| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xrmaxadd | Unicode version | ||
| Description: Distributing addition over maximum. (Contributed by Jim Kingdon, 11-May-2023.) |
| Ref | Expression |
|---|---|
| xrmaxadd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 |
. . 3
| |
| 2 | simpl2 1003 |
. . 3
| |
| 3 | simpl3 1004 |
. . 3
| |
| 4 | xrmaxaddlem 11442 |
. . 3
| |
| 5 | 1, 2, 3, 4 | syl3anc 1249 |
. 2
|
| 6 | simpllr 534 |
. . . . . 6
| |
| 7 | simpr 110 |
. . . . . 6
| |
| 8 | 6, 7 | oveq12d 5943 |
. . . . 5
|
| 9 | simp1 999 |
. . . . . . . . 9
| |
| 10 | 9 | ad3antrrr 492 |
. . . . . . . 8
|
| 11 | simp2 1000 |
. . . . . . . . 9
| |
| 12 | 11 | ad3antrrr 492 |
. . . . . . . 8
|
| 13 | 10, 12 | xaddcld 9976 |
. . . . . . 7
|
| 14 | simp3 1001 |
. . . . . . . . 9
| |
| 15 | 14 | ad3antrrr 492 |
. . . . . . . 8
|
| 16 | 10, 15 | xaddcld 9976 |
. . . . . . 7
|
| 17 | 13, 16 | jca 306 |
. . . . . 6
|
| 18 | simplr 528 |
. . . . . . . . . . 11
| |
| 19 | simpr 110 |
. . . . . . . . . . 11
| |
| 20 | 18, 19 | oveq12d 5943 |
. . . . . . . . . 10
|
| 21 | pnfaddmnf 9942 |
. . . . . . . . . 10
| |
| 22 | 20, 21 | eqtrdi 2245 |
. . . . . . . . 9
|
| 23 | 22 | adantr 276 |
. . . . . . . 8
|
| 24 | 8, 21 | eqtrdi 2245 |
. . . . . . . 8
|
| 25 | 23, 24 | eqtr4d 2232 |
. . . . . . 7
|
| 26 | 16 | xrleidd 9893 |
. . . . . . 7
|
| 27 | 25, 26 | eqbrtrd 4056 |
. . . . . 6
|
| 28 | xrmaxleim 11426 |
. . . . . 6
| |
| 29 | 17, 27, 28 | sylc 62 |
. . . . 5
|
| 30 | 12, 15 | jca 306 |
. . . . . . . 8
|
| 31 | simplr 528 |
. . . . . . . . . 10
| |
| 32 | 31, 7 | eqtr4d 2232 |
. . . . . . . . 9
|
| 33 | 15 | xrleidd 9893 |
. . . . . . . . 9
|
| 34 | 32, 33 | eqbrtrd 4056 |
. . . . . . . 8
|
| 35 | xrmaxleim 11426 |
. . . . . . . 8
| |
| 36 | 30, 34, 35 | sylc 62 |
. . . . . . 7
|
| 37 | 36, 7 | eqtrd 2229 |
. . . . . 6
|
| 38 | 6, 37 | oveq12d 5943 |
. . . . 5
|
| 39 | 8, 29, 38 | 3eqtr4d 2239 |
. . . 4
|
| 40 | simpllr 534 |
. . . . . . 7
| |
| 41 | 40 | oveq1d 5940 |
. . . . . 6
|
| 42 | 14 | ad3antrrr 492 |
. . . . . . 7
|
| 43 | xaddpnf2 9939 |
. . . . . . 7
| |
| 44 | 42, 43 | sylancom 420 |
. . . . . 6
|
| 45 | 41, 44 | eqtrd 2229 |
. . . . 5
|
| 46 | 9, 11 | xaddcld 9976 |
. . . . . . . . 9
|
| 47 | 46 | ad3antrrr 492 |
. . . . . . . 8
|
| 48 | pnfge 9881 |
. . . . . . . 8
| |
| 49 | 47, 48 | syl 14 |
. . . . . . 7
|
| 50 | 49, 45 | breqtrrd 4062 |
. . . . . 6
|
| 51 | 9, 14 | xaddcld 9976 |
. . . . . . . 8
|
| 52 | 51 | ad3antrrr 492 |
. . . . . . 7
|
| 53 | 47, 52, 28 | syl2anc 411 |
. . . . . 6
|
| 54 | 50, 53 | mpd 13 |
. . . . 5
|
| 55 | 40 | oveq1d 5940 |
. . . . . 6
|
| 56 | 11 | ad3antrrr 492 |
. . . . . . . 8
|
| 57 | xrmaxcl 11434 |
. . . . . . . 8
| |
| 58 | 56, 42, 57 | syl2anc 411 |
. . . . . . 7
|
| 59 | simpr 110 |
. . . . . . . . . . 11
| |
| 60 | nmnfgt 9910 |
. . . . . . . . . . . 12
| |
| 61 | 42, 60 | syl 14 |
. . . . . . . . . . 11
|
| 62 | 59, 61 | mpbird 167 |
. . . . . . . . . 10
|
| 63 | 62 | olcd 735 |
. . . . . . . . 9
|
| 64 | mnfxr 8100 |
. . . . . . . . . . 11
| |
| 65 | 64 | a1i 9 |
. . . . . . . . . 10
|
| 66 | xrltmaxsup 11439 |
. . . . . . . . . 10
| |
| 67 | 56, 42, 65, 66 | syl3anc 1249 |
. . . . . . . . 9
|
| 68 | 63, 67 | mpbird 167 |
. . . . . . . 8
|
| 69 | nmnfgt 9910 |
. . . . . . . . 9
| |
| 70 | 58, 69 | syl 14 |
. . . . . . . 8
|
| 71 | 68, 70 | mpbid 147 |
. . . . . . 7
|
| 72 | xaddpnf2 9939 |
. . . . . . 7
| |
| 73 | 58, 71, 72 | syl2anc 411 |
. . . . . 6
|
| 74 | 55, 73 | eqtrd 2229 |
. . . . 5
|
| 75 | 45, 54, 74 | 3eqtr4d 2239 |
. . . 4
|
| 76 | xrmnfdc 9935 |
. . . . . . 7
| |
| 77 | 76 | 3ad2ant3 1022 |
. . . . . 6
|
| 78 | 77 | ad2antrr 488 |
. . . . 5
|
| 79 | dcne 2378 |
. . . . 5
| |
| 80 | 78, 79 | sylib 122 |
. . . 4
|
| 81 | 39, 75, 80 | mpjaodan 799 |
. . 3
|
| 82 | 11 | ad2antrr 488 |
. . . . . 6
|
| 83 | 14 | ad2antrr 488 |
. . . . . 6
|
| 84 | 82, 83, 57 | syl2anc 411 |
. . . . 5
|
| 85 | simpr 110 |
. . . . . . . . 9
| |
| 86 | nmnfgt 9910 |
. . . . . . . . . 10
| |
| 87 | 82, 86 | syl 14 |
. . . . . . . . 9
|
| 88 | 85, 87 | mpbird 167 |
. . . . . . . 8
|
| 89 | 88 | orcd 734 |
. . . . . . 7
|
| 90 | 64 | a1i 9 |
. . . . . . . 8
|
| 91 | 82, 83, 90, 66 | syl3anc 1249 |
. . . . . . 7
|
| 92 | 89, 91 | mpbird 167 |
. . . . . 6
|
| 93 | 84, 69 | syl 14 |
. . . . . 6
|
| 94 | 92, 93 | mpbid 147 |
. . . . 5
|
| 95 | 84, 94, 72 | syl2anc 411 |
. . . 4
|
| 96 | simplr 528 |
. . . . 5
| |
| 97 | 96 | oveq1d 5940 |
. . . 4
|
| 98 | prcom 3699 |
. . . . . 6
| |
| 99 | 98 | supeq1i 7063 |
. . . . 5
|
| 100 | 51 | ad2antrr 488 |
. . . . . . . 8
|
| 101 | 46 | ad2antrr 488 |
. . . . . . . 8
|
| 102 | 100, 101 | jca 306 |
. . . . . . 7
|
| 103 | pnfge 9881 |
. . . . . . . . 9
| |
| 104 | 100, 103 | syl 14 |
. . . . . . . 8
|
| 105 | 96 | oveq1d 5940 |
. . . . . . . . 9
|
| 106 | xaddpnf2 9939 |
. . . . . . . . . 10
| |
| 107 | 82, 106 | sylancom 420 |
. . . . . . . . 9
|
| 108 | 105, 107 | eqtrd 2229 |
. . . . . . . 8
