Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > supeq1d | Unicode version |
Description: Equality deduction for supremum. (Contributed by Paul Chapman, 22-Jun-2011.) |
Ref | Expression |
---|---|
supeq1d.1 |
Ref | Expression |
---|---|
supeq1d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | supeq1d.1 | . 2 | |
2 | supeq1 6947 | . 2 | |
3 | 1, 2 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1343 csup 6943 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ral 2448 df-rex 2449 df-rab 2452 df-uni 3789 df-sup 6945 |
This theorem is referenced by: sup3exmid 8848 supminfex 9531 minmax 11167 xrminmax 11202 xrminrecl 11210 xrminadd 11212 suprzubdc 11881 gcdval 11888 gcdass 11944 pceulem 12222 pceu 12223 pcval 12224 pczpre 12225 pcdiv 12230 pcneg 12252 xmetxp 13107 xmetxpbl 13108 txmetcnp 13118 qtopbasss 13121 |
Copyright terms: Public domain | W3C validator |