ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  supeq1d Unicode version

Theorem supeq1d 7150
Description: Equality deduction for supremum. (Contributed by Paul Chapman, 22-Jun-2011.)
Hypothesis
Ref Expression
supeq1d.1  |-  ( ph  ->  B  =  C )
Assertion
Ref Expression
supeq1d  |-  ( ph  ->  sup ( B ,  A ,  R )  =  sup ( C ,  A ,  R )
)

Proof of Theorem supeq1d
StepHypRef Expression
1 supeq1d.1 . 2  |-  ( ph  ->  B  =  C )
2 supeq1 7149 . 2  |-  ( B  =  C  ->  sup ( B ,  A ,  R )  =  sup ( C ,  A ,  R ) )
31, 2syl 14 1  |-  ( ph  ->  sup ( B ,  A ,  R )  =  sup ( C ,  A ,  R )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395   supcsup 7145
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-uni 3888  df-sup 7147
This theorem is referenced by:  sup3exmid  9100  supminfex  9788  suprzubdc  10451  minmax  11736  xrminmax  11771  xrminrecl  11779  xrminadd  11781  gcdval  12475  gcdass  12531  pceulem  12812  pceu  12813  pcval  12814  pczpre  12815  pcdiv  12820  pcneg  12843  prdsex  13297  prdsval  13301  xmetxp  15175  xmetxpbl  15176  txmetcnp  15186  qtopbasss  15189  hovera  15315  hoverb  15316  hoverlt1  15317  hovergt0  15318  ivthdich  15321
  Copyright terms: Public domain W3C validator