Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xrmaxadd | Unicode version |
Description: Distributing addition over maximum. (Contributed by Jim Kingdon, 11-May-2023.) |
Ref | Expression |
---|---|
xrmaxadd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 109 | . . 3 | |
2 | simpl2 996 | . . 3 | |
3 | simpl3 997 | . . 3 | |
4 | xrmaxaddlem 11223 | . . 3 | |
5 | 1, 2, 3, 4 | syl3anc 1233 | . 2 |
6 | simpllr 529 | . . . . . 6 | |
7 | simpr 109 | . . . . . 6 | |
8 | 6, 7 | oveq12d 5871 | . . . . 5 |
9 | simp1 992 | . . . . . . . . 9 | |
10 | 9 | ad3antrrr 489 | . . . . . . . 8 |
11 | simp2 993 | . . . . . . . . 9 | |
12 | 11 | ad3antrrr 489 | . . . . . . . 8 |
13 | 10, 12 | xaddcld 9841 | . . . . . . 7 |
14 | simp3 994 | . . . . . . . . 9 | |
15 | 14 | ad3antrrr 489 | . . . . . . . 8 |
16 | 10, 15 | xaddcld 9841 | . . . . . . 7 |
17 | 13, 16 | jca 304 | . . . . . 6 |
18 | simplr 525 | . . . . . . . . . . 11 | |
19 | simpr 109 | . . . . . . . . . . 11 | |
20 | 18, 19 | oveq12d 5871 | . . . . . . . . . 10 |
21 | pnfaddmnf 9807 | . . . . . . . . . 10 | |
22 | 20, 21 | eqtrdi 2219 | . . . . . . . . 9 |
23 | 22 | adantr 274 | . . . . . . . 8 |
24 | 8, 21 | eqtrdi 2219 | . . . . . . . 8 |
25 | 23, 24 | eqtr4d 2206 | . . . . . . 7 |
26 | 16 | xrleidd 9758 | . . . . . . 7 |
27 | 25, 26 | eqbrtrd 4011 | . . . . . 6 |
28 | xrmaxleim 11207 | . . . . . 6 | |
29 | 17, 27, 28 | sylc 62 | . . . . 5 |
30 | 12, 15 | jca 304 | . . . . . . . 8 |
31 | simplr 525 | . . . . . . . . . 10 | |
32 | 31, 7 | eqtr4d 2206 | . . . . . . . . 9 |
33 | 15 | xrleidd 9758 | . . . . . . . . 9 |
34 | 32, 33 | eqbrtrd 4011 | . . . . . . . 8 |
35 | xrmaxleim 11207 | . . . . . . . 8 | |
36 | 30, 34, 35 | sylc 62 | . . . . . . 7 |
37 | 36, 7 | eqtrd 2203 | . . . . . 6 |
38 | 6, 37 | oveq12d 5871 | . . . . 5 |
39 | 8, 29, 38 | 3eqtr4d 2213 | . . . 4 |
40 | simpllr 529 | . . . . . . 7 | |
41 | 40 | oveq1d 5868 | . . . . . 6 |
42 | 14 | ad3antrrr 489 | . . . . . . 7 |
43 | xaddpnf2 9804 | . . . . . . 7 | |
44 | 42, 43 | sylancom 418 | . . . . . 6 |
45 | 41, 44 | eqtrd 2203 | . . . . 5 |
46 | 9, 11 | xaddcld 9841 | . . . . . . . . 9 |
47 | 46 | ad3antrrr 489 | . . . . . . . 8 |
48 | pnfge 9746 | . . . . . . . 8 | |
49 | 47, 48 | syl 14 | . . . . . . 7 |
50 | 49, 45 | breqtrrd 4017 | . . . . . 6 |
51 | 9, 14 | xaddcld 9841 | . . . . . . . 8 |
52 | 51 | ad3antrrr 489 | . . . . . . 7 |
53 | 47, 52, 28 | syl2anc 409 | . . . . . 6 |
54 | 50, 53 | mpd 13 | . . . . 5 |
55 | 40 | oveq1d 5868 | . . . . . 6 |
56 | 11 | ad3antrrr 489 | . . . . . . . 8 |
57 | xrmaxcl 11215 | . . . . . . . 8 | |
58 | 56, 42, 57 | syl2anc 409 | . . . . . . 7 |
59 | simpr 109 | . . . . . . . . . . 11 | |
60 | nmnfgt 9775 | . . . . . . . . . . . 12 | |
61 | 42, 60 | syl 14 | . . . . . . . . . . 11 |
62 | 59, 61 | mpbird 166 | . . . . . . . . . 10 |
63 | 62 | olcd 729 | . . . . . . . . 9 |
64 | mnfxr 7976 | . . . . . . . . . . 11 | |
65 | 64 | a1i 9 | . . . . . . . . . 10 |
66 | xrltmaxsup 11220 | . . . . . . . . . 10 | |