|
| 109 | 104, 108 | breqtrrd 4062 |
. . . . . . 7
|
| 110 | xrmaxleim 11426 |
. . . . . . 7
| |
| 111 | 102, 109, 110 | sylc 62 |
. . . . . 6
|
| 112 | 111, 108 | eqtrd 2229 |
. . . . 5
|
| 113 | 99, 112 | eqtrid 2241 |
. . . 4
|
| 114 | 95, 97, 113 | 3eqtr4rd 2240 |
. . 3
|
| 115 | xrmnfdc 9935 |
. . . . . 6
| |
| 116 | dcne 2378 |
. . . . . 6
| |
| 117 | 115, 116 | sylib 122 |
. . . . 5
|
| 118 | 117 | 3ad2ant2 1021 |
. . . 4
|
| 119 | 118 | adantr 276 |
. . 3
|
| 120 | 81, 114, 119 | mpjaodan 799 |
. 2
|
| 121 | simpllr 534 |
. . . . . . 7
| |
| 122 | simpr 110 |
. . . . . . 7
| |
| 123 | 121, 122 | oveq12d 5943 |
. . . . . 6
|
| 124 | mnfaddpnf 9943 |
. . . . . 6
| |
| 125 | 123, 124 | eqtrdi 2245 |
. . . . 5
|
| 126 | 46 | ad3antrrr 492 |
. . . . . . 7
|
| 127 | 51 | ad3antrrr 492 |
. . . . . . 7
|
| 128 | 126, 127 | jca 306 |
. . . . . 6
|
| 129 | 0le0 9096 |
. . . . . . . 8
| |
| 130 | 129 | a1i 9 |
. . . . . . 7
|
| 131 | simplr 528 |
. . . . . . . . . 10
| |
| 132 | simpr 110 |
. . . . . . . . . 10
| |
| 133 | 131, 132 | oveq12d 5943 |
. . . . . . . . 9
|
| 134 | 133, 124 | eqtrdi 2245 |
. . . . . . . 8
|
| 135 | 134 | adantr 276 |
. . . . . . 7
|
| 136 | 130, 135, 125 | 3brtr4d 4066 |
. . . . . 6
|
| 137 | 128, 136, 28 | sylc 62 |
. . . . 5
|
| 138 | prcom 3699 |
. . . . . . . . . . 11
| |
| 139 | 138 | supeq1i 7063 |
. . . . . . . . . 10
|
| 140 | 14 | ad2antrr 488 |
. . . . . . . . . . . 12
|
| 141 | 11 | ad2antrr 488 |
. . . . . . . . . . . 12
|
| 142 | 140, 141 | jca 306 |
. . . . . . . . . . 11
|
| 143 | pnfge 9881 |
. . . . . . . . . . . . . 14
| |
| 144 | 143 | 3ad2ant3 1022 |
. . . . . . . . . . . . 13
|
| 145 | 144 | ad2antrr 488 |
. . . . . . . . . . . 12
|
| 146 | 145, 132 | breqtrrd 4062 |
. . . . . . . . . . 11
|
| 147 | xrmaxleim 11426 |
. . . . . . . . . . 11
| |
| 148 | 142, 146, 147 | sylc 62 |
. . . . . . . . . 10
|
| 149 | 139, 148 | eqtr3id 2243 |
. . . . . . . . 9
|
| 150 | 149, 132 | eqtrd 2229 |
. . . . . . . 8
|
| 151 | 150 | oveq2d 5941 |
. . . . . . 7
|
| 152 | 131 | oveq1d 5940 |
. . . . . . . 8
|
| 153 | 152, 124 | eqtrdi 2245 |
. . . . . . 7
|
| 154 | 151, 153 | eqtrd 2229 |
. . . . . 6
|
| 155 | 154 | adantr 276 |
. . . . 5
|
| 156 | 125, 137, 155 | 3eqtr4d 2239 |
. . . 4
|
| 157 | 51 | ad3antrrr 492 |
. . . . . . . . 9
|
| 158 | 46 | ad3antrrr 492 |
. . . . . . . . 9
|
| 159 | 157, 158 | jca 306 |
. . . . . . . 8
|
| 160 | 0xr 8090 |
. . . . . . . . . 10
| |
| 161 | mnfle 9884 |
. . . . . . . . . 10
