Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > symdifxor | GIF version |
Description: Expressing symmetric difference with exclusive-or or two differences. (Contributed by Jim Kingdon, 28-Jul-2018.) |
Ref | Expression |
---|---|
symdifxor | ⊢ ((𝐴 ∖ 𝐵) ∪ (𝐵 ∖ 𝐴)) = {𝑥 ∣ (𝑥 ∈ 𝐴 ⊻ 𝑥 ∈ 𝐵)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldif 3107 | . . . 4 ⊢ (𝑥 ∈ (𝐴 ∖ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) | |
2 | eldif 3107 | . . . 4 ⊢ (𝑥 ∈ (𝐵 ∖ 𝐴) ↔ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴)) | |
3 | 1, 2 | orbi12i 754 | . . 3 ⊢ ((𝑥 ∈ (𝐴 ∖ 𝐵) ∨ 𝑥 ∈ (𝐵 ∖ 𝐴)) ↔ ((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵) ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴))) |
4 | elun 3244 | . . 3 ⊢ (𝑥 ∈ ((𝐴 ∖ 𝐵) ∪ (𝐵 ∖ 𝐴)) ↔ (𝑥 ∈ (𝐴 ∖ 𝐵) ∨ 𝑥 ∈ (𝐵 ∖ 𝐴))) | |
5 | excxor 1357 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ⊻ 𝑥 ∈ 𝐵) ↔ ((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵) ∨ (¬ 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵))) | |
6 | ancom 264 | . . . . 5 ⊢ ((¬ 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴)) | |
7 | 6 | orbi2i 752 | . . . 4 ⊢ (((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵) ∨ (¬ 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) ↔ ((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵) ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴))) |
8 | 5, 7 | bitri 183 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ⊻ 𝑥 ∈ 𝐵) ↔ ((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵) ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴))) |
9 | 3, 4, 8 | 3bitr4i 211 | . 2 ⊢ (𝑥 ∈ ((𝐴 ∖ 𝐵) ∪ (𝐵 ∖ 𝐴)) ↔ (𝑥 ∈ 𝐴 ⊻ 𝑥 ∈ 𝐵)) |
10 | 9 | abbi2i 2269 | 1 ⊢ ((𝐴 ∖ 𝐵) ∪ (𝐵 ∖ 𝐴)) = {𝑥 ∣ (𝑥 ∈ 𝐴 ⊻ 𝑥 ∈ 𝐵)} |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∧ wa 103 ∨ wo 698 = wceq 1332 ⊻ wxo 1354 ∈ wcel 2125 {cab 2140 ∖ cdif 3095 ∪ cun 3096 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-ext 2136 |
This theorem depends on definitions: df-bi 116 df-tru 1335 df-xor 1355 df-nf 1438 df-sb 1740 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-v 2711 df-dif 3100 df-un 3102 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |