ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrmaxadd Unicode version

Theorem xrmaxadd 11647
Description: Distributing addition over maximum. (Contributed by Jim Kingdon, 11-May-2023.)
Assertion
Ref Expression
xrmaxadd  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  sup ( { ( A +e B ) ,  ( A +e
C ) } ,  RR* ,  <  )  =  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) )

Proof of Theorem xrmaxadd
StepHypRef Expression
1 simpr 110 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  A  e.  RR )  ->  A  e.  RR )
2 simpl2 1004 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  A  e.  RR )  ->  B  e.  RR* )
3 simpl3 1005 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  A  e.  RR )  ->  C  e.  RR* )
4 xrmaxaddlem 11646 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  ->  sup ( { ( A +e B ) ,  ( A +e
C ) } ,  RR* ,  <  )  =  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) )
51, 2, 3, 4syl3anc 1250 . 2  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  A  e.  RR )  ->  sup ( { ( A +e B ) ,  ( A +e
C ) } ,  RR* ,  <  )  =  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) )
6 simpllr 534 . . . . . 6  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  = +oo )  /\  B  = -oo )  /\  C  = -oo )  ->  A  = +oo )
7 simpr 110 . . . . . 6  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  = +oo )  /\  B  = -oo )  /\  C  = -oo )  ->  C  = -oo )
86, 7oveq12d 5975 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  = +oo )  /\  B  = -oo )  /\  C  = -oo )  ->  ( A +e C )  =  ( +oo +e -oo ) )
9 simp1 1000 . . . . . . . . 9  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  A  e.  RR* )
109ad3antrrr 492 . . . . . . . 8  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  = +oo )  /\  B  = -oo )  /\  C  = -oo )  ->  A  e.  RR* )
11 simp2 1001 . . . . . . . . 9  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  B  e.  RR* )
1211ad3antrrr 492 . . . . . . . 8  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  = +oo )  /\  B  = -oo )  /\  C  = -oo )  ->  B  e.  RR* )
1310, 12xaddcld 10026 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  = +oo )  /\  B  = -oo )  /\  C  = -oo )  ->  ( A +e B )  e.  RR* )
14 simp3 1002 . . . . . . . . 9  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  C  e.  RR* )
1514ad3antrrr 492 . . . . . . . 8  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  = +oo )  /\  B  = -oo )  /\  C  = -oo )  ->  C  e.  RR* )
1610, 15xaddcld 10026 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  = +oo )  /\  B  = -oo )  /\  C  = -oo )  ->  ( A +e C )  e.  RR* )
1713, 16jca 306 . . . . . 6  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  = +oo )  /\  B  = -oo )  /\  C  = -oo )  ->  (
( A +e
B )  e.  RR*  /\  ( A +e
C )  e.  RR* ) )
18 simplr 528 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  = +oo )  /\  B  = -oo )  ->  A  = +oo )
19 simpr 110 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  = +oo )  /\  B  = -oo )  ->  B  = -oo )
2018, 19oveq12d 5975 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  = +oo )  /\  B  = -oo )  ->  ( A +e B )  =  ( +oo +e -oo ) )
21 pnfaddmnf 9992 . . . . . . . . . 10  |-  ( +oo +e -oo )  =  0
2220, 21eqtrdi 2255 . . . . . . . . 9  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  = +oo )  /\  B  = -oo )  ->  ( A +e B )  =  0 )
2322adantr 276 . . . . . . . 8  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  = +oo )  /\  B  = -oo )  /\  C  = -oo )  ->  ( A +e B )  =  0 )
248, 21eqtrdi 2255 . . . . . . . 8  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  = +oo )  /\  B  = -oo )  /\  C  = -oo )  ->  ( A +e C )  =  0 )
2523, 24eqtr4d 2242 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  = +oo )  /\  B  = -oo )  /\  C  = -oo )  ->  ( A +e B )  =  ( A +e C ) )
2616xrleidd 9943 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  = +oo )  /\  B  = -oo )  /\  C  = -oo )  ->  ( A +e C )  <_  ( A +e C ) )
2725, 26eqbrtrd 4073 . . . . . 6  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  = +oo )  /\  B  = -oo )  /\  C  = -oo )  ->  ( A +e B )  <_  ( A +e C ) )
28 xrmaxleim 11630 . . . . . 6  |-  ( ( ( A +e
B )  e.  RR*  /\  ( A +e
C )  e.  RR* )  ->  ( ( A +e B )  <_  ( A +e C )  ->  sup ( { ( A +e B ) ,  ( A +e C ) } ,  RR* ,  <  )  =  ( A +e C ) ) )
2917, 27, 28sylc 62 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  = +oo )  /\  B  = -oo )  /\  C  = -oo )  ->  sup ( { ( A +e B ) ,  ( A +e
C ) } ,  RR* ,  <  )  =  ( A +e
C ) )
3012, 15jca 306 . . . . . . . 8  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  = +oo )  /\  B  = -oo )  /\  C  = -oo )  ->  ( B  e.  RR*  /\  C  e.  RR* ) )
31 simplr 528 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  = +oo )  /\  B  = -oo )  /\  C  = -oo )  ->  B  = -oo )
3231, 7eqtr4d 2242 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  = +oo )  /\  B  = -oo )  /\  C  = -oo )  ->  B  =  C )
3315xrleidd 9943 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  = +oo )  /\  B  = -oo )  /\  C  = -oo )  ->  C  <_  C )
3432, 33eqbrtrd 4073 . . . . . . . 8  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  = +oo )  /\  B  = -oo )  /\  C  = -oo )  ->  B  <_  C )
35 xrmaxleim 11630 . . . . . . . 8  |-  ( ( B  e.  RR*  /\  C  e.  RR* )  ->  ( B  <_  C  ->  sup ( { B ,  C } ,  RR* ,  <  )  =  C ) )
3630, 34, 35sylc 62 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  = +oo )  /\  B  = -oo )  /\  C  = -oo )  ->  sup ( { B ,  C } ,  RR* ,  <  )  =  C )
3736, 7eqtrd 2239 . . . . . 6  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  = +oo )  /\  B  = -oo )  /\  C  = -oo )  ->  sup ( { B ,  C } ,  RR* ,  <  )  = -oo )
386, 37oveq12d 5975 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  = +oo )  /\  B  = -oo )  /\  C  = -oo )  ->  ( A +e sup ( { B ,  C } ,  RR* ,  <  )
)  =  ( +oo +e -oo )
)
398, 29, 383eqtr4d 2249 . . . 4  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  = +oo )  /\  B  = -oo )  /\  C  = -oo )  ->  sup ( { ( A +e B ) ,  ( A +e
C ) } ,  RR* ,  <  )  =  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) )
40 simpllr 534 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  = +oo )  /\  B  = -oo )  /\  C  =/= -oo )  ->  A  = +oo )
4140oveq1d 5972 . . . . . 6  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  = +oo )  /\  B  = -oo )  /\  C  =/= -oo )  ->  ( A +e C )  =  ( +oo +e C ) )
4214ad3antrrr 492 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  = +oo )  /\  B  = -oo )  /\  C  =/= -oo )  ->  C  e.  RR* )
43 xaddpnf2 9989 . . . . . . 7  |-  ( ( C  e.  RR*  /\  C  =/= -oo )  ->  ( +oo +e C )  = +oo )
4442, 43sylancom 420 . . . . . 6  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  = +oo )  /\  B  = -oo )  /\  C  =/= -oo )  ->  ( +oo +e C )  = +oo )
4541, 44eqtrd 2239 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  = +oo )  /\  B  = -oo )  /\  C  =/= -oo )  ->  ( A +e C )  = +oo )
469, 11xaddcld 10026 . . . . . . . . 9  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  ( A +e B )  e.  RR* )
4746ad3antrrr 492 . . . . . . . 8  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  = +oo )  /\  B  = -oo )  /\  C  =/= -oo )  ->  ( A +e B )  e.  RR* )
48 pnfge 9931 . . . . . . . 8  |-  ( ( A +e B )  e.  RR*  ->  ( A +e B )  <_ +oo )
4947, 48syl 14 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  = +oo )  /\  B  = -oo )  /\  C  =/= -oo )  ->  ( A +e B )  <_ +oo )
5049, 45breqtrrd 4079 . . . . . 6  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  = +oo )  /\  B  = -oo )  /\  C  =/= -oo )  ->  ( A +e B )  <_  ( A +e C ) )
519, 14xaddcld 10026 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  ( A +e C )  e.  RR* )
5251ad3antrrr 492 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  = +oo )  /\  B  = -oo )  /\  C  =/= -oo )  ->  ( A +e C )  e.  RR* )
5347, 52, 28syl2anc 411 . . . . . 6  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  = +oo )  /\  B  = -oo )  /\  C  =/= -oo )  ->  (
( A +e
B )  <_  ( A +e C )  ->  sup ( { ( A +e B ) ,  ( A +e C ) } ,  RR* ,  <  )  =  ( A +e C ) ) )
5450, 53mpd 13 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  = +oo )  /\  B  = -oo )  /\  C  =/= -oo )  ->  sup ( { ( A +e B ) ,  ( A +e
C ) } ,  RR* ,  <  )  =  ( A +e
C ) )
5540oveq1d 5972 . . . . . 6  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  = +oo )  /\  B  = -oo )  /\  C  =/= -oo )  ->  ( A +e sup ( { B ,  C } ,  RR* ,  <  )
)  =  ( +oo +e sup ( { B ,  C } ,  RR* ,  <  )
) )
5611ad3antrrr 492 . . . . . . . 8  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  = +oo )  /\  B  = -oo )  /\  C  =/= -oo )  ->  B  e.  RR* )
57 xrmaxcl 11638 . . . . . . . 8  |-  ( ( B  e.  RR*  /\  C  e.  RR* )  ->  sup ( { B ,  C } ,  RR* ,  <  )  e.  RR* )
5856, 42, 57syl2anc 411 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  = +oo )  /\  B  = -oo )  /\  C  =/= -oo )  ->  sup ( { B ,  C } ,  RR* ,  <  )  e.  RR* )
59 simpr 110 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  = +oo )  /\  B  = -oo )  /\  C  =/= -oo )  ->  C  =/= -oo )
60 nmnfgt 9960 . . . . . . . . . . . 12  |-  ( C  e.  RR*  ->  ( -oo  <  C  <->  C  =/= -oo )
)
6142, 60syl 14 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  = +oo )  /\  B  = -oo )  /\  C  =/= -oo )  ->  ( -oo  <  C  <->  C  =/= -oo ) )
6259, 61mpbird 167 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  = +oo )  /\  B  = -oo )  /\  C  =/= -oo )  -> -oo  <  C )
6362olcd 736 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  = +oo )  /\  B  = -oo )  /\  C  =/= -oo )  ->  ( -oo  <  B  \/ -oo  <  C ) )
64 mnfxr 8149 . . . . . . . . . . 11  |- -oo  e.  RR*
6564a1i 9 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  = +oo )  /\  B  = -oo )  /\  C  =/= -oo )  -> -oo  e.  RR* )
66 xrltmaxsup 11643 . . . . . . . . . 10  |-  ( ( B  e.  RR*  /\  C  e.  RR*  /\ -oo  e.  RR* )  ->  ( -oo  <  sup ( { B ,  C } ,  RR* ,  <  )  <->  ( -oo  <  B  \/ -oo  <  C ) ) )
