ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infxrnegsupex Unicode version

Theorem infxrnegsupex 11237
Description: The infimum of a set of extended reals  A is the negative of the supremum of the negatives of its elements. (Contributed by Jim Kingdon, 2-May-2023.)
Hypotheses
Ref Expression
infxrnegsupex.ex  |-  ( ph  ->  E. x  e.  RR*  ( A. y  e.  A  -.  y  <  x  /\  A. y  e.  RR*  (
x  <  y  ->  E. z  e.  A  z  <  y ) ) )
infxrnegsupex.ss  |-  ( ph  ->  A  C_  RR* )
Assertion
Ref Expression
infxrnegsupex  |-  ( ph  -> inf ( A ,  RR* ,  <  )  =  -e sup ( { z  e.  RR*  |  -e
z  e.  A } ,  RR* ,  <  )
)
Distinct variable groups:    x, A, y, z    ph, x, y, z

Proof of Theorem infxrnegsupex
Dummy variables  f  g  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xrlttri3 9766 . . . . 5  |-  ( ( f  e.  RR*  /\  g  e.  RR* )  ->  (
f  =  g  <->  ( -.  f  <  g  /\  -.  g  <  f ) ) )
21adantl 277 . . . 4  |-  ( (
ph  /\  ( f  e.  RR*  /\  g  e. 
RR* ) )  -> 
( f  =  g  <-> 
( -.  f  < 
g  /\  -.  g  <  f ) ) )
3 infxrnegsupex.ex . . . 4  |-  ( ph  ->  E. x  e.  RR*  ( A. y  e.  A  -.  y  <  x  /\  A. y  e.  RR*  (
x  <  y  ->  E. z  e.  A  z  <  y ) ) )
42, 3infclti 7012 . . 3  |-  ( ph  -> inf ( A ,  RR* ,  <  )  e.  RR* )
5 xnegneg 9802 . . 3  |-  (inf ( A ,  RR* ,  <  )  e.  RR*  ->  -e  -einf ( A ,  RR* ,  <  )  = inf ( A ,  RR* ,  <  ) )
64, 5syl 14 . 2  |-  ( ph  -> 
-e  -einf ( A ,  RR* ,  <  )  = inf ( A ,  RR* ,  <  ) )
7 xnegeq 9796 . . . . . . . . 9  |-  ( w  =  z  ->  -e
w  =  -e
z )
87cbvmptv 4094 . . . . . . . 8  |-  ( w  e.  RR*  |->  -e
w )  =  ( z  e.  RR*  |->  -e
z )
98mptpreima 5114 . . . . . . 7  |-  ( `' ( w  e.  RR*  |->  -e w ) " A )  =  {
z  e.  RR*  |  -e z  e.  A }
10 eqid 2175 . . . . . . . . . 10  |-  ( w  e.  RR*  |->  -e
w )  =  ( w  e.  RR*  |->  -e
w )
1110xrnegiso 11236 . . . . . . . . 9  |-  ( ( w  e.  RR*  |->  -e
w )  Isom  <  ,  `'  <  ( RR* ,  RR* )  /\  `' ( w  e.  RR*  |->  -e
w )  =  ( w  e.  RR*  |->  -e
w ) )
1211simpri 113 . . . . . . . 8  |-  `' ( w  e.  RR*  |->  -e
w )  =  ( w  e.  RR*  |->  -e
w )
1312imaeq1i 4960 . . . . . . 7  |-  ( `' ( w  e.  RR*  |->  -e w ) " A )  =  ( ( w  e.  RR*  |->  -e w ) " A )
149, 13eqtr3i 2198 . . . . . 6  |-  { z  e.  RR*  |  -e
z  e.  A }  =  ( ( w  e.  RR*  |->  -e
w ) " A
)
1514supeq1i 6977 . . . . 5  |-  sup ( { z  e.  RR*  | 
-e z  e.  A } ,  RR* ,  <  )  =  sup ( ( ( w  e.  RR*  |->  -e
w ) " A
) ,  RR* ,  <  )
1611simpli 111 . . . . . . . . 9  |-  ( w  e.  RR*  |->  -e
w )  Isom  <  ,  `'  <  ( RR* ,  RR* )
17 isocnv 5802 . . . . . . . . 9  |-  ( ( w  e.  RR*  |->  -e
w )  Isom  <  ,  `'  <  ( RR* ,  RR* )  ->  `' ( w  e.  RR*  |->  -e
w )  Isom  `'  <  ,  <  ( RR* ,  RR* ) )
1816, 17ax-mp 5 . . . . . . . 8  |-  `' ( w  e.  RR*  |->  -e
w )  Isom  `'  <  ,  <  ( RR* ,  RR* )
19 isoeq1 5792 . . . . . . . . 9  |-  ( `' ( w  e.  RR*  |->  -e w )  =  ( w  e.  RR*  |->  -e w )  -> 
( `' ( w  e.  RR*  |->  -e
w )  Isom  `'  <  ,  <  ( RR* ,  RR* ) 
<->  ( w  e.  RR*  |->  -e w )  Isom  `'  <  ,  <  ( RR* ,  RR* ) ) )
2012, 19ax-mp 5 . . . . . . . 8  |-  ( `' ( w  e.  RR*  |->  -e w )  Isom  `'  <  ,  <  ( RR* ,  RR* )  <->  ( w  e.  RR*  |->  -e w ) 
Isom  `'  <  ,  <  (
RR* ,  RR* ) )
2118, 20mpbi 145 . . . . . . 7  |-  ( w  e.  RR*  |->  -e
w )  Isom  `'  <  ,  <  ( RR* ,  RR* )
2221a1i 9 . . . . . 6  |-  ( ph  ->  ( w  e.  RR*  |->  -e w )  Isom  `'  <  ,  <  ( RR* ,  RR* ) )
23 infxrnegsupex.ss . . . . . 6  |-  ( ph  ->  A  C_  RR* )
243cnvinfex 7007 . . . . . 6  |-  ( ph  ->  E. x  e.  RR*  ( A. y  e.  A  -.  x `'  <  y  /\  A. y  e.  RR*  ( y `'  <  x  ->  E. z  e.  A  y `'  <  z ) ) )
252cnvti 7008 . . . . . 6  |-  ( (
ph  /\  ( f  e.  RR*  /\  g  e. 
