| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > xrmaxadd | Unicode version | ||
| Description: Distributing addition over maximum. (Contributed by Jim Kingdon, 11-May-2023.) | 
| Ref | Expression | 
|---|---|
| xrmaxadd | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simpr 110 | 
. . 3
 | |
| 2 | simpl2 1003 | 
. . 3
 | |
| 3 | simpl3 1004 | 
. . 3
 | |
| 4 | xrmaxaddlem 11425 | 
. . 3
 | |
| 5 | 1, 2, 3, 4 | syl3anc 1249 | 
. 2
 | 
| 6 | simpllr 534 | 
. . . . . 6
 | |
| 7 | simpr 110 | 
. . . . . 6
 | |
| 8 | 6, 7 | oveq12d 5940 | 
. . . . 5
 | 
| 9 | simp1 999 | 
. . . . . . . . 9
 | |
| 10 | 9 | ad3antrrr 492 | 
. . . . . . . 8
 | 
| 11 | simp2 1000 | 
. . . . . . . . 9
 | |
| 12 | 11 | ad3antrrr 492 | 
. . . . . . . 8
 | 
| 13 | 10, 12 | xaddcld 9959 | 
. . . . . . 7
 | 
| 14 | simp3 1001 | 
. . . . . . . . 9
 | |
| 15 | 14 | ad3antrrr 492 | 
. . . . . . . 8
 | 
| 16 | 10, 15 | xaddcld 9959 | 
. . . . . . 7
 | 
| 17 | 13, 16 | jca 306 | 
. . . . . 6
 | 
| 18 | simplr 528 | 
. . . . . . . . . . 11
 | |
| 19 | simpr 110 | 
. . . . . . . . . . 11
 | |
| 20 | 18, 19 | oveq12d 5940 | 
. . . . . . . . . 10
 | 
| 21 | pnfaddmnf 9925 | 
. . . . . . . . . 10
 | |
| 22 | 20, 21 | eqtrdi 2245 | 
. . . . . . . . 9
 | 
| 23 | 22 | adantr 276 | 
. . . . . . . 8
 | 
| 24 | 8, 21 | eqtrdi 2245 | 
. . . . . . . 8
 | 
| 25 | 23, 24 | eqtr4d 2232 | 
. . . . . . 7
 | 
| 26 | 16 | xrleidd 9876 | 
. . . . . . 7
 | 
| 27 | 25, 26 | eqbrtrd 4055 | 
. . . . . 6
 | 
| 28 | xrmaxleim 11409 | 
. . . . . 6
 | |
| 29 | 17, 27, 28 | sylc 62 | 
. . . . 5
 | 
| 30 | 12, 15 | jca 306 | 
. . . . . . . 8
 | 
| 31 | simplr 528 | 
. . . . . . . . . 10
 | |
| 32 | 31, 7 | eqtr4d 2232 | 
. . . . . . . . 9
 | 
| 33 | 15 | xrleidd 9876 | 
. . . . . . . . 9
 | 
| 34 | 32, 33 | eqbrtrd 4055 | 
. . . . . . . 8
 | 
| 35 | xrmaxleim 11409 | 
. . . . . . . 8
 | |
| 36 | 30, 34, 35 | sylc 62 | 
. . . . . . 7
 | 
| 37 | 36, 7 | eqtrd 2229 | 
. . . . . 6
 | 
| 38 | 6, 37 | oveq12d 5940 | 
. . . . 5
 | 
| 39 | 8, 29, 38 | 3eqtr4d 2239 | 
. . . 4
 | 
| 40 | simpllr 534 | 
. . . . . . 7
 | |
| 41 | 40 | oveq1d 5937 | 
. . . . . 6
 | 
| 42 | 14 | ad3antrrr 492 | 
. . . . . . 7
 | 
| 43 | xaddpnf2 9922 | 
. . . . . . 7
 | |
| 44 | 42, 43 | sylancom 420 | 
. . . . . 6
 | 
| 45 | 41, 44 | eqtrd 2229 | 
. . . . 5
 | 
| 46 | 9, 11 | xaddcld 9959 | 
. . . . . . . . 9
 | 
| 47 | 46 | ad3antrrr 492 | 
. . . . . . . 8
 | 
| 48 | pnfge 9864 | 
. . . . . . . 8
 | |
| 49 | 47, 48 | syl 14 | 
. . . . . . 7
 | 
| 50 | 49, 45 | breqtrrd 4061 | 
