| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xrmaxadd | Unicode version | ||
| Description: Distributing addition over maximum. (Contributed by Jim Kingdon, 11-May-2023.) |
| Ref | Expression |
|---|---|
| xrmaxadd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 |
. . 3
| |
| 2 | simpl2 1003 |
. . 3
| |
| 3 | simpl3 1004 |
. . 3
| |
| 4 | xrmaxaddlem 11490 |
. . 3
| |
| 5 | 1, 2, 3, 4 | syl3anc 1249 |
. 2
|
| 6 | simpllr 534 |
. . . . . 6
| |
| 7 | simpr 110 |
. . . . . 6
| |
| 8 | 6, 7 | oveq12d 5952 |
. . . . 5
|
| 9 | simp1 999 |
. . . . . . . . 9
| |
| 10 | 9 | ad3antrrr 492 |
. . . . . . . 8
|
| 11 | simp2 1000 |
. . . . . . . . 9
| |
| 12 | 11 | ad3antrrr 492 |
. . . . . . . 8
|
| 13 | 10, 12 | xaddcld 9988 |
. . . . . . 7
|
| 14 | simp3 1001 |
. . . . . . . . 9
| |
| 15 | 14 | ad3antrrr 492 |
. . . . . . . 8
|
| 16 | 10, 15 | xaddcld 9988 |
. . . . . . 7
|
| 17 | 13, 16 | jca 306 |
. . . . . 6
|
| 18 | simplr 528 |
. . . . . . . . . . 11
| |
| 19 | simpr 110 |
. . . . . . . . . . 11
| |
| 20 | 18, 19 | oveq12d 5952 |
. . . . . . . . . 10
|
| 21 | pnfaddmnf 9954 |
. . . . . . . . . 10
| |
| 22 | 20, 21 | eqtrdi 2253 |
. . . . . . . . 9
|
| 23 | 22 | adantr 276 |
. . . . . . . 8
|
| 24 | 8, 21 | eqtrdi 2253 |
. . . . . . . 8
|
| 25 | 23, 24 | eqtr4d 2240 |
. . . . . . 7
|
| 26 | 16 | xrleidd 9905 |
. . . . . . 7
|
| 27 | 25, 26 | eqbrtrd 4065 |
. . . . . 6
|
| 28 | xrmaxleim 11474 |
. . . . . 6
| |
| 29 | 17, 27, 28 | sylc 62 |
. . . . 5
|
| 30 | 12, 15 | jca 306 |
. . . . . . . 8
|
| 31 | simplr 528 |
. . . . . . . . . 10
| |
| 32 | 31, 7 | eqtr4d 2240 |
. . . . . . . . 9
|
| 33 | 15 | xrleidd 9905 |
. . . . . . . . 9
|
| 34 | 32, 33 | eqbrtrd 4065 |
. . . . . . . 8
|
| 35 | xrmaxleim 11474 |
. . . . . . . 8
| |
| 36 | 30, 34, 35 | sylc 62 |
. . . . . . 7
|
| 37 | 36, 7 | eqtrd 2237 |
. . . . . 6
|
| 38 | 6, 37 | oveq12d 5952 |
. . . . 5
|
| 39 | 8, 29, 38 | 3eqtr4d 2247 |
. . . 4
|
| 40 | simpllr 534 |
. . . . . . 7
| |
| 41 | 40 | oveq1d 5949 |
. . . . . 6
|
| 42 | 14 | ad3antrrr 492 |
. . . . . . 7
|
| 43 | xaddpnf2 9951 |
. . . . . . 7
| |
| 44 | 42, 43 | sylancom 420 |
. . . . . 6
|
| 45 | 41, 44 | eqtrd 2237 |
. . . . 5
|
| 46 | 9, 11 | xaddcld 9988 |
. . . . . . . . 9
|
| 47 | 46 | ad3antrrr 492 |
. . . . . . . 8
|
| 48 | pnfge 9893 |
. . . . . . . 8
| |
| 49 | 47, 48 | syl 14 |
. . . . . . 7
|
| 50 | 49, 45 | breqtrrd 4071 |
. . . . . 6
|
| 51 | 9, 14 | xaddcld 9988 |
. . . . . . . 8
|
| 52 | 51 | ad3antrrr 492 |
. . . . . . 7
|
| 53 | 47, 52, 28 | syl2anc 411 |
. . . . . 6
|
| 54 | 50, 53 | mpd 13 |
. . . . 5
|
