| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > supeq1d | Unicode version | ||
| Description: Equality deduction for supremum. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| supeq1d.1 |
|
| Ref | Expression |
|---|---|
| supeq1d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supeq1d.1 |
. 2
| |
| 2 | supeq1 7114 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-rab 2495 df-uni 3865 df-sup 7112 |
| This theorem is referenced by: sup3exmid 9065 supminfex 9753 suprzubdc 10416 minmax 11656 xrminmax 11691 xrminrecl 11699 xrminadd 11701 gcdval 12395 gcdass 12451 pceulem 12732 pceu 12733 pcval 12734 pczpre 12735 pcdiv 12740 pcneg 12763 prdsex 13216 prdsval 13220 xmetxp 15094 xmetxpbl 15095 txmetcnp 15105 qtopbasss 15108 hovera 15234 hoverb 15235 hoverlt1 15236 hovergt0 15237 ivthdich 15240 |
| Copyright terms: Public domain | W3C validator |