ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infrenegsupex Unicode version

Theorem infrenegsupex 9523
Description: The infimum of a set of reals  A is the negative of the supremum of the negatives of its elements. (Contributed by Jim Kingdon, 14-Jan-2022.)
Hypotheses
Ref Expression
infrenegsupex.ex  |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  A  -.  y  <  x  /\  A. y  e.  RR  (
x  <  y  ->  E. z  e.  A  z  <  y ) ) )
infrenegsupex.ss  |-  ( ph  ->  A  C_  RR )
Assertion
Ref Expression
infrenegsupex  |-  ( ph  -> inf ( A ,  RR ,  <  )  =  -u sup ( { z  e.  RR  |  -u z  e.  A } ,  RR ,  <  ) )
Distinct variable groups:    x, A, y, z    ph, x, y, z

Proof of Theorem infrenegsupex
Dummy variables  f  g  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lttri3 7969 . . . . . 6  |-  ( ( f  e.  RR  /\  g  e.  RR )  ->  ( f  =  g  <-> 
( -.  f  < 
g  /\  -.  g  <  f ) ) )
21adantl 275 . . . . 5  |-  ( (
ph  /\  ( f  e.  RR  /\  g  e.  RR ) )  -> 
( f  =  g  <-> 
( -.  f  < 
g  /\  -.  g  <  f ) ) )
3 infrenegsupex.ex . . . . 5  |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  A  -.  y  <  x  /\  A. y  e.  RR  (
x  <  y  ->  E. z  e.  A  z  <  y ) ) )
42, 3infclti 6979 . . . 4  |-  ( ph  -> inf ( A ,  RR ,  <  )  e.  RR )
54recnd 7918 . . 3  |-  ( ph  -> inf ( A ,  RR ,  <  )  e.  CC )
65negnegd 8191 . 2  |-  ( ph  -> 
-u -uinf ( A ,  RR ,  <  )  = inf ( A ,  RR ,  <  ) )
7 negeq 8082 . . . . . . . . 9  |-  ( w  =  z  ->  -u w  =  -u z )
87cbvmptv 4072 . . . . . . . 8  |-  ( w  e.  RR  |->  -u w
)  =  ( z  e.  RR  |->  -u z
)
98mptpreima 5091 . . . . . . 7  |-  ( `' ( w  e.  RR  |->  -u w ) " A
)  =  { z  e.  RR  |  -u z  e.  A }
10 eqid 2164 . . . . . . . . . 10  |-  ( w  e.  RR  |->  -u w
)  =  ( w  e.  RR  |->  -u w
)
1110negiso 8841 . . . . . . . . 9  |-  ( ( w  e.  RR  |->  -u w )  Isom  <  ,  `'  <  ( RR ,  RR )  /\  `' ( w  e.  RR  |->  -u w )  =  ( w  e.  RR  |->  -u w ) )
1211simpri 112 . . . . . . . 8  |-  `' ( w  e.  RR  |->  -u w )  =  ( w  e.  RR  |->  -u w )
1312imaeq1i 4937 . . . . . . 7  |-  ( `' ( w  e.  RR  |->  -u w ) " A
)  =  ( ( w  e.  RR  |->  -u w ) " A
)
149, 13eqtr3i 2187 . . . . . 6  |-  { z  e.  RR  |  -u z  e.  A }  =  ( ( w  e.  RR  |->  -u w
) " A )
1514supeq1i 6944 . . . . 5  |-  sup ( { z  e.  RR  |  -u z  e.  A } ,  RR ,  <  )  =  sup (
( ( w  e.  RR  |->  -u w ) " A ) ,  RR ,  <  )
1611simpli 110 . . . . . . . . 9  |-  ( w  e.  RR  |->  -u w
)  Isom  <  ,  `'  <  ( RR ,  RR )
17 isocnv 5773 . . . . . . . . 9  |-  ( ( w  e.  RR  |->  -u w )  Isom  <  ,  `'  <  ( RR ,  RR )  ->  `' ( w  e.  RR  |->  -u w )  Isom  `'  <  ,  <  ( RR ,  RR ) )
1816, 17ax-mp 5 . . . . . . . 8  |-  `' ( w  e.  RR  |->  -u w )  Isom  `'  <  ,  <  ( RR ,  RR )
19 isoeq1 5763 . . . . . . . . 9  |-  ( `' ( w  e.  RR  |->  -u w )  =  ( w  e.  RR  |->  -u w )  ->  ( `' ( w  e.  RR  |->  -u w )  Isom  `'  <  ,  <  ( RR ,  RR )  <->  ( w  e.  RR  |->  -u w )  Isom  `'  <  ,  <  ( RR ,  RR ) ) )
2012, 19ax-mp 5 . . . . . . . 8  |-  ( `' ( w  e.  RR  |->  -u w )  Isom  `'  <  ,  <  ( RR ,  RR )  <->  ( w  e.  RR  |->  -u w )  Isom  `'  <  ,  <  ( RR ,  RR )
)
2118, 20mpbi 144 . . . . . . 7  |-  ( w  e.  RR  |->  -u w
)  Isom  `'  <  ,  <  ( RR ,  RR )
2221a1i 9 . . . . . 6  |-  ( ph  ->  ( w  e.  RR  |->  -u w )  Isom  `'  <  ,  <  ( RR ,  RR ) )
