| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > symdifxor | GIF version | ||
| Description: Expressing symmetric difference with exclusive-or or two differences. (Contributed by Jim Kingdon, 28-Jul-2018.) |
| Ref | Expression |
|---|---|
| symdifxor | ⊢ ((𝐴 ∖ 𝐵) ∪ (𝐵 ∖ 𝐴)) = {𝑥 ∣ (𝑥 ∈ 𝐴 ⊻ 𝑥 ∈ 𝐵)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldif 3166 | . . . 4 ⊢ (𝑥 ∈ (𝐴 ∖ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) | |
| 2 | eldif 3166 | . . . 4 ⊢ (𝑥 ∈ (𝐵 ∖ 𝐴) ↔ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴)) | |
| 3 | 1, 2 | orbi12i 765 | . . 3 ⊢ ((𝑥 ∈ (𝐴 ∖ 𝐵) ∨ 𝑥 ∈ (𝐵 ∖ 𝐴)) ↔ ((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵) ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴))) |
| 4 | elun 3304 | . . 3 ⊢ (𝑥 ∈ ((𝐴 ∖ 𝐵) ∪ (𝐵 ∖ 𝐴)) ↔ (𝑥 ∈ (𝐴 ∖ 𝐵) ∨ 𝑥 ∈ (𝐵 ∖ 𝐴))) | |
| 5 | excxor 1389 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ⊻ 𝑥 ∈ 𝐵) ↔ ((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵) ∨ (¬ 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵))) | |
| 6 | ancom 266 | . . . . 5 ⊢ ((¬ 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴)) | |
| 7 | 6 | orbi2i 763 | . . . 4 ⊢ (((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵) ∨ (¬ 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) ↔ ((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵) ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴))) |
| 8 | 5, 7 | bitri 184 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ⊻ 𝑥 ∈ 𝐵) ↔ ((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵) ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴))) |
| 9 | 3, 4, 8 | 3bitr4i 212 | . 2 ⊢ (𝑥 ∈ ((𝐴 ∖ 𝐵) ∪ (𝐵 ∖ 𝐴)) ↔ (𝑥 ∈ 𝐴 ⊻ 𝑥 ∈ 𝐵)) |
| 10 | 9 | abbi2i 2311 | 1 ⊢ ((𝐴 ∖ 𝐵) ∪ (𝐵 ∖ 𝐴)) = {𝑥 ∣ (𝑥 ∈ 𝐴 ⊻ 𝑥 ∈ 𝐵)} |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∧ wa 104 ∨ wo 709 = wceq 1364 ⊻ wxo 1386 ∈ wcel 2167 {cab 2182 ∖ cdif 3154 ∪ cun 3155 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-xor 1387 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-dif 3159 df-un 3161 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |