| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > infxrnegsupex | Unicode version | ||
| Description: The infimum of a set of
extended reals |
| Ref | Expression |
|---|---|
| infxrnegsupex.ex |
|
| infxrnegsupex.ss |
|
| Ref | Expression |
|---|---|
| infxrnegsupex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrlttri3 9954 |
. . . . 5
| |
| 2 | 1 | adantl 277 |
. . . 4
|
| 3 | infxrnegsupex.ex |
. . . 4
| |
| 4 | 2, 3 | infclti 7151 |
. . 3
|
| 5 | xnegneg 9990 |
. . 3
| |
| 6 | 4, 5 | syl 14 |
. 2
|
| 7 | xnegeq 9984 |
. . . . . . . . 9
| |
| 8 | 7 | cbvmptv 4156 |
. . . . . . . 8
|
| 9 | 8 | mptpreima 5195 |
. . . . . . 7
|
| 10 | eqid 2207 |
. . . . . . . . . 10
| |
| 11 | 10 | xrnegiso 11688 |
. . . . . . . . 9
|
| 12 | 11 | simpri 113 |
. . . . . . . 8
|
| 13 | 12 | imaeq1i 5038 |
. . . . . . 7
|
| 14 | 9, 13 | eqtr3i 2230 |
. . . . . 6
|
| 15 | 14 | supeq1i 7116 |
. . . . 5
|
| 16 | 11 | simpli 111 |
. . . . . . . . 9
|
| 17 | isocnv 5903 |
. . . . . . . . 9
| |
| 18 | 16, 17 | ax-mp 5 |
. . . . . . . 8
|
| 19 | isoeq1 5893 |
. . . . . . . . 9
| |
| 20 | 12, 19 | ax-mp 5 |
. . . . . . . 8
|
| 21 | 18, 20 | mpbi 145 |
. . . . . . 7
|
| 22 | 21 | a1i 9 |
. . . . . 6
|
| 23 | infxrnegsupex.ss |
. . . . . 6
| |
| 24 | 3 | cnvinfex 7146 |
. . . . . 6
|
| 25 | 2 | cnvti 7147 |
. . . . . 6
|
| 26 | 22, 23, 24, 25 | supisoti 7138 |
. . . . 5
|
| 27 | 15, 26 | eqtrid 2252 |
. . . 4
|
| 28 | df-inf 7113 |
. . . . . . 7
| |
| 29 | 28 | eqcomi 2211 |
. . . . . 6
|
| 30 | 29 | fveq2i 5602 |
. . . . 5
|
| 31 | eqidd 2208 |
. . . . . 6
| |
| 32 | xnegeq 9984 |
. . . . . . 7
| |
| 33 | 32 | adantl 277 |
. . . . . 6
|
| 34 | 4 | xnegcld 10012 |
. . . . . 6
|
| 35 | 31, 33, 4, 34 | fvmptd 5683 |
. . . . 5
|
| 36 | 30, 35 | eqtrid 2252 |
. . . 4
|
| 37 | 27, 36 | eqtr2d 2241 |
. . 3
|
| 38 | xnegeq 9984 |
. . 3
| |
| 39 | 37, 38 | syl 14 |
. 2
|
| 40 | 6, 39 | eqtr3d 2242 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-distr 8064 ax-i2m1 8065 ax-0id 8068 ax-rnegex 8069 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-apti 8075 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-isom 5299 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-sup 7112 df-inf 7113 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-sub 8280 df-neg 8281 df-xneg 9929 |
| This theorem is referenced by: xrminmax 11691 |
| Copyright terms: Public domain | W3C validator |