ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infrenegsupex Unicode version

Theorem infrenegsupex 9715
Description: The infimum of a set of reals  A is the negative of the supremum of the negatives of its elements. (Contributed by Jim Kingdon, 14-Jan-2022.)
Hypotheses
Ref Expression
infrenegsupex.ex  |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  A  -.  y  <  x  /\  A. y  e.  RR  (
x  <  y  ->  E. z  e.  A  z  <  y ) ) )
infrenegsupex.ss  |-  ( ph  ->  A  C_  RR )
Assertion
Ref Expression
infrenegsupex  |-  ( ph  -> inf ( A ,  RR ,  <  )  =  -u sup ( { z  e.  RR  |  -u z  e.  A } ,  RR ,  <  ) )
Distinct variable groups:    x, A, y, z    ph, x, y, z

Proof of Theorem infrenegsupex
Dummy variables  f  g  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lttri3 8152 . . . . . 6  |-  ( ( f  e.  RR  /\  g  e.  RR )  ->  ( f  =  g  <-> 
( -.  f  < 
g  /\  -.  g  <  f ) ) )
21adantl 277 . . . . 5  |-  ( (
ph  /\  ( f  e.  RR  /\  g  e.  RR ) )  -> 
( f  =  g  <-> 
( -.  f  < 
g  /\  -.  g  <  f ) ) )
3 infrenegsupex.ex . . . . 5  |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  A  -.  y  <  x  /\  A. y  e.  RR  (
x  <  y  ->  E. z  e.  A  z  <  y ) ) )
42, 3infclti 7125 . . . 4  |-  ( ph  -> inf ( A ,  RR ,  <  )  e.  RR )
54recnd 8101 . . 3  |-  ( ph  -> inf ( A ,  RR ,  <  )  e.  CC )
65negnegd 8374 . 2  |-  ( ph  -> 
-u -uinf ( A ,  RR ,  <  )  = inf ( A ,  RR ,  <  ) )
7 negeq 8265 . . . . . . . . 9  |-  ( w  =  z  ->  -u w  =  -u z )
87cbvmptv 4140 . . . . . . . 8  |-  ( w  e.  RR  |->  -u w
)  =  ( z  e.  RR  |->  -u z
)
98mptpreima 5176 . . . . . . 7  |-  ( `' ( w  e.  RR  |->  -u w ) " A
)  =  { z  e.  RR  |  -u z  e.  A }
10 eqid 2205 . . . . . . . . . 10  |-  ( w  e.  RR  |->  -u w
)  =  ( w  e.  RR  |->  -u w
)
1110negiso 9028 . . . . . . . . 9  |-  ( ( w  e.  RR  |->  -u w )  Isom  <  ,  `'  <  ( RR ,  RR )  /\  `' ( w  e.  RR  |->  -u w )  =  ( w  e.  RR  |->  -u w ) )
1211simpri 113 . . . . . . . 8  |-  `' ( w  e.  RR  |->  -u w )  =  ( w  e.  RR  |->  -u w )
1312imaeq1i 5019 . . . . . . 7  |-  ( `' ( w  e.  RR  |->  -u w ) " A
)  =  ( ( w  e.  RR  |->  -u w ) " A
)
149, 13eqtr3i 2228 . . . . . 6  |-  { z  e.  RR  |  -u z  e.  A }  =  ( ( w  e.  RR  |->  -u w
) " A )
1514supeq1i 7090 . . . . 5  |-  sup ( { z  e.  RR  |  -u z  e.  A } ,  RR ,  <  )  =  sup (
( ( w  e.  RR  |->  -u w ) " A ) ,  RR ,  <  )
1611simpli 111 . . . . . . . . 9  |-  ( w  e.  RR  |->  -u w
)  Isom  <  ,  `'  <  ( RR ,  RR )
17 isocnv 5880 . . . . . . . . 9  |-  ( ( w  e.  RR  |->  -u w )  Isom  <  ,  `'  <  ( RR ,  RR )  ->  `' ( w  e.  RR  |->  -u w )  Isom  `'  <  ,  <  ( RR ,  RR ) )
1816, 17ax-mp 5 . . . . . . . 8  |-  `' ( w  e.  RR  |->  -u w )  Isom  `'  <  ,  <  ( RR ,  RR )
19 isoeq1 5870 . . . . . . . . 9  |-  ( `' ( w  e.  RR  |->  -u w )  =  ( w  e.  RR  |->  -u w )  ->  ( `' ( w  e.  RR  |->  -u w )  Isom  `'  <  ,  <  ( RR ,  RR )  <->  ( w  e.  RR  |->  -u w )  Isom  `'  <  ,  <  ( RR ,  RR ) ) )
