| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > supeq1d | Unicode version | ||
| Description: Equality deduction for supremum. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| supeq1d.1 |
|
| Ref | Expression |
|---|---|
| supeq1d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supeq1d.1 |
. 2
| |
| 2 | supeq1 7061 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-uni 3841 df-sup 7059 |
| This theorem is referenced by: sup3exmid 9003 supminfex 9690 suprzubdc 10345 minmax 11414 xrminmax 11449 xrminrecl 11457 xrminadd 11459 gcdval 12153 gcdass 12209 pceulem 12490 pceu 12491 pcval 12492 pczpre 12493 pcdiv 12498 pcneg 12521 prdsex 12973 prdsval 12977 xmetxp 14851 xmetxpbl 14852 txmetcnp 14862 qtopbasss 14865 hovera 14991 hoverb 14992 hoverlt1 14993 hovergt0 14994 ivthdich 14997 |
| Copyright terms: Public domain | W3C validator |