ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  symdifxor GIF version

Theorem symdifxor 3263
Description: Expressing symmetric difference with exclusive-or or two differences. (Contributed by Jim Kingdon, 28-Jul-2018.)
Assertion
Ref Expression
symdifxor ((𝐴𝐵) ∪ (𝐵𝐴)) = {𝑥 ∣ (𝑥𝐴𝑥𝐵)}
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem symdifxor
StepHypRef Expression
1 eldif 3006 . . . 4 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴 ∧ ¬ 𝑥𝐵))
2 eldif 3006 . . . 4 (𝑥 ∈ (𝐵𝐴) ↔ (𝑥𝐵 ∧ ¬ 𝑥𝐴))
31, 2orbi12i 716 . . 3 ((𝑥 ∈ (𝐴𝐵) ∨ 𝑥 ∈ (𝐵𝐴)) ↔ ((𝑥𝐴 ∧ ¬ 𝑥𝐵) ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐴)))
4 elun 3139 . . 3 (𝑥 ∈ ((𝐴𝐵) ∪ (𝐵𝐴)) ↔ (𝑥 ∈ (𝐴𝐵) ∨ 𝑥 ∈ (𝐵𝐴)))
5 excxor 1314 . . . 4 ((𝑥𝐴𝑥𝐵) ↔ ((𝑥𝐴 ∧ ¬ 𝑥𝐵) ∨ (¬ 𝑥𝐴𝑥𝐵)))
6 ancom 262 . . . . 5 ((¬ 𝑥𝐴𝑥𝐵) ↔ (𝑥𝐵 ∧ ¬ 𝑥𝐴))
76orbi2i 714 . . . 4 (((𝑥𝐴 ∧ ¬ 𝑥𝐵) ∨ (¬ 𝑥𝐴𝑥𝐵)) ↔ ((𝑥𝐴 ∧ ¬ 𝑥𝐵) ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐴)))
85, 7bitri 182 . . 3 ((𝑥𝐴𝑥𝐵) ↔ ((𝑥𝐴 ∧ ¬ 𝑥𝐵) ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐴)))
93, 4, 83bitr4i 210 . 2 (𝑥 ∈ ((𝐴𝐵) ∪ (𝐵𝐴)) ↔ (𝑥𝐴𝑥𝐵))
109abbi2i 2202 1 ((𝐴𝐵) ∪ (𝐵𝐴)) = {𝑥 ∣ (𝑥𝐴𝑥𝐵)}
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 102  wo 664   = wceq 1289  wxo 1311  wcel 1438  {cab 2074  cdif 2994  cun 2995
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070
This theorem depends on definitions:  df-bi 115  df-tru 1292  df-xor 1312  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-v 2621  df-dif 2999  df-un 3001
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator