ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infxrnegsupex Unicode version

Theorem infxrnegsupex 11291
Description: The infimum of a set of extended reals  A is the negative of the supremum of the negatives of its elements. (Contributed by Jim Kingdon, 2-May-2023.)
Hypotheses
Ref Expression
infxrnegsupex.ex  |-  ( ph  ->  E. x  e.  RR*  ( A. y  e.  A  -.  y  <  x  /\  A. y  e.  RR*  (
x  <  y  ->  E. z  e.  A  z  <  y ) ) )
infxrnegsupex.ss  |-  ( ph  ->  A  C_  RR* )
Assertion
Ref Expression
infxrnegsupex  |-  ( ph  -> inf ( A ,  RR* ,  <  )  =  -e sup ( { z  e.  RR*  |  -e
z  e.  A } ,  RR* ,  <  )
)
Distinct variable groups:    x, A, y, z    ph, x, y, z

Proof of Theorem infxrnegsupex
Dummy variables  f  g  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xrlttri3 9817 . . . . 5  |-  ( ( f  e.  RR*  /\  g  e.  RR* )  ->  (
f  =  g  <->  ( -.  f  <  g  /\  -.  g  <  f ) ) )
21adantl 277 . . . 4  |-  ( (
ph  /\  ( f  e.  RR*  /\  g  e. 
RR* ) )  -> 
( f  =  g  <-> 
( -.  f  < 
g  /\  -.  g  <  f ) ) )
3 infxrnegsupex.ex . . . 4  |-  ( ph  ->  E. x  e.  RR*  ( A. y  e.  A  -.  y  <  x  /\  A. y  e.  RR*  (
x  <  y  ->  E. z  e.  A  z  <  y ) ) )
42, 3infclti 7042 . . 3  |-  ( ph  -> inf ( A ,  RR* ,  <  )  e.  RR* )
5 xnegneg 9853 . . 3  |-  (inf ( A ,  RR* ,  <  )  e.  RR*  ->  -e  -einf ( A ,  RR* ,  <  )  = inf ( A ,  RR* ,  <  ) )
64, 5syl 14 . 2  |-  ( ph  -> 
-e  -einf ( A ,  RR* ,  <  )  = inf ( A ,  RR* ,  <  ) )
7 xnegeq 9847 . . . . . . . . 9  |-  ( w  =  z  ->  -e
w  =  -e
z )
87cbvmptv 4114 . . . . . . . 8  |-  ( w  e.  RR*  |->  -e
w )  =  ( z  e.  RR*  |->  -e
z )
98mptpreima 5137 . . . . . . 7  |-  ( `' ( w  e.  RR*  |->  -e w ) " A )  =  {
z  e.  RR*  |  -e z  e.  A }
10 eqid 2189 . . . . . . . . . 10  |-  ( w  e.  RR*  |->  -e
w )  =  ( w  e.  RR*  |->  -e
w )
1110xrnegiso 11290 . . . . . . . . 9  |-  ( ( w  e.  RR*  |->  -e
w )  Isom  <  ,  `'  <  ( RR* ,  RR* )  /\  `' ( w  e.  RR*  |->  -e
w )  =  ( w  e.  RR*  |->  -e
w ) )
1211simpri 113 . . . . . . . 8  |-  `' ( w  e.  RR*  |->  -e
w )  =  ( w  e.  RR*  |->  -e
w )
1312imaeq1i 4982 . . . . . . 7  |-  ( `' ( w  e.  RR*  |->  -e w ) " A )  =  ( ( w  e.  RR*  |->  -e w ) " A )
149, 13eqtr3i 2212 . . . . . 6  |-  { z  e.  RR*  |  -e
z  e.  A }  =  ( ( w  e.  RR*  |->  -e
w ) " A
)
1514supeq1i 7007 . . . . 5  |-  sup ( { z  e.  RR*  | 
-e z  e.  A } ,  RR* ,  <  )  =  sup ( ( ( w  e.  RR*  |->  -e
w ) " A
) ,  RR* ,  <  )
1611simpli 111 . . . . . . . . 9  |-  ( w  e.  RR*  |->  -e
w )  Isom  <  ,  `'  <  ( RR* ,  RR* )
17 isocnv 5829 . . . . . . . . 9  |-  ( ( w  e.  RR*  |->  -e
w )  Isom  <  ,  `'  <  ( RR* ,  RR* )  ->  `' ( w  e.  RR*  |->  -e
w )  Isom  `'  <  ,  <  ( RR* ,  RR* ) )
1816, 17ax-mp 5 . . . . . . . 8  |-  `' ( w  e.  RR*  |->  -e
w )  Isom  `'  <  ,  <  ( RR* ,  RR* )
19 isoeq1 5819 . . . . . . . . 9  |-  ( `' ( w  e.  RR*  |->  -e w )  =  ( w  e.  RR*  |->  -e w )  -> 
( `' ( w  e.  RR*  |->  -e
w )  Isom  `'  <  ,  <  ( RR* ,  RR* ) 
<->  ( w  e.  RR*  |->  -e w )  Isom  `'  <  ,  <  ( RR* ,  RR* ) ) )
2012, 19ax-mp 5 . . . . . . . 8  |-  ( `' ( w  e.  RR*  |->  -e w )  Isom  `'  <  ,  <  ( RR* ,  RR* )  <->  ( w  e.  RR*  |->  -e w ) 
Isom  `'  <  ,  <  (
RR* ,  RR* ) )
2118, 20mpbi 145 . . . . . . 7  |-  ( w  e.  RR*  |->  -e
w )  Isom  `'  <  ,  <  ( RR* ,  RR* )
2221a1i 9 . . . . . 6  |-  ( ph  ->  ( w  e.  RR*  |->  -e w )  Isom  `'  <  ,  <  ( RR* ,  RR* ) )
23 infxrnegsupex.ss . . . . . 6  |-  ( ph  ->  A  C_  RR* )
243cnvinfex 7037 . . . . . 6  |-  ( ph  ->  E. x  e.  RR*  ( A. y  e.  A  -.  x `'  <  y  /\  A. y  e.  RR*  ( y `'  <  x  ->  E. z  e.  A  y `'  <  z ) ) )
252cnvti 7038 . . . . . 6  |-  ( (
ph  /\  ( f  e.  RR*  /\  g  e. 
