ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  supeq1d Unicode version

Theorem supeq1d 7048
Description: Equality deduction for supremum. (Contributed by Paul Chapman, 22-Jun-2011.)
Hypothesis
Ref Expression
supeq1d.1  |-  ( ph  ->  B  =  C )
Assertion
Ref Expression
supeq1d  |-  ( ph  ->  sup ( B ,  A ,  R )  =  sup ( C ,  A ,  R )
)

Proof of Theorem supeq1d
StepHypRef Expression
1 supeq1d.1 . 2  |-  ( ph  ->  B  =  C )
2 supeq1 7047 . 2  |-  ( B  =  C  ->  sup ( B ,  A ,  R )  =  sup ( C ,  A ,  R ) )
31, 2syl 14 1  |-  ( ph  ->  sup ( B ,  A ,  R )  =  sup ( C ,  A ,  R )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364   supcsup 7043
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-uni 3837  df-sup 7045
This theorem is referenced by:  sup3exmid  8978  supminfex  9665  minmax  11376  xrminmax  11411  xrminrecl  11419  xrminadd  11421  suprzubdc  12092  gcdval  12099  gcdass  12155  pceulem  12435  pceu  12436  pcval  12437  pczpre  12438  pcdiv  12443  pcneg  12466  prdsex  12883  xmetxp  14686  xmetxpbl  14687  txmetcnp  14697  qtopbasss  14700  hovera  14826  hoverb  14827  hoverlt1  14828  hovergt0  14829  ivthdich  14832
  Copyright terms: Public domain W3C validator