RR* ) )  -> 
( f  =  g  <-> 
( -.  f `'  <  g  /\  -.  g `'  <  f ) ) )
2622, 23, 24, 25supisoti 6999 . . . . 5  |-  ( ph  ->  sup ( ( ( w  e.  RR*  |->  -e
w ) " A
) ,  RR* ,  <  )  =  ( ( w  e.  RR*  |->  -e
w ) `  sup ( A ,  RR* ,  `'  <  ) ) )
2715, 26eqtrid 2220 . . . 4  |-  ( ph  ->  sup ( { z  e.  RR*  |  -e
z  e.  A } ,  RR* ,  <  )  =  ( ( w  e.  RR*  |->  -e
w ) `  sup ( A ,  RR* ,  `'  <  ) ) )
28 df-inf 6974 . . . . . . 7  |- inf ( A ,  RR* ,  <  )  =  sup ( A ,  RR* ,  `'  <  )
2928eqcomi 2179 . . . . . 6  |-  sup ( A ,  RR* ,  `'  <  )  = inf ( A ,  RR* ,  <  )
3029fveq2i 5510 . . . . 5  |-  ( ( w  e.  RR*  |->  -e
w ) `  sup ( A ,  RR* ,  `'  <  ) )  =  ( ( w  e.  RR*  |->  -e w ) ` inf ( A ,  RR* ,  <  ) )
31 eqidd 2176 . . . . . 6  |-  ( ph  ->  ( w  e.  RR*  |->  -e w )  =  ( w  e.  RR*  |->  -e w ) )
32 xnegeq 9796 . . . . . . 7  |-  ( w  = inf ( A ,  RR* ,  <  )  ->  -e w  =  -einf ( A ,  RR* ,  <  ) )
3332adantl 277 . . . . . 6  |-  ( (
ph  /\  w  = inf ( A ,  RR* ,  <  ) )  ->  -e w  =  -einf ( A ,  RR* ,  <  ) )
344xnegcld 9824 . . . . . 6  |-  ( ph  -> 
-einf ( A ,  RR* ,  <  )  e.  RR* )
3531, 33, 4, 34fvmptd 5589 . . . . 5  |-  ( ph  ->  ( ( w  e. 
RR*  |->  -e w ) `
inf ( A ,  RR* ,  <  ) )  =  -einf ( A ,  RR* ,  <  ) )
3630, 35eqtrid 2220 . . . 4  |-  ( ph  ->  ( ( w  e. 
RR*  |->  -e w ) `
 sup ( A ,  RR* ,  `'  <  ) )  =  -einf ( A ,  RR* ,  <  ) )
3727, 36eqtr2d 2209 . . 3  |-  ( ph  -> 
-einf ( A ,  RR* ,  <  )  =  sup ( { z  e.  RR*  |  -e
z  e.  A } ,  RR* ,  <  )
)
38 xnegeq 9796 . . 3  |-  (  -einf ( A ,  RR* ,  <  )  =  sup ( { z  e.  RR*  | 
-e z  e.  A } ,  RR* ,  <  )  ->  -e  -einf ( A ,  RR* ,  <  )  = 
-e sup ( { z  e.  RR*  | 
-e z  e.  A } ,  RR* ,  <  ) )
3937, 38syl 14 . 2  |-  ( ph  -> 
-e  -einf ( A ,  RR* ,  <  )  =  -e sup ( { z  e. 
RR*  |  -e z  e.  A } ,  RR* ,  <  ) )
406, 39eqtr3d 2210 1  |-  ( ph  -> inf ( A ,  RR* ,  <  )  =  -e sup ( { z  e.  RR*  |  -e
z  e.  A } ,  RR* ,  <  )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2146   A.wral 2453   E.wrex 2454   {crab 2457    C_ wss 3127   class class class wbr 3998    |-> cmpt 4059   `'ccnv 4619   "cima 4623   ` cfv 5208    Isom wiso 5209   supcsup 6971  infcinf 6972   RR*cxr 7965    < clt 7966    -ecxne 9738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-cnex 7877  ax-resscn 7878  ax-1cn 7879  ax-1re 7880  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-addcom 7886  ax-addass 7888  ax-distr 7890  ax-i2m1 7891  ax-0id 7894  ax-rnegex 7895  ax-cnre 7897  ax-pre-ltirr 7898  ax-pre-apti 7901  ax-pre-ltadd 7902
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-reu 2460  df-rmo 2461  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-if 3533  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-isom 5217  df-riota 5821  df-ov 5868  df-oprab 5869  df-mpo 5870  df-sup 6973  df-inf 6974  df-pnf 7968  df-mnf 7969  df-xr 7970  df-ltxr 7971  df-sub 8104  df-neg 8105  df-xneg 9741
This theorem is referenced by:  xrminmax  11239
  Copyright terms: Public domain W3C validator