67 | 56, 42, 65, 66 | syl3anc 1233 | . . . . . . . . 9 |
68 | 63, 67 | mpbird 166 | . . . . . . . 8 |
69 | nmnfgt 9775 | . . . . . . . . 9 | |
70 | 58, 69 | syl 14 | . . . . . . . 8 |
71 | 68, 70 | mpbid 146 | . . . . . . 7 |
72 | xaddpnf2 9804 | . . . . . . 7 | |
73 | 58, 71, 72 | syl2anc 409 | . . . . . 6 |
74 | 55, 73 | eqtrd 2203 | . . . . 5 |
75 | 45, 54, 74 | 3eqtr4d 2213 | . . . 4 |
76 | xrmnfdc 9800 | . . . . . . 7 DECID | |
77 | 76 | 3ad2ant3 1015 | . . . . . 6 DECID |
78 | 77 | ad2antrr 485 | . . . . 5 DECID |
79 | dcne 2351 | . . . . 5 DECID | |
80 | 78, 79 | sylib 121 | . . . 4 |
81 | 39, 75, 80 | mpjaodan 793 | . . 3 |
82 | 11 | ad2antrr 485 | . . . . . 6 |
83 | 14 | ad2antrr 485 | . . . . . 6 |
84 | 82, 83, 57 | syl2anc 409 | . . . . 5 |
85 | simpr 109 | . . . . . . . . 9 | |
86 | nmnfgt 9775 | . . . . . . . . . 10 | |
87 | 82, 86 | syl 14 | . . . . . . . . 9 |
88 | 85, 87 | mpbird 166 | . . . . . . . 8 |
89 | 88 | orcd 728 | . . . . . . 7 |
90 | 64 | a1i 9 | . . . . . . . 8 |
91 | 82, 83, 90, 66 | syl3anc 1233 | . . . . . . 7 |
92 | 89, 91 | mpbird 166 | . . . . . 6 |
93 | 84, 69 | syl 14 | . . . . . 6 |
94 | 92, 93 | mpbid 146 | . . . . 5 |
95 | 84, 94, 72 | syl2anc 409 | . . . 4 |
96 | simplr 525 | . . . . 5 | |
97 | 96 | oveq1d 5868 | . . . 4 |
98 | prcom 3659 | . . . . . 6 | |
99 | 98 | supeq1i 6965 | . . . . 5 |
100 | 51 | ad2antrr 485 | . . . . . . . 8 |
101 | 46 | ad2antrr 485 | . . . . . . . 8 |
102 | 100, 101 | jca 304 | . . . . . . 7 |
103 | pnfge 9746 | . . . . . . . . 9 | |
104 | 100, 103 | syl 14 | . . . . . . . 8 |
105 | 96 | oveq1d 5868 | . . . . . . . . 9 |
106 | xaddpnf2 9804 | . . . . . . . . . 10 | |
107 | 82, 106 | sylancom 418 | . . . . . . . . 9 |
108 | 105, 107 | eqtrd 2203 | . . . . . . . 8 |
109 | 104, 108 | breqtrrd 4017 | . . . . . . 7 |
110 | xrmaxleim 11207 | . . . . . . 7 | |
111 | 102, 109, 110 | sylc 62 | . . . . . 6 |
112 | 111, 108 | eqtrd 2203 | . . . . 5 |
113 | 99, 112 | eqtrid 2215 | . . . 4 |
114 | 95, 97, 113 | 3eqtr4rd 2214 | . . 3 |
115 | xrmnfdc 9800 | . . . . . 6 DECID | |
116 | dcne 2351 | . . . . . 6 DECID | |
117 | 115, 116 | sylib 121 | . . . . 5 |
118 | 117 | 3ad2ant2 1014 | . . . 4 |
119 | 118 | adantr 274 | . . 3 |
120 | 81, 114, 119 | mpjaodan 793 | . 2 |
121 | simpllr 529 | . . . . . . 7 | |
122 | simpr 109 | . . . . . . 7 | |
123 | 121, 122 | oveq12d 5871 | . . . . . 6 |
124 | mnfaddpnf 9808 | . . . . . 6 | |
125 | 123, 124 | eqtrdi 2219 | . . . . 5 |
126 | 46 | ad3antrrr 489 | . . . . . . 7 |
127 | 51 | ad3antrrr 489 | . . . . . . 7 |
128 | 126, 127 | jca 304 | . . . . . 6 |
129 | 0le0 8967 | . . . . . . . 8 | |
130 | 129 | a1i 9 | . . . . . . 7 |
131 | simplr 525 | . . . . . . . . . 10 | |
132 | simpr 109 | . . . . . . . . . 10 | |
133 | 131, 132 | oveq12d 5871 | . . . . . . . . 9 |
134 | 133, 124 | eqtrdi 2219 | . . . . . . . 8 |
135 | 134 | adantr 274 | . . . . . . 7 |
136 | 130, 135, 125 | 3brtr4d 4021 | . . . . . 6 |
137 | 128, 136, 28 | sylc 62 | . . . . 5 |
138 | prcom 3659 | . . . . . . . . . . 11 | |