6756, 42, 65, 66syl3anc 1250 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  = +oo )  /\  B  = -oo )  /\  C  =/= -oo )  ->  ( -oo  <  sup ( { B ,  C } ,  RR* ,  <  )  <->  ( -oo  <  B  \/ -oo  <  C ) ) )
6863, 67mpbird 167 . . . . . . . 8  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  = +oo )  /\  B  = -oo )  /\  C  =/= -oo )  -> -oo  <  sup ( { B ,  C } ,  RR* ,  <  ) )
69 nmnfgt 9960 . . . . . . . . 9  |-  ( sup ( { B ,  C } ,  RR* ,  <  )  e.  RR*  ->  ( -oo  <  sup ( { B ,  C } ,  RR* ,  <  )  <->  sup ( { B ,  C } ,  RR* ,  <  )  =/= -oo ) )
7058, 69syl 14 . . . . . . . 8  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  = +oo )  /\  B  = -oo )  /\  C  =/= -oo )  ->  ( -oo  <  sup ( { B ,  C } ,  RR* ,  <  )  <->  sup ( { B ,  C } ,  RR* ,  <  )  =/= -oo ) )
7168, 70mpbid 147 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  = +oo )  /\  B  = -oo )  /\  C  =/= -oo )  ->  sup ( { B ,  C } ,  RR* ,  <  )  =/= -oo )
72 xaddpnf2 9989 . . . . . . 7  |-  ( ( sup ( { B ,  C } ,  RR* ,  <  )  e.  RR*  /\ 
sup ( { B ,  C } ,  RR* ,  <  )  =/= -oo )  ->  ( +oo +e sup ( { B ,  C } ,  RR* ,  <  ) )  = +oo )
7358, 71, 72syl2anc 411 . . . . . 6  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  = +oo )  /\  B  = -oo )  /\  C  =/= -oo )  ->  ( +oo +e sup ( { B ,  C } ,  RR* ,  <  )
)  = +oo )
7455, 73eqtrd 2239 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  = +oo )  /\  B  = -oo )  /\  C  =/= -oo )  ->  ( A +e sup ( { B ,  C } ,  RR* ,  <  )
)  = +oo )
7545, 54, 743eqtr4d 2249 . . . 4  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  = +oo )  /\  B  = -oo )  /\  C  =/= -oo )  ->  sup ( { ( A +e B ) ,  ( A +e
C ) } ,  RR* ,  <  )  =  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) )
76 xrmnfdc 9985 . . . . . . 7  |-  ( C  e.  RR*  -> DECID  C  = -oo )
77763ad2ant3 1023 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  -> DECID  C  = -oo )
7877ad2antrr 488 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  = +oo )  /\  B  = -oo )  -> DECID 
C  = -oo )
79 dcne 2388 . . . . 5  |-  (DECID  C  = -oo  <->  ( C  = -oo  \/  C  =/= -oo ) )
8078, 79sylib 122 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  = +oo )  /\  B  = -oo )  ->  ( C  = -oo  \/  C  =/= -oo ) )
8139, 75, 80mpjaodan 800 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  = +oo )  /\  B  = -oo )  ->  sup ( { ( A +e B ) ,  ( A +e C ) } ,  RR* ,  <  )  =  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) )
8211ad2antrr 488 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  = +oo )  /\  B  =/= -oo )  ->  B  e.  RR* )
8314ad2antrr 488 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  = +oo )  /\  B  =/= -oo )  ->  C  e.  RR* )
8482, 83, 57syl2anc 411 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  = +oo )  /\  B  =/= -oo )  ->  sup ( { B ,  C } ,  RR* ,  <  )  e.  RR* )
85 simpr 110 . . . . . . . . 9  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  = +oo )  /\  B  =/= -oo )  ->  B  =/= -oo )
86 nmnfgt 9960 . . . . . . . . . 10  |-  ( B  e.  RR*  ->  ( -oo  <  B  <->  B  =/= -oo )
)
8782, 86syl 14 . . . . . . . . 9  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  = +oo )  /\  B  =/= -oo )  ->  ( -oo  <  B  <-> 
B  =/= -oo )
)
8885, 87mpbird 167 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  = +oo )  /\  B  =/= -oo )  -> -oo  <  B )
8988orcd 735 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  = +oo )  /\  B  =/= -oo )  ->  ( -oo  <  B  \/ -oo  <  C
) )
9064a1i 9 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  = +oo )  /\  B  =/= -oo )  -> -oo  e.  RR* )
9182, 83, 90, 66syl3anc 1250 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  = +oo )  /\  B  =/= -oo )  ->  ( -oo  <  sup ( { B ,  C } ,  RR* ,  <  )  <-> 
( -oo  <  B  \/ -oo 
<  C ) ) )
9289, 91mpbird 167 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  = +oo )  /\  B  =/= -oo )  -> -oo  <  sup ( { B ,  C } ,  RR* ,  <  )
)
9384, 69syl 14 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  = +oo )  /\  B  =/= -oo )  ->  ( -oo  <  sup ( { B ,  C } ,  RR* ,  <  )  <->  sup ( { B ,  C } ,  RR* ,  <  )  =/= -oo ) )
9492, 93mpbid 147 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  = +oo )  /\  B  =/= -oo )  ->  sup ( { B ,  C } ,  RR* ,  <  )  =/= -oo )
9584, 94, 72syl2anc 411 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  = +oo )  /\  B  =/= -oo )  ->  ( +oo +e sup ( { B ,  C } ,  RR* ,  <  ) )  = +oo )
96 simplr 528 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  = +oo )  /\  B  =/= -oo )  ->  A  = +oo )
9796oveq1d 5972 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  = +oo )  /\  B  =/= -oo )  ->  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) )  =  ( +oo +e sup ( { B ,  C } ,  RR* ,  <  ) ) )
98 prcom 3714 . . . . . 6  |-  { ( A +e B ) ,  ( A +e C ) }  =  { ( A +e C ) ,  ( A +e B ) }
9998supeq1i 7105 . . . . 5  |-  sup ( { ( A +e B ) ,  ( A +e
C ) } ,  RR* ,  <  )  =  sup ( { ( A +e C ) ,  ( A +e B ) } ,  RR* ,  <  )
10051ad2antrr 488 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  = +oo )  /\  B  =/= -oo )  ->  ( A +e C )  e. 