. . . . . 6
 | 
| 51 | 9, 14 | xaddcld 9959 | 
. . . . . . . 8
 | 
| 52 | 51 | ad3antrrr 492 | 
. . . . . . 7
 | 
| 53 | 47, 52, 28 | syl2anc 411 | 
. . . . . 6
 | 
| 54 | 50, 53 | mpd 13 | 
. . . . 5
 | 
| 55 | 40 | oveq1d 5937 | 
. . . . . 6
 | 
| 56 | 11 | ad3antrrr 492 | 
. . . . . . . 8
 | 
| 57 | xrmaxcl 11417 | 
. . . . . . . 8
 | |
| 58 | 56, 42, 57 | syl2anc 411 | 
. . . . . . 7
 | 
| 59 | simpr 110 | 
. . . . . . . . . . 11
 | |
| 60 | nmnfgt 9893 | 
. . . . . . . . . . . 12
 | |
| 61 | 42, 60 | syl 14 | 
. . . . . . . . . . 11
 | 
| 62 | 59, 61 | mpbird 167 | 
. . . . . . . . . 10
 | 
| 63 | 62 | olcd 735 | 
. . . . . . . . 9
 | 
| 64 | mnfxr 8083 | 
. . . . . . . . . . 11
 | |
| 65 | 64 | a1i 9 | 
. . . . . . . . . 10
 | 
| 66 | xrltmaxsup 11422 | 
. . . . . . . . . 10
 | |
| 67 | 56, 42, 65, 66 | syl3anc 1249 | 
. . . . . . . . 9
 | 
| 68 | 63, 67 | mpbird 167 | 
. . . . . . . 8
 | 
| 69 | nmnfgt 9893 | 
. . . . . . . . 9
 | |
| 70 | 58, 69 | syl 14 | 
. . . . . . . 8
 | 
| 71 | 68, 70 | mpbid 147 | 
. . . . . . 7
 | 
| 72 | xaddpnf2 9922 | 
. . . . . . 7
 | |
| 73 | 58, 71, 72 | syl2anc 411 | 
. . . . . 6
 | 
| 74 | 55, 73 | eqtrd 2229 | 
. . . . 5
 | 
| 75 | 45, 54, 74 | 3eqtr4d 2239 | 
. . . 4
 | 
| 76 | xrmnfdc 9918 | 
. . . . . . 7
 | |
| 77 | 76 | 3ad2ant3 1022 | 
. . . . . 6
 | 
| 78 | 77 | ad2antrr 488 | 
. . . . 5
 | 
| 79 | dcne 2378 | 
. . . . 5
 | |
| 80 | 78, 79 | sylib 122 | 
. . . 4
 | 
| 81 | 39, 75, 80 | mpjaodan 799 | 
. . 3
 | 
| 82 | 11 | ad2antrr 488 | 
. . . . . 6
 | 
| 83 | 14 | ad2antrr 488 | 
. . . . . 6
 | 
| 84 | 82, 83, 57 | syl2anc 411 | 
. . . . 5
 | 
| 85 | simpr 110 | 
. . . . . . . . 9
 | |
| 86 | nmnfgt 9893 | 
. . . . . . . . . 10
 | |
| 87 | 82, 86 | syl 14 | 
. . . . . . . . 9
 | 
| 88 | 85, 87 | mpbird 167 | 
. . . . . . . 8
 | 
| 89 | 88 | orcd 734 | 
. . . . . . 7
 | 
| 90 | 64 | a1i 9 | 
. . . . . . . 8
 | 
| 91 | 82, 83, 90, 66 | syl3anc 1249 | 
. . . . . . 7
 | 
| 92 | 89, 91 | mpbird 167 | 
. . . . . 6
 | 
| 93 | 84, 69 | syl 14 | 
. . . . . 6
 | 
| 94 | 92, 93 | mpbid 147 | 
. . . . 5
 | 
| 95 | 84, 94, 72 | syl2anc 411 | 
. . . 4
 | 
| 96 | simplr 528 | 
. . . . 5
 | |
| 97 | 96 | oveq1d 5937 | 
. . . 4
 | 
| 98 | prcom 3698 | 
. . . . . 6
 | |
| 99 | 98 | supeq1i 7054 | 
. . . . 5
 | 
| 100 | 51 | ad2antrr 488 | 
. . . . . . . 8
 | 
| 101 | 46 | ad2antrr 488 | 
. . . . . . . 8
 | 
| 102 | 100, 101 | jca 306 | 
. . . . . . 7
 | 
| 103 | pnfge 9864 | 
. . . . . . . . 9
 | |
| 104 | 100, 103 | syl 14 | 
. . . . . . . 8
 | 
| 105 | 96 | oveq1d 5937 | 
. . . . . . . . 9
 | 
| 106 | xaddpnf2 9922 | 
. . . . . . . . . 10
 | |
| 107 | 82, 106 | sylancom 420 | 
. . . . . . . . 9
 | 
| 108 | 105, 107 | eqtrd 2229 | 
. . . . . . . 8
 | 
| 109 | 104, 108 | breqtrrd 4061 | 
. . . . . . 7
 | 
| 110 | xrmaxleim 11409 | 
. . . . . . 7
 | |
| 111 | 102, 109, 110 | sylc 62 | 
. . . . . 6
 | 
| 112 | 111, 108 | eqtrd 2229 | 
. . . . 5
 | 
| 113 | 99, 112 | eqtrid 2241 | 
. . . 4
 | 
| 114 | 95, 97, 113 | 3eqtr4rd 2240 | 
. . 3
 | 
| 115 | xrmnfdc 9918 | 
. . . . . 6
 | |
| 116 | dcne 2378 | 
. . . . . 6
 | |
| 117 | 115, 116 | sylib 122 | 
. . . . 5
 | 
| 118 | 117 | 3ad2ant2 1021 | 
. . . 4
 | 
| 119 | 118 | adantr 276 | 
. . 3
 | 
| 120 | 81, 114, 119 | mpjaodan 799 | 
. 2
 | 
| 121 | simpllr 534 | 
. . . . . . 7
 | |
| 122 | simpr 110 | 
. . . . . . 7
 | |
| 123 | 121, 122 | oveq12d 5940 | 
. . . . . 6
 | 
| 124 | mnfaddpnf 9926 | 
. . . . . 6
 | |
| 125 | 123, 124 | eqtrdi 2245 | 
. . . . 5
 | 
| 126 | 46 | ad3antrrr 492 | 
. . . . . . 7
 | 
| 127 | 51 | ad3antrrr 492 | 
. . . . . . 7
 | 
| 128 | 126, 127 | jca 306 | 
. . . . . 6
 | 
| 129 | 0le0 9079 | 
. . . . . . . 8
 | |
| 130 | 129 | a1i 9 | 
. . . . . . 7
 | 
| 131 | simplr 528 | 
. . . . . . . . . 10
 | |
| 132 | simpr 110 | 
. . . . . . . . . 10
 | |
| 133 | 131, 132 | oveq12d 5940 | 
. . . . . . . . 9
 | 
| 134 | 133, 124 | eqtrdi 2245 | 
. . . . . . . 8
 | 
| 135 | 134 | adantr 276 | 
. . . . . . 7
 | 
| 136 | 130, 135, 125 | 3brtr4d 4065 | 
. . . . . 6
 | 
| 137 | 128, 136, 28 | sylc 62 | 
. . . . 5
 | 
| 138 | prcom 3698 | 
. . . . . . . . . . 11
 | |
| 139 | 138 | supeq1i 7054 | 
. . . . . . . . . 10
 | 
| 140 | 14 | ad2antrr 488 | 
. . . . . . . . . . . 12
 | 
| 141 | 11 | ad2antrr 488 | 
. . . . . . . . . . . 12
 | 
| 142 | 140, 141 | jca 306 | 
. . . . . . . . . . 11
 | 
| 143 | pnfge 9864 | 
. . . . . . . . . . . . . 14
 | |
| 144 | 143 | 3ad2ant3 1022 | 
. . . . . . . . . . . . 13
 | 
| 145 | 144 | ad2antrr 488 | 
. . . . . . . . . . . 12
 | 
| 146 | 145, 132 | breqtrrd 4061 | 
. . . . . . . . . . 11
 | 
| 147 | xrmaxleim 11409 | 
. . . . . . . . . . 11
 | |
| 148 | 142, 146, 147 | sylc 62 | 
. . . . . . . . . 10
 | 
| 149 | 139, 148 | eqtr3id 2243 | 
. . . . . . . . 9
 | 
| 150 | 149, 132 | eqtrd 2229 | 
. . . . . . . 8
 | 
| 151 | 150 | oveq2d 5938 | 
. . . . . . 7
 | 
| 152 | 131 | oveq1d 5937 | 
. . . . . . . 8
 | 
| 153 | 152, 124 | eqtrdi 2245 | 
. . . . . . 7
 | 
| 154 | 151, 153 | eqtrd 2229 | 
. . . . . 6
 | 
| 155 | 154 | adantr 276 | 
. . . . 5
 | 
| 156 | 125, 137, 155 | 3eqtr4d 2239 | 