23 infrenegsupex.ss . . . . . 6  |-  ( ph  ->  A  C_  RR )
243cnvinfex 6974 . . . . . 6  |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  A  -.  x `'  <  y  /\  A. y  e.  RR  ( y `'  <  x  ->  E. z  e.  A  y `'  <  z ) ) )
252cnvti 6975 . . . . . 6  |-  ( (
ph  /\  ( f  e.  RR  /\  g  e.  RR ) )  -> 
( f  =  g  <-> 
( -.  f `'  <  g  /\  -.  g `'  <  f ) ) )
2622, 23, 24, 25supisoti 6966 . . . . 5  |-  ( ph  ->  sup ( ( ( w  e.  RR  |->  -u w ) " A
) ,  RR ,  <  )  =  ( ( w  e.  RR  |->  -u w ) `  sup ( A ,  RR ,  `'  <  ) ) )
2715, 26syl5eq 2209 . . . 4  |-  ( ph  ->  sup ( { z  e.  RR  |  -u z  e.  A } ,  RR ,  <  )  =  ( ( w  e.  RR  |->  -u w
) `  sup ( A ,  RR ,  `'  <  ) ) )
28 df-inf 6941 . . . . . . 7  |- inf ( A ,  RR ,  <  )  =  sup ( A ,  RR ,  `'  <  )
2928eqcomi 2168 . . . . . 6  |-  sup ( A ,  RR ,  `'  <  )  = inf ( A ,  RR ,  <  )
3029fveq2i 5483 . . . . 5  |-  ( ( w  e.  RR  |->  -u w ) `  sup ( A ,  RR ,  `'  <  ) )  =  ( ( w  e.  RR  |->  -u w ) ` inf ( A ,  RR ,  <  ) )
31 eqidd 2165 . . . . . 6  |-  ( ph  ->  ( w  e.  RR  |->  -u w )  =  ( w  e.  RR  |->  -u w ) )
32 negeq 8082 . . . . . . 7  |-  ( w  = inf ( A ,  RR ,  <  )  ->  -u w  =  -uinf ( A ,  RR ,  <  ) )
3332adantl 275 . . . . . 6  |-  ( (
ph  /\  w  = inf ( A ,  RR ,  <  ) )  ->  -u w  =  -uinf ( A ,  RR ,  <  ) )
345negcld 8187 . . . . . 6  |-  ( ph  -> 
-uinf ( A ,  RR ,  <  )  e.  CC )
3531, 33, 4, 34fvmptd 5561 . . . . 5  |-  ( ph  ->  ( ( w  e.  RR  |->  -u w ) ` inf ( A ,  RR ,  <  ) )  =  -uinf ( A ,  RR ,  <  ) )
3630, 35syl5eq 2209 . . . 4  |-  ( ph  ->  ( ( w  e.  RR  |->  -u w ) `  sup ( A ,  RR ,  `'  <  ) )  =  -uinf ( A ,  RR ,  <  ) )
3727, 36eqtr2d 2198 . . 3  |-  ( ph  -> 
-uinf ( A ,  RR ,  <  )  =  sup ( { z  e.  RR  |  -u z  e.  A } ,  RR ,  <  )
)
3837negeqd 8084 . 2  |-  ( ph  -> 
-u -uinf ( A ,  RR ,  <  )  = 
-u sup ( { z  e.  RR  |  -u z  e.  A } ,  RR ,  <  )
)
396, 38eqtr3d 2199 1  |-  ( ph  -> inf ( A ,  RR ,  <  )  =  -u sup ( { z  e.  RR  |  -u z  e.  A } ,  RR ,  <  ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1342    e. wcel 2135   A.wral 2442   E.wrex 2443   {crab 2446    C_ wss 3111   class class class wbr 3976    |-> cmpt 4037   `'ccnv 4597   "cima 4601   ` cfv 5182    Isom wiso 5183   supcsup 6938  infcinf 6939   CCcc 7742   RRcr 7743    < clt 7924   -ucneg 8061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-sep 4094  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-cnex 7835  ax-resscn 7836  ax-1cn 7837  ax-1re 7838  ax-icn 7839  ax-addcl 7840  ax-addrcl 7841  ax-mulcl 7842  ax-addcom 7844  ax-addass 7846  ax-distr 7848  ax-i2m1 7849  ax-0id 7852  ax-rnegex 7853  ax-cnre 7855  ax-pre-ltirr 7856  ax-pre-apti 7859  ax-pre-ltadd 7860
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rmo 2450  df-rab 2451  df-v 2723  df-sbc 2947  df-csb 3041  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-br 3977  df-opab 4038  df-mpt 4039  df-id 4265  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-f1 5187  df-fo 5188  df-f1o 5189  df-fv 5190  df-isom 5191  df-riota 5792  df-ov 5839  df-oprab 5840  df-mpo 5841  df-sup 6940  df-inf 6941  df-pnf 7926  df-mnf 7927  df-ltxr 7929  df-sub 8062  df-neg 8063
This theorem is referenced by:  supminfex  9526  minmax  11157  infssuzcldc  11869
  Copyright terms: Public domain W3C validator