  <  x  ->  E. z  e.  A  y `'  <  z ) ) )
252cnvti 6984 . . . . . 6  |-  ( (
ph  /\  ( f  e.  RR  /\  g  e.  RR ) )  -> 
( f  =  g  <-> 
( -.  f `'  <  g  /\  -.  g `'  <  f ) ) )
2622, 23, 24, 25supisoti 6975 . . . . 5  |-  ( ph  ->  sup ( ( ( w  e.  RR  |->  -u w ) " A
) ,  RR ,  <  )  =  ( ( w  e.  RR  |->  -u w ) `  sup ( A ,  RR ,  `'  <  ) ) )
2715, 26syl5eq 2211 . . . 4  |-  ( ph  ->  sup ( { z  e.  RR  |  -u z  e.  A } ,  RR ,  <  )  =  ( ( w  e.  RR  |->  -u w
) `  sup ( A ,  RR ,  `'  <  ) ) )
28 df-inf 6950 . . . . . . 7  |- inf ( A ,  RR ,  <  )  =  sup ( A ,  RR ,  `'  <  )
2928eqcomi 2169 . . . . . 6  |-  sup ( A ,  RR ,  `'  <  )  = inf ( A ,  RR ,  <  )
3029fveq2i 5489 . . . . 5  |-  ( ( w  e.  RR  |->  -u w ) `  sup ( A ,  RR ,  `'  <  ) )  =  ( ( w  e.  RR  |->  -u w ) ` inf ( A ,  RR ,  <  ) )
31 eqidd 2166 . . . . . 6  |-  ( ph  ->  ( w  e.  RR  |->  -u w )  =  ( w  e.  RR  |->  -u w ) )
32 negeq 8091 . . . . . . 7  |-  ( w  = inf ( A ,  RR ,  <  )  ->  -u w  =  -uinf ( A ,  RR ,  <  ) )
3332adantl 275 . . . . . 6  |-  ( (
ph  /\  w  = inf ( A ,  RR ,  <  ) )  ->  -u w  =  -uinf ( A ,  RR ,  <  ) )
345negcld 8196 . . . . . 6  |-  ( ph  -> 
-uinf ( A ,  RR ,  <  )  e.  CC )
3531, 33, 4, 34fvmptd 5567 . . . . 5  |-  ( ph  ->  ( ( w  e.  RR  |->  -u w ) ` inf ( A ,  RR ,  <  ) )  =  -uinf ( A ,  RR ,  <  ) )
3630, 35syl5eq 2211 . . . 4  |-  ( ph  ->  ( ( w  e.  RR  |->  -u w ) `  sup ( A ,  RR ,  `'  <  ) )  =  -uinf ( A ,  RR ,  <  ) )
3727, 36eqtr2d 2199 . . 3  |-  ( ph  -> 
-uinf ( A ,  RR ,  <  )  =  sup ( { z  e.  RR  |  -u z  e.  A } ,  RR ,  <  )
)
3837negeqd 8093 . 2  |-  ( ph  -> 
-u -uinf ( A ,  RR ,  <  )  = 
-u sup ( { z  e.  RR  |  -u z  e.  A } ,  RR ,  <  )
)
396, 38eqtr3d 2200 1  |-  ( ph  -> inf ( A ,  RR ,  <  )  =  -u sup ( { z  e.  RR  |  -u z  e.  A } ,  RR ,  <  ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343    e. wcel 2136   A.wral 2444   E.wrex 2445   {crab 2448    C_ wss 3116   class class class wbr 3982    |-> cmpt 4043   `'ccnv 4603   "cima 4607   ` cfv 5188    Isom wiso 5189   supcsup 6947  infcinf 6948   CCcc 7751   RRcr 7752    < clt 7933   -ucneg 8070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-apti 7868  ax-pre-ltadd 7869
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-sup 6949  df-inf 6950  df-pnf 7935  df-mnf 7936  df-ltxr 7938  df-sub 8071  df-neg 8072
This theorem is referenced by:  supminfex  9535  minmax  11171  infssuzcldc  11884
  Copyright terms: Public domain W3C validator