2012, 19ax-mp 5 . . . . . . . 8  |-  ( `' ( w  e.  RR  |->  -u w )  Isom  `'  <  ,  <  ( RR ,  RR )  <->  ( w  e.  RR  |->  -u w )  Isom  `'  <  ,  <  ( RR ,  RR )
)
2118, 20mpbi 145 . . . . . . 7  |-  ( w  e.  RR  |->  -u w
)  Isom  `'  <  ,  <  ( RR ,  RR )
2221a1i 9 . . . . . 6  |-  ( ph  ->  ( w  e.  RR  |->  -u w )  Isom  `'  <  ,  <  ( RR ,  RR ) )
23 infrenegsupex.ss . . . . . 6  |-  ( ph  ->  A  C_  RR )
243cnvinfex 7120 . . . . . 6  |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  A  -.  x `'  <  y  /\  A. y  e.  RR  ( y `'  <  x  ->  E. z  e.  A  y `'  <  z ) ) )
252cnvti 7121 . . . . . 6  |-  ( (
ph  /\  ( f  e.  RR  /\  g  e.  RR ) )  -> 
( f  =  g  <-> 
( -.  f `'  <  g  /\  -.  g `'  <  f ) ) )
2622, 23, 24, 25supisoti 7112 . . . . 5  |-  ( ph  ->  sup ( ( ( w  e.  RR  |->  -u w ) " A
) ,  RR ,  <  )  =  ( ( w  e.  RR  |->  -u w ) `  sup ( A ,  RR ,  `'  <  ) ) )
2715, 26eqtrid 2250 . . . 4  |-  ( ph  ->  sup ( { z  e.  RR  |  -u z  e.  A } ,  RR ,  <  )  =  ( ( w  e.  RR  |->  -u w
) `  sup ( A ,  RR ,  `'  <  ) ) )
28 df-inf 7087 . . . . . . 7  |- inf ( A ,  RR ,  <  )  =  sup ( A ,  RR ,  `'  <  )
2928eqcomi 2209 . . . . . 6  |-  sup ( A ,  RR ,  `'  <  )  = inf ( A ,  RR ,  <  )
3029fveq2i 5579 . . . . 5  |-  ( ( w  e.  RR  |->  -u w ) `  sup ( A ,  RR ,  `'  <  ) )  =  ( ( w  e.  RR  |->  -u w ) ` inf ( A ,  RR ,  <  ) )
31 eqidd 2206 . . . . . 6  |-  ( ph  ->  ( w  e.  RR  |->  -u w )  =  ( w  e.  RR  |->  -u w ) )
32 negeq 8265 . . . . . . 7  |-  ( w  = inf ( A ,  RR ,  <  )  ->  -u w  =  -uinf ( A ,  RR ,  <  ) )
3332adantl 277 . . . . . 6  |-  ( (
ph  /\  w  = inf ( A ,  RR ,  <  ) )  ->  -u w  =  -uinf ( A ,  RR ,  <  ) )
345negcld 8370 . . . . . 6  |-  ( ph  -> 
-uinf ( A ,  RR ,  <  )  e.  CC )
3531, 33, 4, 34fvmptd 5660 . . . . 5  |-  ( ph  ->  ( ( w  e.  RR  |->  -u w ) ` inf ( A ,  RR ,  <  ) )  =  -uinf ( A ,  RR ,  <  ) )
3630, 35eqtrid 2250 . . . 4  |-  ( ph  ->  ( ( w  e.  RR  |->  -u w ) `  sup ( A ,  RR ,  `'  <  ) )  =  -uinf ( A ,  RR ,  <  ) )
3727, 36eqtr2d 2239 . . 3  |-  ( ph  -> 
-uinf ( A ,  RR ,  <  )  =  sup ( { z  e.  RR  |  -u z  e.  A } ,  RR ,  <  )
)
3837negeqd 8267 . 2  |-  ( ph  -> 
-u -uinf ( A ,  RR ,  <  )  = 
-u sup ( { z  e.  RR  |  -u z  e.  A } ,  RR ,  <  )
)
396, 38eqtr3d 2240 1  |-  ( ph  -> inf ( A ,  RR ,  <  )  =  -u sup ( { z  e.  RR  |  -u z  e.  A } ,  RR ,  <  ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2176   A.wral 2484   E.wrex 2485   {crab 2488    C_ wss 3166   class class class wbr 4044    |-> cmpt 4105   `'ccnv 4674   "cima 4678   ` cfv 5271    Isom wiso 5272   supcsup 7084  infcinf 7085   CCcc 7923   RRcr 7924    < clt 8107   -ucneg 8244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-distr 8029  ax-i2m1 8030  ax-0id 8033  ax-rnegex 8034  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-apti 8040  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-sup 7086  df-inf 7087  df-pnf 8109  df-mnf 8110  df-ltxr 8112  df-sub 8245  df-neg 8246
This theorem is referenced by:  supminfex  9718  infssuzcldc  10378  minmax  11541
  Copyright terms: Public domain W3C validator