. . . 4
 | 
| 157 | 51 | ad3antrrr 492 | 
. . . . . . . . 9
 | 
| 158 | 46 | ad3antrrr 492 | 
. . . . . . . . 9
 | 
| 159 | 157, 158 | jca 306 | 
. . . . . . . 8
 | 
| 160 | 0xr 8073 | 
. . . . . . . . . 10
 | |
| 161 | mnfle 9867 | 
. . . . . . . . . 10
 | |
| 162 | 160, 161 | mp1i 10 | 
. . . . . . . . 9
 | 
| 163 | simpllr 534 | 
. . . . . . . . . . 11
 | |
| 164 | 163 | oveq1d 5937 | 
. . . . . . . . . 10
 | 
| 165 | xaddmnf2 9924 | 
. . . . . . . . . . 11
 | |
| 166 | 140, 165 | sylan 283 | 
. . . . . . . . . 10
 | 
| 167 | 164, 166 | eqtrd 2229 | 
. . . . . . . . 9
 | 
| 168 | 134 | adantr 276 | 
. . . . . . . . 9
 | 
| 169 | 162, 167, 168 | 3brtr4d 4065 | 
. . . . . . . 8
 | 
| 170 | 159, 169, 110 | sylc 62 | 
. . . . . . 7
 | 
| 171 | 170, 168 | eqtrd 2229 | 
. . . . . 6
 | 
| 172 | 99, 171 | eqtrid 2241 | 
. . . . 5
 | 
| 173 | 154 | adantr 276 | 
. . . . 5
 | 
| 174 | 172, 173 | eqtr4d 2232 | 
. . . 4
 | 
| 175 | xrpnfdc 9917 | 
. . . . . . 7
 | |
| 176 | dcne 2378 | 
. . . . . . 7
 | |
| 177 | 175, 176 | sylib 122 | 
. . . . . 6
 | 
| 178 | 177 | 3ad2ant3 1022 | 
. . . . 5
 | 
| 179 | 178 | ad2antrr 488 | 
. . . 4
 | 
| 180 | 156, 174, 179 | mpjaodan 799 | 
. . 3
 | 
| 181 | simpllr 534 | 
. . . . . 6
 | |
| 182 | simpr 110 | 
. . . . . 6
 | |
| 183 | 181, 182 | oveq12d 5940 | 
. . . . 5
 | 
| 184 | 46 | ad2antrr 488 | 
. . . . . . . 8
 | 
| 185 | 51 | ad2antrr 488 | 
. . . . . . . 8
 | 
| 186 | 184, 185 | jca 306 | 
. . . . . . 7
 | 
| 187 | simplr 528 | 
. . . . . . . . . 10
 | |
| 188 | 187 | oveq1d 5937 | 
. . . . . . . . 9
 | 
| 189 | 11 | ad2antrr 488 | 
. . . . . . . . . 10
 | 
| 190 | xaddmnf2 9924 | 
. . . . . . . . . 10
 | |
| 191 | 189, 190 | sylancom 420 | 
. . . . . . . . 9
 | 
| 192 | 188, 191 | eqtrd 2229 | 
. . . . . . . 8
 | 
| 193 | mnfle 9867 | 
. . . . . . . . 9
 | |
| 194 | 185, 193 | syl 14 | 
. . . . . . . 8
 | 
| 195 | 192, 194 | eqbrtrd 4055 | 
. . . . . . 7
 | 
| 196 | 186, 195, 28 | sylc 62 | 
. . . . . 6
 | 
| 197 | 196 | adantr 276 | 
. . . . 5
 | 
| 198 | 189 | adantr 276 | 
. . . . . . . . 9
 | 
| 199 | 14 | ad3antrrr 492 | 
. . . . . . . . 9
 | 
| 200 | 198, 199 | jca 306 | 
. . . . . . . 8
 | 
| 201 | simpr 110 | 
. . . . . . . . . . . 12
 | |
| 202 | npnflt 9890 | 
. . . . . . . . . . . . 13
 | |
| 203 | 189, 202 | syl 14 | 
. . . . . . . . . . . 12
 | 
| 204 | 201, 203 | mpbird 167 | 
. . . . . . . . . . 11
 | 
| 205 | 204 | adantr 276 | 
. . . . . . . . . 10
 | 
| 206 | 205, 182 | breqtrrd 4061 | 
. . . . . . . . 9
 | 