| 55 | 40 | oveq1d 5949 |
. . . . . 6
|
| 56 | 11 | ad3antrrr 492 |
. . . . . . . 8
|
| 57 | xrmaxcl 11482 |
. . . . . . . 8
| |
| 58 | 56, 42, 57 | syl2anc 411 |
. . . . . . 7
|
| 59 | simpr 110 |
. . . . . . . . . . 11
| |
| 60 | nmnfgt 9922 |
. . . . . . . . . . . 12
| |
| 61 | 42, 60 | syl 14 |
. . . . . . . . . . 11
|
| 62 | 59, 61 | mpbird 167 |
. . . . . . . . . 10
|
| 63 | 62 | olcd 735 |
. . . . . . . . 9
|
| 64 | mnfxr 8111 |
. . . . . . . . . . 11
| |
| 65 | 64 | a1i 9 |
. . . . . . . . . 10
|
| 66 | xrltmaxsup 11487 |
. . . . . . . . . 10
| |
| 67 | 56, 42, 65, 66 | syl3anc 1249 |
. . . . . . . . 9
|
| 68 | 63, 67 | mpbird 167 |
. . . . . . . 8
|
| 69 | nmnfgt 9922 |
. . . . . . . . 9
| |
| 70 | 58, 69 | syl 14 |
. . . . . . . 8
|
| 71 | 68, 70 | mpbid 147 |
. . . . . . 7
|
| 72 | xaddpnf2 9951 |
. . . . . . 7
| |
| 73 | 58, 71, 72 | syl2anc 411 |
. . . . . 6
|
| 74 | 55, 73 | eqtrd 2237 |
. . . . 5
|
| 75 | 45, 54, 74 | 3eqtr4d 2247 |
. . . 4
|
| 76 | xrmnfdc 9947 |
. . . . . . 7
| |
| 77 | 76 | 3ad2ant3 1022 |
. . . . . 6
|
| 78 | 77 | ad2antrr 488 |
. . . . 5
|
| 79 | dcne 2386 |
. . . . 5
| |
| 80 | 78, 79 | sylib 122 |
. . . 4
|
| 81 | 39, 75, 80 | mpjaodan 799 |
. . 3
|
| 82 | 11 | ad2antrr 488 |
. . . . . 6
|
| 83 | 14 | ad2antrr 488 |
. . . . . 6
|
| 84 | 82, 83, 57 | syl2anc 411 |
. . . . 5
|
| 85 | simpr 110 |
. . . . . . . . 9
| |
| 86 | nmnfgt 9922 |
. . . . . . . . . 10
| |
| 87 | 82, 86 | syl 14 |
. . . . . . . . 9
|
| 88 | 85, 87 | mpbird 167 |
. . . . . . . 8
|
| 89 | 88 | orcd 734 |
. . . . . . 7
|
| 90 | 64 | a1i 9 |
. . . . . . . 8
|
| 91 | 82, 83, 90, 66 | syl3anc 1249 |
. . . . . . 7
|
| 92 | 89, 91 | mpbird 167 |
. . . . . 6
|
| 93 | 84, 69 | syl 14 |
. . . . . 6
|
| 94 | 92, 93 | mpbid 147 |
. . . . 5
|
| 95 | 84, 94, 72 | syl2anc 411 |
. . . 4
|
| 96 | simplr 528 |
. . . . 5
| |
| 97 | 96 | oveq1d 5949 |
. . . 4
|
| 98 | prcom 3708 |
. . . . . 6
| |
| 99 | 98 | supeq1i 7072 |
. . . . 5
|
| 100 | 51 | ad2antrr 488 |
. . . . . . . 8
|
| 101 | 46 | ad2antrr 488 |
. . . . . . . 8
|
| 102 | 100, 101 | jca 306 |
. . . . . . 7
|
| 103 | pnfge 9893 |
. . . . . . . . 9
| |
| 104 | 100, 103 | syl 14 |
. . . . . . . 8
|
| 105 | 96 | oveq1d 5949 |
. . . . . . . . 9
|
| 106 | xaddpnf2 9951 |
. . . . . . . . . 10
| |
| 107 | 82, 106 | sylancom 420 |
. . . . . . . . 9
|
| 108 | 105, 107 | eqtrd 2237 |
. . . . . . . 8
|
| 109 | 104, 108 | breqtrrd 4071 |
. . . . . . 7
|
| 110 | xrmaxleim 11474 |
. . . . . . 7
| |
| 111 | 102, 109, 110 | sylc 62 |
. . . . . 6
|
| 112 | 111, 108 | eqtrd 2237 |
. . . . 5
|
| 113 | 99, 112 | eqtrid 2249 |
. . . 4