RR* )
10146ad2antrr 488 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  = +oo )  /\  B  =/= -oo )  ->  ( A +e B )  e. 
RR* )
102100, 101jca 306 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  = +oo )  /\  B  =/= -oo )  ->  ( ( A +e C )  e.  RR*  /\  ( A +e B )  e.  RR* ) )
103 pnfge 9931 . . . . . . . . 9  |-  ( ( A +e C )  e.  RR*  ->  ( A +e C )  <_ +oo )
104100, 103syl 14 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  = +oo )  /\  B  =/= -oo )  ->  ( A +e C )  <_ +oo )
10596oveq1d 5972 . . . . . . . . 9  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  = +oo )  /\  B  =/= -oo )  ->  ( A +e B )  =  ( +oo +e
B ) )
106 xaddpnf2 9989 . . . . . . . . . 10  |-  ( ( B  e.  RR*  /\  B  =/= -oo )  ->  ( +oo +e B )  = +oo )
10782, 106sylancom 420 . . . . . . . . 9  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  = +oo )  /\  B  =/= -oo )  ->  ( +oo +e B )  = +oo )
108105, 107eqtrd 2239 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  = +oo )  /\  B  =/= -oo )  ->  ( A +e B )  = +oo )
109104, 108breqtrrd 4079 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  = +oo )  /\  B  =/= -oo )  ->  ( A +e C )  <_ 
( A +e
B ) )
110 xrmaxleim 11630 . . . . . . 7  |-  ( ( ( A +e
C )  e.  RR*  /\  ( A +e
B )  e.  RR* )  ->  ( ( A +e C )  <_  ( A +e B )  ->  sup ( { ( A +e C ) ,  ( A +e B ) } ,  RR* ,  <  )  =  ( A +e B ) ) )
111102, 109, 110sylc 62 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  = +oo )  /\  B  =/= -oo )  ->  sup ( { ( A +e C ) ,  ( A +e B ) } ,  RR* ,  <  )  =  ( A +e B ) )
112111, 108eqtrd 2239 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  = +oo )  /\  B  =/= -oo )  ->  sup ( { ( A +e C ) ,  ( A +e B ) } ,  RR* ,  <  )  = +oo )
11399, 112eqtrid 2251 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  = +oo )  /\  B  =/= -oo )  ->  sup ( { ( A +e B ) ,  ( A +e C ) } ,  RR* ,  <  )  = +oo )
11495, 97, 1133eqtr4rd 2250 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  = +oo )  /\  B  =/= -oo )  ->  sup ( { ( A +e B ) ,  ( A +e C ) } ,  RR* ,  <  )  =  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) )
115 xrmnfdc 9985 . . . . . 6  |-  ( B  e.  RR*  -> DECID  B  = -oo )
116 dcne 2388 . . . . . 6  |-  (DECID  B  = -oo  <->  ( B  = -oo  \/  B  =/= -oo ) )
117115, 116sylib 122 . . . . 5  |-  ( B  e.  RR*  ->  ( B  = -oo  \/  B  =/= -oo ) )
1181173ad2ant2 1022 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  ( B  = -oo  \/  B  =/= -oo ) )
119118adantr 276 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  A  = +oo )  ->  ( B  = -oo  \/  B  =/= -oo ) )
12081, 114, 119mpjaodan 800 . 2  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  A  = +oo )  ->  sup ( { ( A +e B ) ,  ( A +e
C ) } ,  RR* ,  <  )  =  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) )
121 simpllr 534 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  = -oo )  /\  B  = +oo )  /\  C  = +oo )  ->  A  = -oo )
122 simpr 110 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  = -oo )  /\  B  = +oo )  /\  C  = +oo )  ->  C  = +oo )
123121, 122oveq12d 5975 . . . . . 6  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  = -oo )  /\  B  = +oo )  /\  C  = +oo )  ->  ( A +e C )  =  ( -oo +e +oo ) )
124 mnfaddpnf 9993 . . . . . 6  |-  ( -oo +e +oo )  =  0
125123, 124eqtrdi 2255 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  = -oo )  /\  B  = +oo )  /\  C  = +oo )  ->  ( A +e C )  =  0 )
12646ad3antrrr 492 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  = -oo )  /\  B  = +oo )  /\  C  = +oo )  ->  ( A +e B )  e.  RR* )
12751ad3antrrr 492 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  = -oo )  /\  B  = +oo )  /\  C  = +oo )  ->  ( A +e C )  e.  RR* )
128126, 127jca 306 . . . . . 6  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  = -oo )  /\  B  = +oo )  /\  C  = +oo )  ->  (
( A +e
B )  e.  RR*  /\  ( A +e
C )  e.  RR* ) )
129 0le0 9145 . . . . . . . 8  |-  0  <_  0
130129a1i 9 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  = -oo )  /\  B  = +oo )  /\  C  = +oo )  ->  0  <_  0 )
131 simplr 528 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  = -oo )  /\  B  = +oo )  ->  A  = -oo )
132 simpr 110 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  = -oo )  /\  B  = +oo )  ->  B  = +oo )
133131, 132oveq12d 5975 . . . . . . . . 9  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  = -oo )  /\  B  = +oo )  ->  ( A +e B )  =  ( -oo +e +oo ) )
134133, 124eqtrdi 2255 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  = -oo )  /\  B  = +oo )  ->  ( A +e B )  =  0 )
