ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pczpre Unicode version

Theorem pczpre 12735
Description: Connect the prime count pre-function to the actual prime count function, when restricted to the integers. (Contributed by Mario Carneiro, 23-Feb-2014.) (Proof shortened by Mario Carneiro, 24-Dec-2016.)
Hypothesis
Ref Expression
pczpre.1  |-  S  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  N } ,  RR ,  <  )
Assertion
Ref Expression
pczpre  |-  ( ( P  e.  Prime  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( P  pCnt  N
)  =  S )
Distinct variable groups:    n, N    P, n
Allowed substitution hint:    S( n)

Proof of Theorem pczpre
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zq 9782 . . 3  |-  ( N  e.  ZZ  ->  N  e.  QQ )
2 eqid 2207 . . . 4  |-  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  x } ,  RR ,  <  )  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  x } ,  RR ,  <  )
3 eqid 2207 . . . 4  |-  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  y } ,  RR ,  <  )  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  y } ,  RR ,  <  )
42, 3pcval 12734 . . 3  |-  ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  -> 
( P  pCnt  N
)  =  ( iota z E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y
)  /\  z  =  ( sup ( { n  e.  NN0  |  ( P ^ n )  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  y } ,  RR ,  <  )
) ) ) )
51, 4sylanr1 404 . 2  |-  ( ( P  e.  Prime  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( P  pCnt  N
)  =  ( iota z E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y
)  /\  z  =  ( sup ( { n  e.  NN0  |  ( P ^ n )  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  y } ,  RR ,  <  )
) ) ) )
6 simprl 529 . . . 4  |-  ( ( P  e.  Prime  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  N  e.  ZZ )
76zcnd 9531 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  N  e.  CC )
87div1d 8888 . . . . 5  |-  ( ( P  e.  Prime  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( N  /  1
)  =  N )
98eqcomd 2213 . . . 4  |-  ( ( P  e.  Prime  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  N  =  ( N  /  1 ) )
10 prmuz2 12568 . . . . . . . 8  |-  ( P  e.  Prime  ->  P  e.  ( ZZ>= `  2 )
)
11 eqid 2207 . . . . . . . 8  |-  1  =  1
12 eqid 2207 . . . . . . . . 9  |-  { n  e.  NN0  |  ( P ^ n )  ||  1 }  =  {
n  e.  NN0  | 
( P ^ n
)  ||  1 }
13 eqid 2207 . . . . . . . . 9  |-  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  1 } ,  RR ,  <  )  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  1 } ,  RR ,  <  )
1412, 13pcpre1 12730 . . . . . . . 8  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  1  =  1 )  ->  sup ( { n  e. 
NN0  |  ( P ^ n )  ||  1 } ,  RR ,  <  )  =  0 )
1510, 11, 14sylancl 413 . . . . . . 7  |-  ( P  e.  Prime  ->  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  1 } ,  RR ,  <  )  =  0 )
1615adantr 276 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  sup ( { n  e. 
NN0  |  ( P ^ n )  ||  1 } ,  RR ,  <  )  =  0 )
1716oveq2d 5983 . . . . 5  |-  ( ( P  e.  Prime  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( S  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  1 } ,  RR ,  <  )
)  =  ( S  -  0 ) )
18 eqid 2207 . . . . . . . . . 10  |-  { n  e.  NN0  |  ( P ^ n )  ||  N }  =  {
n  e.  NN0  | 
( P ^ n
)  ||  N }
19 pczpre.1 . . . . . . . . . 10  |-  S  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  N } ,  RR ,  <  )
2018, 19pcprecl 12727 . . . . . . . . 9  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( S  e.  NN0  /\  ( P ^ S
)  ||  N )
)
2110, 20sylan 283 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( S  e.  NN0  /\  ( P ^ S
)  ||  N )
)
2221simpld 112 . . . . . . 7  |-  ( ( P  e.  Prime  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  S  e.  NN0 )
2322nn0cnd 9385 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  S  e.  CC )
2423subid1d 8407 . . . . 5  |-  ( ( P  e.  Prime  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( S  -  0 )  =  S )
2517, 24eqtr2d 2241 . . . 4  |-  ( ( P  e.  Prime  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  S  =  ( S  -  sup ( { n  e.  NN0  |  ( P ^ n )  ||  1 } ,  RR ,  <  ) ) )
26 1nn 9082 . . . . 5  |-  1  e.  NN
27 oveq1 5974 . . . . . . . 8  |-  ( x  =  N  ->  (
x  /  y )  =  ( N  / 
y ) )
2827eqeq2d 2219 . . . . . . 7  |-  ( x  =  N  ->  ( N  =  ( x  /  y )  <->  N  =  ( N  /  y
) ) )
29 breq2 4063 . . . . . . . . . . . 12  |-  ( x  =  N  ->  (
( P ^ n
)  ||  x  <->  ( P ^ n )  ||  N ) )
3029rabbidv 2765 . . . . . . . . . . 11  |-  ( x  =  N  ->  { n  e.  NN0  |  ( P ^ n )  ||  x }  =  {
n  e.  NN0  | 
( P ^ n
)  ||  N }
)
3130supeq1d 7115 . . . . . . . . . 10  |-  ( x  =  N  ->  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  x } ,  RR ,  <  )  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  N } ,  RR ,  <  ) )
3231, 19eqtr4di 2258 . . . . . . . . 9  |-  ( x  =  N  ->  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  x } ,  RR ,  <  )  =  S )
3332oveq1d 5982 . . . . . . . 8  |-  ( x  =  N  ->  ( sup ( { n  e. 
NN0  |  ( P ^ n )  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  y } ,  RR ,  <  )
)  =  ( S  -  sup ( { n  e.  NN0  | 
( P ^ n
)  ||  y } ,  RR ,  <  )
) )
3433eqeq2d 2219 . . . . . . 7  |-  ( x  =  N  ->  ( S  =  ( sup ( { n  e.  NN0  |  ( P ^ n
)  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n )  ||  y } ,  RR ,  <  ) )  <->  S  =  ( S  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  y } ,  RR ,  <  )
) ) )
3528, 34anbi12d 473 . . . . . 6  |-  ( x  =  N  ->  (
( N  =  ( x  /  y )  /\  S  =  ( sup ( { n  e.  NN0  |  ( P ^ n )  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  y } ,  RR ,  <  )
) )  <->  ( N  =  ( N  / 
y )  /\  S  =  ( S  -  sup ( { n  e. 
NN0  |  ( P ^ n )  ||  y } ,  RR ,  <  ) ) ) ) )
36 oveq2 5975 . . . . . . . 8  |-  ( y  =  1  ->  ( N  /  y )  =  ( N  /  1
) )
3736eqeq2d 2219 . . . . . . 7  |-  ( y  =  1  ->  ( N  =  ( N  /  y )  <->  N  =  ( N  /  1
) ) )
38 breq2 4063 . . . . . . . . . . 11  |-  ( y  =  1  ->  (
( P ^ n
)  ||  y  <->  ( P ^ n )  ||  1 ) )
3938rabbidv 2765 . . . . . . . . . 10  |-  ( y  =  1  ->  { n  e.  NN0  |  ( P ^ n )  ||  y }  =  {
n  e.  NN0  | 
( P ^ n
)  ||  1 }
)
4039supeq1d 7115 . . . . . . . . 9  |-  ( y  =  1  ->  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  y } ,  RR ,  <  )  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  1 } ,  RR ,  <  ) )
4140oveq2d 5983 . . . . . . . 8  |-  ( y  =  1  ->  ( S  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  y } ,  RR ,  <  )
)  =  ( S  -  sup ( { n  e.  NN0  | 
( P ^ n
)  ||  1 } ,  RR ,  <  )
) )
4241eqeq2d 2219 . . . . . . 7  |-  ( y  =  1  ->  ( S  =  ( S  -  sup ( { n  e.  NN0  |  ( P ^ n )  ||  y } ,  RR ,  <  ) )  <->  S  =  ( S  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  1 } ,  RR ,  <  )
) ) )
4337, 42anbi12d 473 . . . . . 6  |-  ( y  =  1  ->  (
( N  =  ( N  /  y )  /\  S  =  ( S  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  y } ,  RR ,  <  )
) )  <->  ( N  =  ( N  / 
1 )  /\  S  =  ( S  -  sup ( { n  e. 
NN0  |  ( P ^ n )  ||  1 } ,  RR ,  <  ) ) ) ) )
4435, 43rspc2ev 2899 . . . . 5  |-  ( ( N  e.  ZZ  /\  1  e.  NN  /\  ( N  =  ( N  /  1 )  /\  S  =  ( S  -  sup ( { n  e.  NN0  |  ( P ^ n )  ||  1 } ,  RR ,  <  ) ) ) )  ->  E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y )  /\  S  =  ( sup ( { n  e.  NN0  |  ( P ^ n
)  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n )  ||  y } ,  RR ,  <  ) ) ) )
4526, 44mp3an2 1338 . . . 4  |-  ( ( N  e.  ZZ  /\  ( N  =  ( N  /  1 )  /\  S  =  ( S  -  sup ( { n  e.  NN0  |  ( P ^ n )  ||  1 } ,  RR ,  <  ) ) ) )  ->  E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y )  /\  S  =  ( sup ( { n  e.  NN0  |  ( P ^ n
)  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n )  ||  y } ,  RR ,  <  ) ) ) )
466, 9, 25, 45syl12anc 1248 . . 3  |-  ( ( P  e.  Prime  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y )  /\  S  =  ( sup ( { n  e.  NN0  |  ( P ^ n
)  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n )  ||  y } ,  RR ,  <  ) ) ) )
47 reex 8094 . . . . . 6  |-  RR  e.  _V
48 supex2g 7161 . . . . . 6  |-  ( RR  e.  _V  ->  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  N } ,  RR ,  <  )  e.  _V )
4947, 48ax-mp 5 . . . . 5  |-  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  N } ,  RR ,  <  )  e.  _V
5019, 49eqeltri 2280 . . . 4  |-  S  e. 