| |
| 162 | 160, 161 | mp1i 10 |
. . . . . . . . 9
|
| 163 | simpllr 534 |
. . . . . . . . . . 11
| |
| 164 | 163 | oveq1d 5940 |
. . . . . . . . . 10
|
| 165 | xaddmnf2 9941 |
. . . . . . . . . . 11
| |
| 166 | 140, 165 | sylan 283 |
. . . . . . . . . 10
|
| 167 | 164, 166 | eqtrd 2229 |
. . . . . . . . 9
|
| 168 | 134 | adantr 276 |
. . . . . . . . 9
|
| 169 | 162, 167, 168 | 3brtr4d 4066 |
. . . . . . . 8
|
| 170 | 159, 169, 110 | sylc 62 |
. . . . . . 7
|
| 171 | 170, 168 | eqtrd 2229 |
. . . . . 6
|
| 172 | 99, 171 | eqtrid 2241 |
. . . . 5
|
| 173 | 154 | adantr 276 |
. . . . 5
|
| 174 | 172, 173 | eqtr4d 2232 |
. . . 4
|
| 175 | xrpnfdc 9934 |
. . . . . . 7
| |
| 176 | dcne 2378 |
. . . . . . 7
| |
| 177 | 175, 176 | sylib 122 |
. . . . . 6
|
| 178 | 177 | 3ad2ant3 1022 |
. . . . 5
|
| 179 | 178 | ad2antrr 488 |
. . . 4
|
| 180 | 156, 174, 179 | mpjaodan 799 |
. . 3
|
| 181 | simpllr 534 |
. . . . . 6
| |
| 182 | simpr 110 |
. . . . . 6
| |
| 183 | 181, 182 | oveq12d 5943 |
. . . . 5
|
| 184 | 46 | ad2antrr 488 |
. . . . . . . 8
|
| 185 | 51 | ad2antrr 488 |
. . . . . . . 8
|
| 186 | 184, 185 | jca 306 |
. . . . . . 7
|
| 187 | simplr 528 |
. . . . . . . . . 10
| |
| 188 | 187 | oveq1d 5940 |
. . . . . . . . 9
|
| 189 | 11 | ad2antrr 488 |
. . . . . . . . . 10
|
| 190 | xaddmnf2 9941 |
. . . . . . . . . 10
| |
| 191 | 189, 190 | sylancom 420 |
. . . . . . . . 9
|
| 192 | 188, 191 | eqtrd 2229 |
. . . . . . . 8
|
| 193 | mnfle 9884 |
. . . . . . . . 9
| |
| 194 | 185, 193 | syl 14 |
. . . . . . . 8
|
| 195 | 192, 194 | eqbrtrd 4056 |
. . . . . . 7
|
| 196 | 186, 195, 28 | sylc 62 |
. . . . . 6
|
| 197 | 196 | adantr 276 |
. . . . 5
|
| 198 | 189 | adantr 276 |
. . . . . . . . 9
|
| 199 | 14 | ad3antrrr 492 |
. . . . . . . . 9
|
| 200 | 198, 199 | jca 306 |
. . . . . . . 8
|
| 201 | simpr 110 |
. . . . . . . . . . . 12
| |
| 202 | npnflt 9907 |
. . . . . . . . . . . . 13
| |
| 203 | 189, 202 | syl 14 |
. . . . . . . . . . . 12
|
| 204 | 201, 203 | mpbird 167 |
. . . . . . . . . . 11
|
| 205 | 204 | adantr 276 |
. . . . . . . . . 10
|
| 206 | 205, 182 | breqtrrd 4062 |
. . . . . . . . 9
|
| 207 | 198, 199, 206 | xrltled 9891 |
. . . . . . . 8
|
| 208 | 200, 207, 35 | sylc 62 |
. . . . . . 7
|
| 209 | 208, 182 | eqtrd 2229 |
. . . . . 6
|
| 210 | 181, 209 | oveq12d 5943 |
. . . . 5
|
| 211 | 183, 197, 210 | 3eqtr4d 2239 |
. . . 4
|
| 212 | 189 | adantr 276 |
. . . . . . 7
|
| 213 | 14 | ad3antrrr 492 |
. . . . . . 7
|