135134adantr 276 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  = -oo )  /\  B  = +oo )  /\  C  = +oo )  ->  ( A +e B )  =  0 )
136130, 135, 1253brtr4d 4083 . . . . . 6  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  = -oo )  /\  B  = +oo )  /\  C  = +oo )  ->  ( A +e B )  <_  ( A +e C ) )
137128, 136, 28sylc 62 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  = -oo )  /\  B  = +oo )  /\  C  = +oo )  ->  sup ( { ( A +e B ) ,  ( A +e
C ) } ,  RR* ,  <  )  =  ( A +e
C ) )
138 prcom 3714 . . . . . . . . . . 11  |-  { C ,  B }  =  { B ,  C }
139138supeq1i 7105 . . . . . . . . . 10  |-  sup ( { C ,  B } ,  RR* ,  <  )  =  sup ( { B ,  C } ,  RR* ,  <  )
14014ad2antrr 488 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  = -oo )  /\  B  = +oo )  ->  C  e.  RR* )
14111ad2antrr 488 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  = -oo )  /\  B  = +oo )  ->  B  e.  RR* )
142140, 141jca 306 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  = -oo )  /\  B  = +oo )  ->  ( C  e. 
RR*  /\  B  e.  RR* ) )
143 pnfge 9931 . . . . . . . . . . . . . 14  |-  ( C  e.  RR*  ->  C  <_ +oo )
1441433ad2ant3 1023 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  C  <_ +oo )
145144ad2antrr 488 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  = -oo )  /\  B  = +oo )  ->  C  <_ +oo )
146145, 132breqtrrd 4079 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  = -oo )  /\  B  = +oo )  ->  C  <_  B
)
147 xrmaxleim 11630 . . . . . . . . . . 11  |-  ( ( C  e.  RR*  /\  B  e.  RR* )  ->  ( C  <_  B  ->  sup ( { C ,  B } ,  RR* ,  <  )  =  B ) )
148142, 146, 147sylc 62 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  = -oo )  /\  B  = +oo )  ->  sup ( { C ,  B } ,  RR* ,  <  )  =  B )
149139, 148eqtr3id 2253 . . . . . . . . 9  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  = -oo )  /\  B  = +oo )  ->  sup ( { B ,  C } ,  RR* ,  <  )  =  B )
150149, 132eqtrd 2239 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  = -oo )  /\  B  = +oo )  ->  sup ( { B ,  C } ,  RR* ,  <  )  = +oo )
151150oveq2d 5973 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  = -oo )  /\  B  = +oo )  ->  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) )  =  ( A +e +oo ) )
152131oveq1d 5972 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  = -oo )  /\  B  = +oo )  ->  ( A +e +oo )  =  ( -oo +e +oo ) )
153152, 124eqtrdi 2255 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  = -oo )  /\  B  = +oo )  ->  ( A +e +oo )  =  0 )
154151, 153eqtrd 2239 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  = -oo )  /\  B  = +oo )  ->  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) )  =  0 )
155154adantr 276 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  = -oo )  /\  B  = +oo )  /\  C  = +oo )  ->  ( A +e sup ( { B ,  C } ,  RR* ,  <  )
)  =  0 )
156125, 137, 1553eqtr4d 2249 . . . 4  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  = -oo )  /\  B  = +oo )  /\  C  = +oo )  ->  sup ( { ( A +e B ) ,  ( A +e
C ) } ,  RR* ,  <  )  =  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) )
15751ad3antrrr 492 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  = -oo )  /\  B  = +oo )  /\  C  =/= +oo )  ->  ( A +e C )  e.  RR* )
15846ad3antrrr 492 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  = -oo )  /\  B  = +oo )  /\  C  =/= +oo )  ->  ( A +e B )  e.  RR* )
159157, 158jca 306 . . . . . . . 8  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  = -oo )  /\  B  = +oo )  /\  C  =/= +oo )  ->  (
( A +e
C )  e.  RR*  /\  ( A +e
B )  e.  RR* ) )
160 0xr 8139 . . . . . . . . . 10  |-  0  e.  RR*
161 mnfle 9934 . . . . . . . . . 10  |-  ( 0  e.  RR*  -> -oo  <_  0 )
162160, 161mp1i 10 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  = -oo )  /\  B  = +oo )  /\  C  =/= +oo )  -> -oo  <_  0 )
163 simpllr 534 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  = -oo )  /\  B  = +oo )  /\  C  =/= +oo )  ->  A  = -oo )
164163oveq1d 5972 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  = -oo )  /\  B  = +oo )  /\  C  =/= +oo )  ->  ( A +e C )  =  ( -oo +e C ) )
165 xaddmnf2 9991 . . . . . . . . . . 11  |-  ( ( C  e.  RR*  /\  C  =/= +oo )  ->  ( -oo +e C )  = -oo )
166140, 165sylan 283 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  = -oo )  /\  B  = +oo )  /\  C  =/= +oo )  ->  ( -oo +e C )  = -oo )
167164, 166eqtrd 2239 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  = -oo )  /\  B  = +oo )  /\  C  =/= +oo )  ->  ( A +e C )  = -oo )
168134adantr 276 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  = -oo )  /\  B  = +oo )  /\  C  =/= +oo )  ->  ( A +e B )  =  0 )
169162, 167, 1683brtr4d 4083 . . . . . . . 8  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  = -oo )  /\  B  = +oo )  /\  C  =/= +oo )  ->  ( A +e C )  <_  ( A +e B ) )
170159, 169, 110sylc 62 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  = -oo )  /\  B  = +oo )  /\  C  =/= +oo )  ->  sup ( { ( A +e C ) ,  ( A +e
B ) } ,  RR* ,  <  )  =  ( A +e
B ) )
171170, 168eqtrd 2239 . . . . . 6  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  = -oo )  /\  B  = +oo )  /\  C  =/= +oo )  ->  sup ( { ( A +e C ) ,  ( A +e
B ) } ,  RR* ,  <  )  =  0 )
17299, 171eqtrid 2251 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  = -oo )  /\  B  = +oo )  /\  C  =/= +oo )  ->  sup ( { ( A +e B ) ,  ( A +e
C ) } ,  RR* ,  <  )  =  0 )
173154adantr 276 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  = -oo )  /\  B  = +oo )  /\  C  =/= +oo )  ->  ( A +e sup ( { B ,  C } ,  RR* ,  <  )
)  =  0 )
174172, 173eqtr4d 2242 . . . 4  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  = -oo )  /\  B  = +oo )  /\  C  =/= +oo )  ->  sup ( { ( A +e B ) ,  ( A +e
C ) } ,  RR* ,  <  )  =  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) )
175 xrpnfdc 9984 . . . . . . 7  |-  ( C  e.  RR*  -> DECID  C  = +oo )
176 dcne 2388 . . . . . . 7  |-  (DECID  C  = +oo  <->  ( C  = +oo  \/  C  =/= +oo ) )
177175, 176sylib 122 . . . . . 6  |-  ( C  e.  RR*  ->  ( C  = +oo  \/  C  =/= +oo ) )
1781773ad2ant3 1023 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  ( C  = +oo  \/  C  =/= +oo ) )
179178ad2antrr 488 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  = -oo )  /\  B  = +oo )  ->  ( C  = +oo  \/  C  =/= +oo ) )
180156, 174, 179mpjaodan 800 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  = -oo )  /\  B  = +oo )  ->  sup ( { ( A +e B ) ,  ( A +e C ) } ,  RR* ,  <  )  =  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) )
181 simpllr 534 . . . . . 6  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  = -oo )  /\  B  =/= +oo )  /\  C  = +oo )  ->  A  = -oo )
182 simpr 110 . . . . . 6  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  = -oo )  /\  B  =/= +oo )  /\  C  = +oo )  ->  C  = +oo )
183181, 182oveq12d 5975 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  = -oo )  /\  B  =/= +oo )  /\  C  = +oo )  ->  ( A +e C )  =  ( -oo +e +oo ) )
18446ad2antrr 488 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  = -oo )  /\  B  =/= +oo )  ->  ( A +e B )  e. 
RR* )
18551ad2antrr 488 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  = -oo )  /\  B  =/= +oo )  ->  ( A +e C )  e. 
RR* )
186184, 185jca 306 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  = -oo )  /\  B  =/= +oo )  ->  ( ( A +e B )  e.  RR*  /\  ( A +e C )  e.  RR* ) )
187 simplr 528 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  = -oo )  /\  B  =/= +oo )  ->  A  = -oo )
188187oveq1d 5972 . . . . . . . . 9  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  = -oo )  /\  B  =/= +oo )  ->  ( A +e B )  =  ( -oo +e
B ) )
18911ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  = -oo )  /\  B  =/= +oo )  ->  B  e.  RR* )
190 xaddmnf2 9991 . . . . . . . . . 10  |-  ( ( B  e.  RR*  /\  B  =/= +oo )  ->  ( -oo +e B )  = -oo )
191189, 190sylancom 420 . . . . . . . . 9  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  = -oo )  /\  B  =/= +oo )  ->  ( -oo +e B )  = -oo )
192188, 191eqtrd 2239 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  = -oo )  /\  B  =/= +oo )  ->  ( A +e B )  = -oo )
193 mnfle 9934 . . . . . . . . 9  |-  ( ( A +e C )  e.  RR*  -> -oo 
<_  ( A +e
C ) )
194185, 193syl 14 . . . . . . . 8  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  = -oo )  /\  B  =/= +oo )  -> -oo  <_  ( A +e C ) )
195192, 194eqbrtrd 4073 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  = -oo )  /\  B  =/= +oo )  ->  ( A +e B )  <_ 
( A +e
C ) )
196186, 195, 28sylc 62 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  = -oo )  /\  B  =/= +oo )  ->  sup ( { ( A +e B ) ,  ( A +e C ) } ,  RR* ,  <  )  =  ( A +e C ) )
197196adantr 276 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  = -oo )  /\  B  =/= +oo )  /\  C  = +oo )  ->  sup ( { ( A +e B ) ,  ( A +e
C ) } ,  RR* ,  <  )  =  ( A +e
C ) )
198189adantr 276 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  = -oo )  /\  B  =/= +oo )  /\  C  = +oo )  ->  B  e.  RR* )
19914ad3antrrr 492 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  = -oo )  /\  B  =/= +oo )  /\  C  = +oo )  ->  C  e.  RR* )
200198, 199jca 306 . . . . . . . 8  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  = -oo )  /\  B  =/= +oo )  /\  C  = +oo )  ->  ( B  e.  RR*  /\  C  e.  RR* ) )
201 simpr 110 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  = -oo )  /\  B  =/= +oo )  ->  B  =/= +oo )
202 npnflt 9957 . . . . . . . . . . . . 13  |-  ( B  e.  RR*  ->  ( B  < +oo  <->  B  =/= +oo )
)
203189, 202syl 14 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  = -oo )  /\  B  =/= +oo )  ->  ( B  < +oo 
<->  B  =/= +oo )
)
204201, 203mpbird 167 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  = -oo )  /\  B  =/= +oo )  ->  B  < +oo )
205204adantr 276 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  = -oo )  /\  B  =/= +oo )  /\  C  = +oo )  ->  B  < +oo )
206205, 182breqtrrd 4079 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  = -oo )  /\  B  =/= +oo )  /\  C  = +oo )  ->  B  <  C )
207198, 199, 206xrltled 9941 . . . . . . . 8  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  = -oo )  /\  B  =/= +oo )  /\  C  = +oo )  ->  B  <_  C )
208200, 207, 35sylc 62 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  = -oo )  /\  B  =/= +oo )  /\  C  = +oo )  ->  sup ( { B ,  C } ,  RR* ,  <  )  =  C )
209208, 182eqtrd 2239 . . . . . 6  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  = -oo )  /\  B  =/= +oo )  /\  C  = +oo )  ->  sup ( { B ,  C } ,  RR* ,  <  )  = +oo )
210181, 209oveq12d 5975 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  = -oo )  /\  B  =/= +oo )  /\  C  = +oo )  ->  ( A +e sup ( { B ,  C } ,  RR* ,  <  )
)  =  ( -oo +e +oo )
)
211183, 197, 2103eqtr4d 2249 . . . 4  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  = -oo )  /\  B  =/= +oo )  /\  C  = +oo )  ->  sup ( { ( A +e B ) ,  ( A +e
C ) } ,  RR* ,  <  )  =  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) )
212189adantr 276 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  = -oo )  /\  B  =/= +oo )  /\  C  =/= +oo )  ->  B  e.  RR* )
21314ad3antrrr 492 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  = -oo )  /\  B  =/= +oo )  /\  C  =/= +oo )  ->  C  e.  RR* )
214212, 213, 57syl2anc 411 . . . . . 6  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  = -oo )  /\  B  =/= +oo )  /\  C  =/= +oo )  ->  sup ( { B ,  C } ,  RR* ,  <  )  e.  RR* )
215204adantr 276 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  = -oo )  /\  B  =/= +oo )  /\  C  =/= +oo )  ->  B  < +oo )
216 simpr 110 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  = -oo )  /\  B  =/= +oo )  /\  C  =/= +oo )  ->  C  =/= +oo )
217 npnflt 9957 . . . . . . . . . . 11  |-  ( C  e.  RR*  ->  ( C  < +oo  <->  C  =/= +oo )
)
218213, 217syl 14 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  = -oo )  /\  B  =/= +oo )  /\  C  =/= +oo )  ->  ( C  < +oo  <->  C  =/= +oo )
)
219216, 218mpbird 167 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  = -oo )  /\  B  =/= +oo )  /\  C  =/= +oo )  ->  C  < +oo )
220215, 219jca 306 . . . . . . . 8  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  = -oo )  /\  B  =/= +oo )  /\  C  =/= +oo )  ->  ( B  < +oo  /\  C  < +oo ) )
221 pnfxr 8145 . . . . . . . . . 10  |- +oo  e.  RR*
222221a1i 9 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  = -oo )  /\  B  =/= +oo )  /\  C  =/= +oo )  -> +oo  e.  RR* )
223 xrmaxltsup 11644 . . . . . . . . 9  |-  ( ( B  e.  RR*  /\  C  e.  RR*  /\ +oo  e.  RR* )  ->  ( sup ( { B ,  C } ,  RR* ,  <  )  < +oo  <->  ( B  < +oo  /\  C  < +oo ) ) )
224212, 213, 222, 223syl3anc 1250 . . . . . . . 8  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  = -oo )  /\  B  =/= +oo )  /\  C  =/= +oo )  ->  ( sup ( { B ,  C } ,  RR* ,  <  )  < +oo  <->  ( B  < +oo  /\  C  < +oo ) ) )
225220, 224mpbird 167 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  = -oo )  /\  B  =/= +oo )  /\  C  =/= +oo )  ->  sup ( { B ,  C } ,  RR* ,  <  )  < +oo )
226 npnflt 9957 . . . . . . . 8  |-  ( sup ( { B ,  C } ,  RR* ,  <  )  e.  RR*  ->  ( sup ( { B ,  C } ,  RR* ,  <  )  < +oo  <->  sup ( { B ,  C } ,  RR* ,  <  )  =/= +oo ) )
227214, 226syl 14 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  = -oo )  /\  B  =/= +oo )  /\  C  =/= +oo )  ->  ( sup ( { B ,  C } ,  RR* ,  <  )  < +oo  <->  sup ( { B ,  C } ,  RR* ,  <  )  =/= +oo ) )
228225, 227mpbid 147 . . . . . 6  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  = -oo )  /\  B  =/= +oo )  /\  C  =/= +oo )  ->  sup ( { B ,  C } ,  RR* ,  <  )  =/= +oo )
229 xaddmnf2 9991 . . . . . 6  |-  ( ( sup ( { B ,  C } ,  RR* ,  <  )  e.  RR*  /\ 
sup ( { B ,  C } ,  RR* ,  <  )  =/= +oo )  ->  ( -oo +e sup ( { B ,  C } ,  RR* ,  <  ) )  = -oo )
230214, 228, 229syl2anc 411 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  = -oo )  /\  B  =/= +oo )  /\  C  =/= +oo )  ->  ( -oo +e sup ( { B ,  C } ,  RR* ,  <  )
)  = -oo )
231 simpllr 534 . . . . . 6  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  = -oo )  /\  B  =/= +oo )  /\  C  =/= +oo )  ->  A  = -oo )
232231oveq1d 5972 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  = -oo )  /\  B  =/= +oo )  /\  C  =/= +oo )  ->  ( A +e sup ( { B ,  C } ,  RR* ,  <  )
)  =  ( -oo +e sup ( { B ,  C } ,  RR* ,  <  )
) )
233196adantr 276 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  = -oo )  /\  B  =/= +oo )  /\  C  =/= +oo )  ->  sup ( { ( A +e B ) ,  ( A +e
C ) } ,  RR* ,  <  )  =  ( A +e
C ) )
234231oveq1d 5972 . . . . . . 7  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  = -oo )  /\  B  =/= +oo )  /\  C  =/= +oo )  ->  ( A +e C )  =  ( -oo +e C ) )
235233, 234eqtrd 2239 . . . . . 6  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  = -oo )  /\  B  =/= +oo )  /\  C  =/= +oo )  ->  sup ( { ( A +e B ) ,  ( A +e
C ) } ,  RR* ,  <  )  =  ( -oo +e
C ) )
236213, 165sylancom 420 . . . . . 6  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  = -oo )  /\  B  =/= +oo )  /\  C  =/= +oo )  ->  ( -oo +e C )  = -oo )
237235, 236eqtrd 2239 . . . . 5  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  = -oo )  /\  B  =/= +oo )  /\  C  =/= +oo )  ->  sup ( { ( A +e B ) ,  ( A +e
C ) } ,  RR* ,  <  )  = -oo )
238230, 232, 2373eqtr4rd 2250 . . . 4  |-  ( ( ( ( ( A  e.  RR*  /\  B  e. 
RR*  /\  C  e.  RR* )  /\  A  = -oo )  /\  B  =/= +oo )  /\  C  =/= +oo )  ->  sup ( { ( A +e B ) ,  ( A +e
C ) } ,  RR* ,  <  )  =  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) )
239178ad2antrr 488 . . . 4  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  = -oo )  /\  B  =/= +oo )  ->  ( C  = +oo  \/  C  =/= +oo ) )
240211, 238, 239mpjaodan 800 . . 3  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  A  = -oo )  /\  B  =/= +oo )  ->  sup ( { ( A +e B ) ,  ( A +e C ) } ,  RR* ,  <  )  =  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) )
241 xrpnfdc 9984 . . . . . 6  |-  ( B  e.  RR*  -> DECID  B  = +oo )
2422413ad2ant2 1022 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  -> DECID  B  = +oo )
243 dcne 2388 . . . . 5  |-  (DECID  B  = +oo  <->  ( B  = +oo  \/  B  =/= +oo ) )
244242, 243sylib 122 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  ( B  = +oo  \/  B  =/= +oo ) )
245244adantr 276 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  A  = -oo )  ->  ( B  = +oo  \/  B  =/= +oo ) )
246180, 240, 245mpjaodan 800 . 2  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  A  = -oo )  ->  sup ( { ( A +e B ) ,  ( A +e
C ) } ,  RR* ,  <  )  =  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) )
247 elxr 9918 . . . 4  |-  ( A  e.  RR*  <->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
248247biimpi 120 . . 3  |-  ( A  e.  RR*  ->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
2492483ad2ant1 1021 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
2505, 120, 246, 249mpjao3dan 1320 1  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  sup ( { ( A +e B ) ,  ( A +e
C ) } ,  RR* ,  <  )  =  ( A +e sup ( { B ,  C } ,  RR* ,  <  ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710  DECID wdc 836    \/ w3o 980    /\ w3a 981    = wceq 1373    e. wcel 2177    =/= wne 2377   {cpr 3639   class class class wbr 4051  (class class class)co 5957   supcsup 7099   RRcr 7944   0cc0 7945   +oocpnf 8124   -oocmnf 8125   RR*cxr 8126    < clt 8127    <_ cle 8128   +ecxad 9912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-iinf 4644  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-mulrcl 8044  ax-addcom 8045  ax-mulcom 8046  ax-addass 8047  ax-mulass 8048  ax-distr 8049  ax-i2m1 8050  ax-0lt1 8051  ax-1rid 8052  ax-0id 8053  ax-rnegex 8054  ax-precex 8055  ax-cnre 8056  ax-pre-ltirr 8057  ax-pre-ltwlin 8058  ax-pre-lttrn 8059  ax-pre-apti 8060  ax-pre-ltadd 8061  ax-pre-mulgt0 8062  ax-pre-mulext 8063  ax-arch 8064  ax-caucvg 8065
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-tr 4151  df-id 4348  df-po 4351  df-iso 4352  df-iord 4421  df-on 4423  df-ilim 4424  df-suc 4426  df-iom 4647  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240  df-recs 6404  df-frec 6490  df-sup 7101  df-pnf 8129  df-mnf 8130  df-xr 8131  df-ltxr 8132  df-le 8133  df-sub 8265  df-neg 8266  df-reap 8668  df-ap 8675  df-div 8766  df-inn 9057  df-2 9115  df-3 9116  df-4 9117  df-n0 9316  df-z 9393  df-uz 9669  df-rp 9796  df-xneg 9914  df-xadd 9915  df-seqfrec 10615  df-exp 10706  df-cj 11228  df-re 11229  df-im 11230  df-rsqrt 11384  df-abs 11385
This theorem is referenced by:  xrminadd  11661
  Copyright terms: Public domain W3C validator