|
| 114 | 95, 97, 113 | 3eqtr4rd 2248 |
. . 3
|
| 115 | xrmnfdc 9947 |
. . . . . 6
| |
| 116 | dcne 2386 |
. . . . . 6
| |
| 117 | 115, 116 | sylib 122 |
. . . . 5
|
| 118 | 117 | 3ad2ant2 1021 |
. . . 4
|
| 119 | 118 | adantr 276 |
. . 3
|
| 120 | 81, 114, 119 | mpjaodan 799 |
. 2
|
| 121 | simpllr 534 |
. . . . . . 7
| |
| 122 | simpr 110 |
. . . . . . 7
| |
| 123 | 121, 122 | oveq12d 5952 |
. . . . . 6
|
| 124 | mnfaddpnf 9955 |
. . . . . 6
| |
| 125 | 123, 124 | eqtrdi 2253 |
. . . . 5
|
| 126 | 46 | ad3antrrr 492 |
. . . . . . 7
|
| 127 | 51 | ad3antrrr 492 |
. . . . . . 7
|
| 128 | 126, 127 | jca 306 |
. . . . . 6
|
| 129 | 0le0 9107 |
. . . . . . . 8
| |
| 130 | 129 | a1i 9 |
. . . . . . 7
|
| 131 | simplr 528 |
. . . . . . . . . 10
| |
| 132 | simpr 110 |
. . . . . . . . . 10
| |
| 133 | 131, 132 | oveq12d 5952 |
. . . . . . . . 9
|
| 134 | 133, 124 | eqtrdi 2253 |
. . . . . . . 8
|
| 135 | 134 | adantr 276 |
. . . . . . 7
|
| 136 | 130, 135, 125 | 3brtr4d 4075 |
. . . . . 6
|
| 137 | 128, 136, 28 | sylc 62 |
. . . . 5
|
| 138 | prcom 3708 |
. . . . . . . . . . 11
| |
| 139 | 138 | supeq1i 7072 |
. . . . . . . . . 10
|
| 140 | 14 | ad2antrr 488 |
. . . . . . . . . . . 12
|
| 141 | 11 | ad2antrr 488 |
. . . . . . . . . . . 12
|
| 142 | 140, 141 | jca 306 |
. . . . . . . . . . 11
|
| 143 | pnfge 9893 |
. . . . . . . . . . . . . 14
| |
| 144 | 143 | 3ad2ant3 1022 |
. . . . . . . . . . . . 13
|
| 145 | 144 | ad2antrr 488 |
. . . . . . . . . . . 12
|
| 146 | 145, 132 | breqtrrd 4071 |
. . . . . . . . . . 11
|
| 147 | xrmaxleim 11474 |
. . . . . . . . . . 11
| |
| 148 | 142, 146, 147 | sylc 62 |
. . . . . . . . . 10
|
| 149 | 139, 148 | eqtr3id 2251 |
. . . . . . . . 9
|
| 150 | 149, 132 | eqtrd 2237 |
. . . . . . . 8
|
| 151 | 150 | oveq2d 5950 |
. . . . . . 7
|
| 152 | 131 | oveq1d 5949 |
. . . . . . . 8
|
| 153 | 152, 124 | eqtrdi 2253 |
. . . . . . 7
|
| 154 | 151, 153 | eqtrd 2237 |
. . . . . 6
|
| 155 | 154 | adantr 276 |
. . . . 5
|
| 156 | 125, 137, 155 | 3eqtr4d 2247 |
. . . 4
|
| 157 | 51 | ad3antrrr 492 |
. . . . . . . . 9
|
| 158 | 46 | ad3antrrr 492 |
. . . . . . . . 9
|
| 159 | 157, 158 | jca 306 |
. . . . . . . 8
|
| 160 | 0xr 8101 |
. . . . . . . . . 10
| |
| 161 | mnfle 9896 |
. . . . . . . . . 10
| |
| 162 | 160, 161 | mp1i 10 |
. . . . . . . . 9
|
| 163 | simpllr 534 |
. . . . . . . . . . 11
| |
| 164 | 163 | oveq1d 5949 |
. . . . . . . . . 10
|
| 165 | xaddmnf2 9953 |
. . . . . . . . . . 11
| |
| 166 | 140, 165 | sylan 283 |
. . . . . . . . . 10
|
| 167 | 164, 166 | eqtrd 2237 |
. . . . . . . . 9
|
| 168 | 134 | adantr 276 |
. . . . . . . . 9
|
| 169 | 162, 167, 168 | 3brtr4d 4075 |
. . . . . . . 8
|
| 170 | 159, 169, 110 | sylc 62 |
. . . . . . 7
|
| 171 | 170, 168 | eqtrd 2237 |
. . . . . 6
|
| 172 | 99, 171 | eqtrid 2249 |
. . . . 5
|
| 173 | 154 | adantr 276 |
. . . . 5
|
| 174 | 172, 173 | eqtr4d 2240 |
. . . 4
|
| 175 | xrpnfdc 9946 |
. . . . . . 7
| |
| 176 | dcne 2386 |
. . . . . . 7
| |
| 177 | 175, 176 | sylib 122 |
. . . . . 6
|
| 178 | 177 | 3ad2ant3 1022 |
. . . . 5
|
| 179 | 178 | ad2antrr 488 |
. . . 4
|
| 180 | 156, 174, 179 | mpjaodan 799 |
. . 3
|
| 181 | simpllr 534 |
. . . . . 6
| |
| 182 | simpr 110 |
. . . . . 6
| |
| 183 | 181, 182 | oveq12d 5952 |
. . . . 5
|
| 184 | 46 | ad2antrr 488 |
. . . . . . . 8
|
| 185 | 51 | ad2antrr 488 |
. . . . . . . 8
|
| 186 | 184, 185 | jca 306 |
. . . . . . 7
|
| 187 | simplr 528 |
. . . . . . . . . 10
| |
| 188 | 187 | oveq1d 5949 |
. . . . . . . . 9
|
| 189 | 11 | ad2antrr 488 |
. . . . . . . . . 10
|
| 190 | xaddmnf2 9953 |
. . . . . . . . . 10
| |
| 191 | 189, 190 | sylancom 420 |
. . . . . . . . 9
|
| 192 | 188, 191 | eqtrd 2237 |
. . . . . . . 8
|
| 193 | mnfle 9896 |
. . . . . . . . 9
| |
| 194 | 185, 193 | syl 14 |
. . . . . . . 8
|
| 195 | 192, 194 | eqbrtrd 4065 |
. . . . . . 7
|
| 196 | 186, 195, 28 | sylc 62 |
. . . . . 6
|
| 197 | 196 | adantr 276 |
. . . . 5
|
| 198 | 189 | adantr 276 |
. . . . . . . . 9
|
| 199 | 14 | ad3antrrr 492 |
. . . . . . . . 9
|
| 200 | 198, 199 | jca 306 |
. . . . . . . 8
|
| 201 | simpr 110 |
. . . . . . . . . . . 12
| |
| 202 | npnflt 9919 |
. . . . . . . . . . . . 13
| |
| 203 | 189, 202 | syl 14 |
. . . . . . . . . . . 12
|
| 204 | 201, 203 | mpbird 167 |
. . . . . . . . . . 11
|
| 205 | 204 | adantr 276 |
. . . . . . . . . 10
|
| 206 | 205, 182 | breqtrrd 4071 |
. . . . . . . . 9
|
| 207 | 198, 199, 206 | xrltled 9903 |
. . . . . . . 8
|
| 208 | 200, 207, 35 | sylc 62 |
. . . . . . 7
|
| 209 | 208, 182 | eqtrd 2237 |
. . . . . 6
|
| 210 | 181, 209 | oveq12d 5952 |
. . . . 5
|
| 211 | 183, 197, 210 | 3eqtr4d 2247 |
. . . 4
|
| 212 | 189 | adantr 276 |
. . . . . . 7
|
| 213 | 14 | ad3antrrr 492 |
. . . . . . 7
|
| 214 | 212, 213, 57 | syl2anc 411 |
. . . . . 6
|
| 215 | 204 | adantr 276 |
. . . . . . . . 9
|
| 216 | simpr 110 |
. . . . . . . . . 10
| |
| 217 | npnflt 9919 |
. . . . . . . . . . 11
| |
| 218 | 213, 217 | syl 14 |
. . . . . . . . . 10
|
| 219 | 216, 218 | mpbird 167 |
. . . . . . . . 9
|
| 220 | 215, 219 | jca 306 |
. . . . . . . 8
|
| 221 | pnfxr 8107 |
. . . . . . . . . 10
| |
| 222 | 221 | a1i 9 |
. . . . . . . . 9
|
| 223 | xrmaxltsup 11488 |
. . . . . . . . 9
