| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > supeq1d | Unicode version | ||
| Description: Equality deduction for supremum. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| supeq1d.1 |
|
| Ref | Expression |
|---|---|
| supeq1d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supeq1d.1 |
. 2
| |
| 2 | supeq1 7061 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-uni 3841 df-sup 7059 |
| This theorem is referenced by: sup3exmid 9001 supminfex 9688 suprzubdc 10343 minmax 11412 xrminmax 11447 xrminrecl 11455 xrminadd 11457 gcdval 12151 gcdass 12207 pceulem 12488 pceu 12489 pcval 12490 pczpre 12491 pcdiv 12496 pcneg 12519 prdsex 12971 prdsval 12975 xmetxp 14827 xmetxpbl 14828 txmetcnp 14838 qtopbasss 14841 hovera 14967 hoverb 14968 hoverlt1 14969 hovergt0 14970 ivthdich 14973 |
| Copyright terms: Public domain | W3C validator |