RR* ) )  -> 
( f  =  g  <-> 
( -.  f `'  <  g  /\  -.  g `'  <  f ) ) )
2622, 23, 24, 25supisoti 7029 . . . . 5  |-  ( ph  ->  sup ( ( ( w  e.  RR*  |->  -e
w ) " A
) ,  RR* ,  <  )  =  ( ( w  e.  RR*  |->  -e
w ) `  sup ( A ,  RR* ,  `'  <  ) ) )
2715, 26eqtrid 2234 . . . 4  |-  ( ph  ->  sup ( { z  e.  RR*  |  -e
z  e.  A } ,  RR* ,  <  )  =  ( ( w  e.  RR*  |->  -e
w ) `  sup ( A ,  RR* ,  `'  <  ) ) )
28 df-inf 7004 . . . . . . 7  |- inf ( A ,  RR* ,  <  )  =  sup ( A ,  RR* ,  `'  <  )
2928eqcomi 2193 . . . . . 6  |-  sup ( A ,  RR* ,  `'  <  )  = inf ( A ,  RR* ,  <  )
3029fveq2i 5534 . . . . 5  |-  ( ( w  e.  RR*  |->  -e
w ) `  sup ( A ,  RR* ,  `'  <  ) )  =  ( ( w  e.  RR*  |->  -e w ) ` inf ( A ,  RR* ,  <  ) )
31 eqidd 2190 . . . . . 6  |-  ( ph  ->  ( w  e.  RR*  |->  -e w )  =  ( w  e.  RR*  |->  -e w ) )
32 xnegeq 9847 . . . . . . 7  |-  ( w  = inf ( A ,  RR* ,  <  )  ->  -e w  =  -einf ( A ,  RR* ,  <  ) )
3332adantl 277 . . . . . 6  |-  ( (
ph  /\  w  = inf ( A ,  RR* ,  <  ) )  ->  -e w  =  -einf ( A ,  RR* ,  <  ) )
344xnegcld 9875 . . . . . 6  |-  ( ph  -> 
-einf ( A ,  RR* ,  <  )  e.  RR* )
3531, 33, 4, 34fvmptd 5614 . . . . 5  |-  ( ph  ->  ( ( w  e. 
RR*  |->  -e w ) `
inf ( A ,  RR* ,  <  ) )  =  -einf ( A ,  RR* ,  <  ) )
3630, 35eqtrid 2234 . . . 4  |-  ( ph  ->  ( ( w  e. 
RR*  |->  -e w ) `
 sup ( A ,  RR* ,  `'  <  ) )  =  -einf ( A ,  RR* ,  <  ) )
3727, 36eqtr2d 2223 . . 3  |-  ( ph  -> 
-einf ( A ,  RR* ,  <  )  =  sup ( { z  e.  RR*  |  -e
z  e.  A } ,  RR* ,  <  )
)
38 xnegeq 9847 . . 3  |-  (  -einf ( A ,  RR* ,  <  )  =  sup ( { z  e.  RR*  | 
-e z  e.  A } ,  RR* ,  <  )  ->  -e  -einf ( A ,  RR* ,  <  )  = 
-e sup ( { z  e.  RR*  | 
-e z  e.  A } ,  RR* ,  <  ) )
3937, 38syl 14 . 2  |-  ( ph  -> 
-e  -einf ( A ,  RR* ,  <  )  =  -e sup ( { z  e. 
RR*  |  -e z  e.  A } ,  RR* ,  <  ) )
406, 39eqtr3d 2224 1  |-  ( ph  -> inf ( A ,  RR* ,  <  )  =  -e sup ( { z  e.  RR*  |  -e
z  e.  A } ,  RR* ,  <  )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2160   A.wral 2468   E.wrex 2469   {crab 2472    C_ wss 3144   class class class wbr 4018    |-> cmpt 4079   `'ccnv 4640   "cima 4644   ` cfv 5232    Isom wiso 5233   supcsup 7001  infcinf 7002   RR*cxr 8011    < clt 8012    -ecxne 9789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-setind 4551  ax-cnex 7922  ax-resscn 7923  ax-1cn 7924  ax-1re 7925  ax-icn 7926  ax-addcl 7927  ax-addrcl 7928  ax-mulcl 7929  ax-addcom 7931  ax-addass 7933  ax-distr 7935  ax-i2m1 7936  ax-0id 7939  ax-rnegex 7940  ax-cnre 7942  ax-pre-ltirr 7943  ax-pre-apti 7946  ax-pre-ltadd 7947
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4308  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-res 4653  df-ima 4654  df-iota 5193  df-fun 5234  df-fn 5235  df-f 5236  df-f1 5237  df-fo 5238  df-f1o 5239  df-fv 5240  df-isom 5241  df-riota 5848  df-ov 5895  df-oprab 5896  df-mpo 5897  df-sup 7003  df-inf 7004  df-pnf 8014  df-mnf 8015  df-xr 8016  df-ltxr 8017  df-sub 8150  df-neg 8151  df-xneg 9792
This theorem is referenced by:  xrminmax  11293
  Copyright terms: Public domain W3C validator