| |
| 224 | 212, 213, 222, 223 | syl3anc 1249 |
. . . . . . . 8
|
| 225 | 220, 224 | mpbird 167 |
. . . . . . 7
|
| 226 | npnflt 9919 |
. . . . . . . 8
| |
| 227 | 214, 226 | syl 14 |
. . . . . . 7
|
| 228 | 225, 227 | mpbid 147 |
. . . . . 6
|
| 229 | xaddmnf2 9953 |
. . . . . 6
| |
| 230 | 214, 228, 229 | syl2anc 411 |
. . . . 5
|
| 231 | simpllr 534 |
. . . . . 6
| |
| 232 | 231 | oveq1d 5949 |
. . . . 5
|
| 233 | 196 | adantr 276 |
. . . . . . 7
|
| 234 | 231 | oveq1d 5949 |
. . . . . . 7
|
| 235 | 233, 234 | eqtrd 2237 |
. . . . . 6
|
| 236 | 213, 165 | sylancom 420 |
. . . . . 6
|
| 237 | 235, 236 | eqtrd 2237 |
. . . . 5
|
| 238 | 230, 232, 237 | 3eqtr4rd 2248 |
. . . 4
|
| 239 | 178 | ad2antrr 488 |
. . . 4
|
| 240 | 211, 238, 239 | mpjaodan 799 |
. . 3
|
| 241 | xrpnfdc 9946 |
. . . . . 6
| |
| 242 | 241 | 3ad2ant2 1021 |
. . . . 5
|
| 243 | dcne 2386 |
. . . . 5
| |
| 244 | 242, 243 | sylib 122 |
. . . 4
|
| 245 | 244 | adantr 276 |
. . 3
|
| 246 | 180, 240, 245 | mpjaodan 799 |
. 2
|
| 247 | elxr 9880 |
. . . 4
| |
| 248 | 247 | biimpi 120 |
. . 3
|
| 249 | 248 | 3ad2ant1 1020 |
. 2
|
| 250 | 5, 120, 246, 249 | mpjao3dan 1319 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-setind 4583 ax-iinf 4634 ax-cnex 7998 ax-resscn 7999 ax-1cn 8000 ax-1re 8001 ax-icn 8002 ax-addcl 8003 ax-addrcl 8004 ax-mulcl 8005 ax-mulrcl 8006 ax-addcom 8007 ax-mulcom 8008 ax-addass 8009 ax-mulass 8010 ax-distr 8011 ax-i2m1 8012 ax-0lt1 8013 ax-1rid 8014 ax-0id 8015 ax-rnegex 8016 ax-precex 8017 ax-cnre 8018 ax-pre-ltirr 8019 ax-pre-ltwlin 8020 ax-pre-lttrn 8021 ax-pre-apti 8022 ax-pre-ltadd 8023 ax-pre-mulgt0 8024 ax-pre-mulext 8025 ax-arch 8026 ax-caucvg 8027 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-if 3571 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4338 df-po 4341 df-iso 4342 df-iord 4411 df-on 4413 df-ilim 4414 df-suc 4416 df-iom 4637 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-res 4685 df-ima 4686 df-iota 5229 df-fun 5270 df-fn 5271 df-f 5272 df-f1 5273 df-fo 5274 df-f1o 5275 df-fv 5276 df-riota 5889 df-ov 5937 df-oprab 5938 df-mpo 5939 df-1st 6216 df-2nd 6217 df-recs 6381 df-frec 6467 df-sup 7068 df-pnf 8091 df-mnf 8092 df-xr 8093 df-ltxr 8094 df-le 8095 df-sub 8227 df-neg 8228 df-reap 8630 df-ap 8637 df-div 8728 df-inn 9019 df-2 9077 df-3 9078 df-4 9079 df-n0 9278 df-z 9355 df-uz 9631 df-rp 9758 df-xneg 9876 df-xadd 9877 df-seqfrec 10574 df-exp 10665 df-cj 11072 df-re 11073 df-im 11074 df-rsqrt 11228 df-abs 11229 |
| This theorem is referenced by: xrminadd 11505 |
| Copyright terms: Public domain | W3C validator |