| 207 | 198, 199, 206 | xrltled 9874 | 
. . . . . . . 8
 | 
| 208 | 200, 207, 35 | sylc 62 | 
. . . . . . 7
 | 
| 209 | 208, 182 | eqtrd 2229 | 
. . . . . 6
 | 
| 210 | 181, 209 | oveq12d 5940 | 
. . . . 5
 | 
| 211 | 183, 197, 210 | 3eqtr4d 2239 | 
. . . 4
 | 
| 212 | 189 | adantr 276 | 
. . . . . . 7
 | 
| 213 | 14 | ad3antrrr 492 | 
. . . . . . 7
 | 
| 214 | 212, 213, 57 | syl2anc 411 | 
. . . . . 6
 | 
| 215 | 204 | adantr 276 | 
. . . . . . . . 9
 | 
| 216 | simpr 110 | 
. . . . . . . . . 10
 | |
| 217 | npnflt 9890 | 
. . . . . . . . . . 11
 | |
| 218 | 213, 217 | syl 14 | 
. . . . . . . . . 10
 | 
| 219 | 216, 218 | mpbird 167 | 
. . . . . . . . 9
 | 
| 220 | 215, 219 | jca 306 | 
. . . . . . . 8
 | 
| 221 | pnfxr 8079 | 
. . . . . . . . . 10
 | |
| 222 | 221 | a1i 9 | 
. . . . . . . . 9
 | 
| 223 | xrmaxltsup 11423 | 
. . . . . . . . 9
 | |
| 224 | 212, 213, 222, 223 | syl3anc 1249 | 
. . . . . . . 8
 | 
| 225 | 220, 224 | mpbird 167 | 
. . . . . . 7
 | 
| 226 | npnflt 9890 | 
. . . . . . . 8
 | |
| 227 | 214, 226 | syl 14 | 
. . . . . . 7
 | 
| 228 | 225, 227 | mpbid 147 | 
. . . . . 6
 | 
| 229 | xaddmnf2 9924 | 
. . . . . 6
 | |
| 230 | 214, 228, 229 | syl2anc 411 | 
. . . . 5
 | 
| 231 | simpllr 534 | 
. . . . . 6
 | |
| 232 | 231 | oveq1d 5937 | 
. . . . 5
 | 
| 233 | 196 | adantr 276 | 
. . . . . . 7
 | 
| 234 | 231 | oveq1d 5937 | 
. . . . . . 7
 | 
| 235 | 233, 234 | eqtrd 2229 | 
. . . . . 6
 | 
| 236 | 213, 165 | sylancom 420 | 
. . . . . 6
 | 
| 237 | 235, 236 | eqtrd 2229 | 
. . . . 5
 | 
| 238 | 230, 232, 237 | 3eqtr4rd 2240 | 
. . . 4
 | 
| 239 | 178 | ad2antrr 488 | 
. . . 4
 | 
| 240 | 211, 238, 239 | mpjaodan 799 | 
. . 3
 | 
| 241 | xrpnfdc 9917 | 
. . . . . 6
 | |
| 242 | 241 | 3ad2ant2 1021 | 
. . . . 5
 | 
| 243 | dcne 2378 | 
. . . . 5
 | |
| 244 | 242, 243 | sylib 122 | 
. . . 4
 | 
| 245 | 244 | adantr 276 | 
. . 3
 | 
| 246 | 180, 240, 245 | mpjaodan 799 | 
. 2
 | 
| 247 | elxr 9851 | 
. . . 4
 | |
| 248 | 247 | biimpi 120 | 
. . 3
 | 
| 249 | 248 | 3ad2ant1 1020 | 
. 2
 | 
| 250 | 5, 120, 246, 249 | mpjao3dan 1318 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 ax-arch 7998 ax-caucvg 7999 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-frec 6449 df-sup 7050 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-n0 9250 df-z 9327 df-uz 9602 df-rp 9729 df-xneg 9847 df-xadd 9848 df-seqfrec 10540 df-exp 10631 df-cj 11007 df-re 11008 df-im 11009 df-rsqrt 11163 df-abs 11164 | 
| This theorem is referenced by: xrminadd 11440 | 
| Copyright terms: Public domain | W3C validator |