Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > infxrnegsupex | Unicode version |
Description: The infimum of a set of extended reals is the negative of the supremum of the negatives of its elements. (Contributed by Jim Kingdon, 2-May-2023.) |
Ref | Expression |
---|---|
infxrnegsupex.ex | |
infxrnegsupex.ss |
Ref | Expression |
---|---|
infxrnegsupex | inf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrlttri3 9733 | . . . . 5 | |
2 | 1 | adantl 275 | . . . 4 |
3 | infxrnegsupex.ex | . . . 4 | |
4 | 2, 3 | infclti 6988 | . . 3 inf |
5 | xnegneg 9769 | . . 3 inf inf inf | |
6 | 4, 5 | syl 14 | . 2 inf inf |
7 | xnegeq 9763 | . . . . . . . . 9 | |
8 | 7 | cbvmptv 4078 | . . . . . . . 8 |
9 | 8 | mptpreima 5097 | . . . . . . 7 |
10 | eqid 2165 | . . . . . . . . . 10 | |
11 | 10 | xrnegiso 11203 | . . . . . . . . 9 |
12 | 11 | simpri 112 | . . . . . . . 8 |
13 | 12 | imaeq1i 4943 | . . . . . . 7 |
14 | 9, 13 | eqtr3i 2188 | . . . . . 6 |
15 | 14 | supeq1i 6953 | . . . . 5 |
16 | 11 | simpli 110 | . . . . . . . . 9 |
17 | isocnv 5779 | . . . . . . . . 9 | |
18 | 16, 17 | ax-mp 5 | . . . . . . . 8 |
19 | isoeq1 5769 | . . . . . . . . 9 | |
20 | 12, 19 | ax-mp 5 | . . . . . . . 8 |
21 | 18, 20 | mpbi 144 | . . . . . . 7 |
22 | 21 | a1i 9 | . . . . . 6 |
23 | infxrnegsupex.ss | . . . . . 6 | |
24 | 3 | cnvinfex 6983 | . . . . . 6 |
25 | 2 | cnvti 6984 | . . . . . 6 |
26 | 22, 23, 24, 25 | supisoti 6975 | . . . . 5 |
27 | 15, 26 | syl5eq 2211 | . . . 4 |
28 | df-inf 6950 | . . . . . . 7 inf | |
29 | 28 | eqcomi 2169 | . . . . . 6 inf |
30 | 29 | fveq2i 5489 | . . . . 5 inf |
31 | eqidd 2166 | . . . . . 6 | |
32 | xnegeq 9763 | . . . . . . 7 inf inf | |
33 | 32 | adantl 275 | . . . . . 6 inf inf |
34 | 4 | xnegcld 9791 | . . . . . 6 inf |
35 | 31, 33, 4, 34 | fvmptd 5567 | . . . . 5 inf inf |
36 | 30, 35 | syl5eq 2211 | . . . 4 inf |
37 | 27, 36 | eqtr2d 2199 | . . 3 inf |
38 | xnegeq 9763 | . . 3 inf inf | |
39 | 37, 38 | syl 14 | . 2 inf |
40 | 6, 39 | eqtr3d 2200 | 1 inf |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wceq 1343 wcel 2136 wral 2444 wrex 2445 crab 2448 wss 3116 class class class wbr 3982 cmpt 4043 ccnv 4603 cima 4607 cfv 5188 wiso 5189 csup 6947 infcinf 6948 cxr 7932 clt 7933 cxne 9705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-addass 7855 ax-distr 7857 ax-i2m1 7858 ax-0id 7861 ax-rnegex 7862 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-apti 7868 ax-pre-ltadd 7869 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-isom 5197 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-sup 6949 df-inf 6950 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-sub 8071 df-neg 8072 df-xneg 9708 |
This theorem is referenced by: xrminmax 11206 |
Copyright terms: Public domain | W3C validator |