_V
512, 3pceu 12733 . . . . 5  |-  ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  ->  E! z E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y
)  /\  z  =  ( sup ( { n  e.  NN0  |  ( P ^ n )  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  y } ,  RR ,  <  )
) ) )
521, 51sylanr1 404 . . . 4  |-  ( ( P  e.  Prime  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  E! z E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y
)  /\  z  =  ( sup ( { n  e.  NN0  |  ( P ^ n )  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  y } ,  RR ,  <  )
) ) )
53 eqeq1 2214 . . . . . . 7  |-  ( z  =  S  ->  (
z  =  ( sup ( { n  e. 
NN0  |  ( P ^ n )  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  y } ,  RR ,  <  )
)  <->  S  =  ( sup ( { n  e. 
NN0  |  ( P ^ n )  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  y } ,  RR ,  <  )
) ) )
5453anbi2d 464 . . . . . 6  |-  ( z  =  S  ->  (
( N  =  ( x  /  y )  /\  z  =  ( sup ( { n  e.  NN0  |  ( P ^ n )  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  y } ,  RR ,  <  )
) )  <->  ( N  =  ( x  / 
y )  /\  S  =  ( sup ( { n  e.  NN0  |  ( P ^ n
)  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n )  ||  y } ,  RR ,  <  ) ) ) ) )
55542rexbidv 2533 . . . . 5  |-  ( z  =  S  ->  ( E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y )  /\  z  =  ( sup ( { n  e.  NN0  |  ( P ^ n
)  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n )  ||  y } ,  RR ,  <  ) ) )  <->  E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y
)  /\  S  =  ( sup ( { n  e.  NN0  |  ( P ^ n )  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  y } ,  RR ,  <  )
) ) ) )
5655iota2 5280 . . . 4  |-  ( ( S  e.  _V  /\  E! z E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y
)  /\  z  =  ( sup ( { n  e.  NN0  |  ( P ^ n )  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  y } ,  RR ,  <  )
) ) )  -> 
( E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y
)  /\  S  =  ( sup ( { n  e.  NN0  |  ( P ^ n )  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  y } ,  RR ,  <  )
) )  <->  ( iota z E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y )  /\  z  =  ( sup ( { n  e.  NN0  |  ( P ^ n
)  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n )  ||  y } ,  RR ,  <  ) ) ) )  =  S ) )
5750, 52, 56sylancr 414 . . 3  |-  ( ( P  e.  Prime  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y
)  /\  S  =  ( sup ( { n  e.  NN0  |  ( P ^ n )  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  y } ,  RR ,  <  )
) )  <->  ( iota z E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y )  /\  z  =  ( sup ( { n  e.  NN0  |  ( P ^ n
)  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n )  ||  y } ,  RR ,  <  ) ) ) )  =  S ) )
5846, 57mpbid 147 . 2  |-  ( ( P  e.  Prime  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( iota z E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y
)  /\  z  =  ( sup ( { n  e.  NN0  |  ( P ^ n )  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  y } ,  RR ,  <  )
) ) )  =  S )
595, 58eqtrd 2240 1  |-  ( ( P  e.  Prime  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( P  pCnt  N
)  =  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373   E!weu 2055    e. wcel 2178    =/= wne 2378   E.wrex 2487   {crab 2490   _Vcvv 2776   class class class wbr 4059   iotacio 5249   ` cfv 5290  (class class class)co 5967   supcsup 7110   RRcr 7959   0cc0 7960   1c1 7961    < clt 8142    - cmin 8278    / cdiv 8780   NNcn 9071   2c2 9122   NN0cn0 9330   ZZcz 9407   ZZ>=cuz 9683   QQcq 9775   ^cexp 10720    || cdvds 12213   Primecprime 12544    pCnt cpc 12722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078  ax-arch 8079  ax-caucvg 8080
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-isom 5299  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-1o 6525  df-2o 6526  df-er 6643  df-en 6851  df-sup 7112  df-inf 7113  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-n0 9331  df-z 9408  df-uz 9684  df-q 9776  df-rp 9811  df-fz 10166  df-fzo 10300  df-fl 10450  df-mod 10505  df-seqfrec 10630  df-exp 10721  df-cj 11268  df-re 11269  df-im 11270  df-rsqrt 11424  df-abs 11425  df-dvds 12214  df-gcd 12390  df-prm 12545  df-pc 12723
This theorem is referenced by:  pczcl  12736  pcmul  12739  pcdiv  12740  pc1  12743  pczdvds  12752  pczndvds  12754  pczndvds2  12756  pcneg  12763
  Copyright terms: Public domain W3C validator