| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > supeq1d | Unicode version | ||
| Description: Equality deduction for supremum. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| supeq1d.1 |
|
| Ref | Expression |
|---|---|
| supeq1d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supeq1d.1 |
. 2
| |
| 2 | supeq1 7149 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-uni 3888 df-sup 7147 |
| This theorem is referenced by: sup3exmid 9100 supminfex 9788 suprzubdc 10451 minmax 11736 xrminmax 11771 xrminrecl 11779 xrminadd 11781 gcdval 12475 gcdass 12531 pceulem 12812 pceu 12813 pcval 12814 pczpre 12815 pcdiv 12820 pcneg 12843 prdsex 13297 prdsval 13301 xmetxp 15175 xmetxpbl 15176 txmetcnp 15186 qtopbasss 15189 hovera 15315 hoverb 15316 hoverlt1 15317 hovergt0 15318 ivthdich 15321 |
| Copyright terms: Public domain | W3C validator |