| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > supeq1d | Unicode version | ||
| Description: Equality deduction for supremum. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| supeq1d.1 |
|
| Ref | Expression |
|---|---|
| supeq1d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supeq1d.1 |
. 2
| |
| 2 | supeq1 7088 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-rab 2493 df-uni 3851 df-sup 7086 |
| This theorem is referenced by: sup3exmid 9030 supminfex 9718 suprzubdc 10379 minmax 11541 xrminmax 11576 xrminrecl 11584 xrminadd 11586 gcdval 12280 gcdass 12336 pceulem 12617 pceu 12618 pcval 12619 pczpre 12620 pcdiv 12625 pcneg 12648 prdsex 13101 prdsval 13105 xmetxp 14979 xmetxpbl 14980 txmetcnp 14990 qtopbasss 14993 hovera 15119 hoverb 15120 hoverlt1 15121 hovergt0 15122 ivthdich 15125 |
| Copyright terms: Public domain | W3C validator |