139 | 138 | supeq1i 6965 | . . . . . . . . . 10 |
140 | 14 | ad2antrr 485 | . . . . . . . . . . . 12 |
141 | 11 | ad2antrr 485 | . . . . . . . . . . . 12 |
142 | 140, 141 | jca 304 | . . . . . . . . . . 11 |
143 | pnfge 9746 | . . . . . . . . . . . . . 14 | |
144 | 143 | 3ad2ant3 1015 | . . . . . . . . . . . . 13 |
145 | 144 | ad2antrr 485 | . . . . . . . . . . . 12 |
146 | 145, 132 | breqtrrd 4017 | . . . . . . . . . . 11 |
147 | xrmaxleim 11207 | . . . . . . . . . . 11 | |
148 | 142, 146, 147 | sylc 62 | . . . . . . . . . 10 |
149 | 139, 148 | eqtr3id 2217 | . . . . . . . . 9 |
150 | 149, 132 | eqtrd 2203 | . . . . . . . 8 |
151 | 150 | oveq2d 5869 | . . . . . . 7 |
152 | 131 | oveq1d 5868 | . . . . . . . 8 |
153 | 152, 124 | eqtrdi 2219 | . . . . . . 7 |
154 | 151, 153 | eqtrd 2203 | . . . . . 6 |
155 | 154 | adantr 274 | . . . . 5 |
156 | 125, 137, 155 | 3eqtr4d 2213 | . . . 4 |
157 | 51 | ad3antrrr 489 | . . . . . . . . 9 |
158 | 46 | ad3antrrr 489 | . . . . . . . . 9 |
159 | 157, 158 | jca 304 | . . . . . . . 8 |
160 | 0xr 7966 | . . . . . . . . . 10 | |
161 | mnfle 9749 | . . . . . . . . . 10 | |
162 | 160, 161 | mp1i 10 | . . . . . . . . 9 |
163 | simpllr 529 | . . . . . . . . . . 11 | |
164 | 163 | oveq1d 5868 | . . . . . . . . . 10 |
165 | xaddmnf2 9806 | . . . . . . . . . . 11 | |
166 | 140, 165 | sylan 281 | . . . . . . . . . 10 |
167 | 164, 166 | eqtrd 2203 | . . . . . . . . 9 |
168 | 134 | adantr 274 | . . . . . . . . 9 |
169 | 162, 167, 168 | 3brtr4d 4021 | . . . . . . . 8 |
170 | 159, 169, 110 | sylc 62 | . . . . . . 7 |
171 | 170, 168 | eqtrd 2203 | . . . . . 6 |
172 | 99, 171 | eqtrid 2215 | . . . . 5 |
173 | 154 | adantr 274 | . . . . 5 |
174 | 172, 173 | eqtr4d 2206 | . . . 4 |
175 | xrpnfdc 9799 | . . . . . . 7 DECID | |
176 | dcne 2351 | . . . . . . 7 DECID | |
177 | 175, 176 | sylib 121 | . . . . . 6 |
178 | 177 | 3ad2ant3 1015 | . . . . 5 |
179 | 178 | ad2antrr 485 | . . . 4 |
180 | 156, 174, 179 | mpjaodan 793 | . . 3 |
181 | simpllr 529 | . . . . . 6 | |
182 | simpr 109 | . . . . . 6 | |
183 | 181, 182 | oveq12d 5871 | . . . . 5 |
184 | 46 | ad2antrr 485 | . . . . . . . 8 |
185 | 51 | ad2antrr 485 | . . . . . . . 8 |
186 | 184, 185 | jca 304 | . . . . . . 7 |
187 | simplr 525 | . . . . . . . . . 10 | |
188 | 187 | oveq1d 5868 | . . . . . . . . 9 |
189 | 11 | ad2antrr 485 | . . . . . . . . . 10 |
190 | xaddmnf2 9806 | . . . . . . . . . 10 | |
191 | 189, 190 | sylancom 418 | . . . . . . . . 9 |
192 | 188, 191 | eqtrd 2203 | . . . . . . . 8 |
193 | mnfle 9749 | . . . . . . . . 9 | |
194 | 185, 193 | syl 14 | . . . . . . . 8 |
195 | 192, 194 | eqbrtrd 4011 | . . . . . . 7 |
196 | 186, 195, 28 | sylc 62 | . . . . . 6 |
197 | 196 | adantr 274 | . . . . 5 |
198 | 189 | adantr 274 | . . . . . . . . 9 |
199 | 14 | ad3antrrr 489 | . . . . . . . . 9 |
200 | 198, 199 | jca 304 | . . . . . . . 8 |
201 | simpr 109 | . . . . . . . . . . . 12 | |
202 | npnflt 9772 | . . . . . . . . . . . . 13 | |
203 | 189, 202 | syl 14 | . . . . . . . . . . . 12 |
