| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > infxrnegsupex | Unicode version | ||
| Description: The infimum of a set of
extended reals |
| Ref | Expression |
|---|---|
| infxrnegsupex.ex |
|
| infxrnegsupex.ss |
|
| Ref | Expression |
|---|---|
| infxrnegsupex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrlttri3 9993 |
. . . . 5
| |
| 2 | 1 | adantl 277 |
. . . 4
|
| 3 | infxrnegsupex.ex |
. . . 4
| |
| 4 | 2, 3 | infclti 7190 |
. . 3
|
| 5 | xnegneg 10029 |
. . 3
| |
| 6 | 4, 5 | syl 14 |
. 2
|
| 7 | xnegeq 10023 |
. . . . . . . . 9
| |
| 8 | 7 | cbvmptv 4180 |
. . . . . . . 8
|
| 9 | 8 | mptpreima 5222 |
. . . . . . 7
|
| 10 | eqid 2229 |
. . . . . . . . . 10
| |
| 11 | 10 | xrnegiso 11773 |
. . . . . . . . 9
|
| 12 | 11 | simpri 113 |
. . . . . . . 8
|
| 13 | 12 | imaeq1i 5065 |
. . . . . . 7
|
| 14 | 9, 13 | eqtr3i 2252 |
. . . . . 6
|
| 15 | 14 | supeq1i 7155 |
. . . . 5
|
| 16 | 11 | simpli 111 |
. . . . . . . . 9
|
| 17 | isocnv 5935 |
. . . . . . . . 9
| |
| 18 | 16, 17 | ax-mp 5 |
. . . . . . . 8
|
| 19 | isoeq1 5925 |
. . . . . . . . 9
| |
| 20 | 12, 19 | ax-mp 5 |
. . . . . . . 8
|
| 21 | 18, 20 | mpbi 145 |
. . . . . . 7
|
| 22 | 21 | a1i 9 |
. . . . . 6
|
| 23 | infxrnegsupex.ss |
. . . . . 6
| |
| 24 | 3 | cnvinfex 7185 |
. . . . . 6
|
| 25 | 2 | cnvti 7186 |
. . . . . 6
|
| 26 | 22, 23, 24, 25 | supisoti 7177 |
. . . . 5
|
| 27 | 15, 26 | eqtrid 2274 |
. . . 4
|
| 28 | df-inf 7152 |
. . . . . . 7
| |
| 29 | 28 | eqcomi 2233 |
. . . . . 6
|
| 30 | 29 | fveq2i 5630 |
. . . . 5
|
| 31 | eqidd 2230 |
. . . . . 6
| |
| 32 | xnegeq 10023 |
. . . . . . 7
| |
| 33 | 32 | adantl 277 |
. . . . . 6
|
| 34 | 4 | xnegcld 10051 |
. . . . . 6
|
| 35 | 31, 33, 4, 34 | fvmptd 5715 |
. . . . 5
|
| 36 | 30, 35 | eqtrid 2274 |
. . . 4
|
| 37 | 27, 36 | eqtr2d 2263 |
. . 3
|
| 38 | xnegeq 10023 |
. . 3
| |
| 39 | 37, 38 | syl 14 |
. 2
|
| 40 | 6, 39 | eqtr3d 2264 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-addass 8101 ax-distr 8103 ax-i2m1 8104 ax-0id 8107 ax-rnegex 8108 ax-cnre 8110 ax-pre-ltirr 8111 ax-pre-apti 8114 ax-pre-ltadd 8115 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-isom 5327 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-sup 7151 df-inf 7152 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-sub 8319 df-neg 8320 df-xneg 9968 |
| This theorem is referenced by: xrminmax 11776 |
| Copyright terms: Public domain | W3C validator |