ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  supeq1d Unicode version

Theorem supeq1d 6927
Description: Equality deduction for supremum. (Contributed by Paul Chapman, 22-Jun-2011.)
Hypothesis
Ref Expression
supeq1d.1  |-  ( ph  ->  B  =  C )
Assertion
Ref Expression
supeq1d  |-  ( ph  ->  sup ( B ,  A ,  R )  =  sup ( C ,  A ,  R )
)

Proof of Theorem supeq1d
StepHypRef Expression
1 supeq1d.1 . 2  |-  ( ph  ->  B  =  C )
2 supeq1 6926 . 2  |-  ( B  =  C  ->  sup ( B ,  A ,  R )  =  sup ( C ,  A ,  R ) )
31, 2syl 14 1  |-  ( ph  ->  sup ( B ,  A ,  R )  =  sup ( C ,  A ,  R )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1335   supcsup 6922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-rab 2444  df-uni 3773  df-sup 6924
This theorem is referenced by:  sup3exmid  8822  supminfex  9502  minmax  11122  xrminmax  11155  xrminrecl  11163  xrminadd  11165  gcdval  11834  gcdass  11890  xmetxp  12878  xmetxpbl  12879  txmetcnp  12889  qtopbasss  12892
  Copyright terms: Public domain W3C validator