204 | 201, 203 | mpbird 166 | . . . . . . . . . . 11 |
205 | 204 | adantr 274 | . . . . . . . . . 10 |
206 | 205, 182 | breqtrrd 4017 | . . . . . . . . 9 |
207 | 198, 199, 206 | xrltled 9756 | . . . . . . . 8 |
208 | 200, 207, 35 | sylc 62 | . . . . . . 7 |
209 | 208, 182 | eqtrd 2203 | . . . . . 6 |
210 | 181, 209 | oveq12d 5871 | . . . . 5 |
211 | 183, 197, 210 | 3eqtr4d 2213 | . . . 4 |
212 | 189 | adantr 274 | . . . . . . 7 |
213 | 14 | ad3antrrr 489 | . . . . . . 7 |
214 | 212, 213, 57 | syl2anc 409 | . . . . . 6 |
215 | 204 | adantr 274 | . . . . . . . . 9 |
216 | simpr 109 | . . . . . . . . . 10 | |
217 | npnflt 9772 | . . . . . . . . . . 11 | |
218 | 213, 217 | syl 14 | . . . . . . . . . 10 |
219 | 216, 218 | mpbird 166 | . . . . . . . . 9 |
220 | 215, 219 | jca 304 | . . . . . . . 8 |
221 | pnfxr 7972 | . . . . . . . . . 10 | |
222 | 221 | a1i 9 | . . . . . . . . 9 |
223 | xrmaxltsup 11221 | . . . . . . . . 9 | |
224 | 212, 213, 222, 223 | syl3anc 1233 | . . . . . . . 8 |
225 | 220, 224 | mpbird 166 | . . . . . . 7 |
226 | npnflt 9772 | . . . . . . . 8 | |
227 | 214, 226 | syl 14 | . . . . . . 7 |
228 | 225, 227 | mpbid 146 | . . . . . 6 |
229 | xaddmnf2 9806 | . . . . . 6 | |
230 | 214, 228, 229 | syl2anc 409 | . . . . 5 |
231 | simpllr 529 | . . . . . 6 | |
232 | 231 | oveq1d 5868 | . . . . 5 |
233 | 196 | adantr 274 | . . . . . . 7 |
234 | 231 | oveq1d 5868 | . . . . . . 7 |
235 | 233, 234 | eqtrd 2203 | . . . . . 6 |
236 | 213, 165 | sylancom 418 | . . . . . 6 |
237 | 235, 236 | eqtrd 2203 | . . . . 5 |
238 | 230, 232, 237 | 3eqtr4rd 2214 | . . . 4 |
239 | 178 | ad2antrr 485 | . . . 4 |
240 | 211, 238, 239 | mpjaodan 793 | . . 3 |
241 | xrpnfdc 9799 | . . . . . 6 DECID | |
242 | 241 | 3ad2ant2 1014 | . . . . 5 DECID |
243 | dcne 2351 | . . . . 5 DECID | |
244 | 242, 243 | sylib 121 | . . . 4 |
245 | 244 | adantr 274 | . . 3 |
246 | 180, 240, 245 | mpjaodan 793 | . 2 |
247 | elxr 9733 | . . . 4 | |
248 | 247 | biimpi 119 | . . 3 |
249 | 248 | 3ad2ant1 1013 | . 2 |
250 | 5, 120, 246, 249 | mpjao3dan 1302 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wo 703 DECID wdc 829 w3o 972 w3a 973 wceq 1348 wcel 2141 wne 2340 cpr 3584 class class class wbr 3989 (class class class)co 5853 csup 6959 cr 7773 cc0 7774 cpnf 7951 cmnf 7952 cxr 7953 clt 7954 cle 7955 cxad 9727 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 ax-pre-mulext 7892 ax-arch 7893 ax-caucvg 7894 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-po 4281 df-iso 4282 df-iord 4351 df-on 4353 df-ilim 4354 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-frec 6370 df-sup 6961 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-reap 8494 df-ap 8501 df-div 8590 df-inn 8879 df-2 8937 df-3 8938 df-4 8939 df-n0 9136 df-z 9213 df-uz 9488 df-rp 9611 df-xneg 9729 df-xadd 9730 df-seqfrec 10402 df-exp 10476 df-cj 10806 df-re 10807 df-im 10808 df-rsqrt 10962 df-abs 10963 |
This theorem is referenced by: xrminadd 11238 |
Copyright terms: Public domain | W3C validator |