| 214 | 212, 213, 57 | syl2anc 411 |
. . . . . 6
|
| 215 | 204 | adantr 276 |
. . . . . . . . 9
|
| 216 | simpr 110 |
. . . . . . . . . 10
| |
| 217 | npnflt 9907 |
. . . . . . . . . . 11
| |
| 218 | 213, 217 | syl 14 |
. . . . . . . . . 10
|
| 219 | 216, 218 | mpbird 167 |
. . . . . . . . 9
|
| 220 | 215, 219 | jca 306 |
. . . . . . . 8
|
| 221 | pnfxr 8096 |
. . . . . . . . . 10
| |
| 222 | 221 | a1i 9 |
. . . . . . . . 9
|
| 223 | xrmaxltsup 11440 |
. . . . . . . . 9
| |
| 224 | 212, 213, 222, 223 | syl3anc 1249 |
. . . . . . . 8
|
| 225 | 220, 224 | mpbird 167 |
. . . . . . 7
|
| 226 | npnflt 9907 |
. . . . . . . 8
| |
| 227 | 214, 226 | syl 14 |
. . . . . . 7
|
| 228 | 225, 227 | mpbid 147 |
. . . . . 6
|
| 229 | xaddmnf2 9941 |
. . . . . 6
| |
| 230 | 214, 228, 229 | syl2anc 411 |
. . . . 5
|
| 231 | simpllr 534 |
. . . . . 6
| |
| 232 | 231 | oveq1d 5940 |
. . . . 5
|
| 233 | 196 | adantr 276 |
. . . . . . 7
|
| 234 | 231 | oveq1d 5940 |
. . . . . . 7
|
| 235 | 233, 234 | eqtrd 2229 |
. . . . . 6
|
| 236 | 213, 165 | sylancom 420 |
. . . . . 6
|
| 237 | 235, 236 | eqtrd 2229 |
. . . . 5
|
| 238 | 230, 232, 237 | 3eqtr4rd 2240 |
. . . 4
|
| 239 | 178 | ad2antrr 488 |
. . . 4
|
| 240 | 211, 238, 239 | mpjaodan 799 |
. . 3
|
| 241 | xrpnfdc 9934 |
. . . . . 6
| |
| 242 | 241 | 3ad2ant2 1021 |
. . . . 5
|
| 243 | dcne 2378 |
. . . . 5
| |
| 244 | 242, 243 | sylib 122 |
. . . 4
|
| 245 | 244 | adantr 276 |
. . 3
|
| 246 | 180, 240, 245 | mpjaodan 799 |
. 2
|
| 247 | elxr 9868 |
. . . 4
| |
| 248 | 247 | biimpi 120 |
. . 3
|
| 249 | 248 | 3ad2ant1 1020 |
. 2
|
| 250 | 5, 120, 246, 249 | mpjao3dan 1318 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-mulrcl 7995 ax-addcom 7996 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-1rid 8003 ax-0id 8004 ax-rnegex 8005 ax-precex 8006 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 ax-pre-mulgt0 8013 ax-pre-mulext 8014 ax-arch 8015 ax-caucvg 8016 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-po 4332 df-iso 4333 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-recs 6372 df-frec 6458 df-sup 7059 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-reap 8619 df-ap 8626 df-div 8717 df-inn 9008 df-2 9066 df-3 9067 df-4 9068 df-n0 9267 df-z 9344 df-uz 9619 df-rp 9746 df-xneg 9864 df-xadd 9865 df-seqfrec 10557 df-exp 10648 df-cj 11024 df-re 11025 df-im 11026 df-rsqrt 11180 df-abs 11181 |
| This theorem is referenced by: xrminadd 11457 |
| Copyright terms: Public domain | W3C validator |