ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  symdifxor GIF version

Theorem symdifxor 3443
Description: Expressing symmetric difference with exclusive-or or two differences. (Contributed by Jim Kingdon, 28-Jul-2018.)
Assertion
Ref Expression
symdifxor ((𝐴𝐵) ∪ (𝐵𝐴)) = {𝑥 ∣ (𝑥𝐴𝑥𝐵)}
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem symdifxor
StepHypRef Expression
1 eldif 3179 . . . 4 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴 ∧ ¬ 𝑥𝐵))
2 eldif 3179 . . . 4 (𝑥 ∈ (𝐵𝐴) ↔ (𝑥𝐵 ∧ ¬ 𝑥𝐴))
31, 2orbi12i 766 . . 3 ((𝑥 ∈ (𝐴𝐵) ∨ 𝑥 ∈ (𝐵𝐴)) ↔ ((𝑥𝐴 ∧ ¬ 𝑥𝐵) ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐴)))
4 elun 3318 . . 3 (𝑥 ∈ ((𝐴𝐵) ∪ (𝐵𝐴)) ↔ (𝑥 ∈ (𝐴𝐵) ∨ 𝑥 ∈ (𝐵𝐴)))
5 excxor 1398 . . . 4 ((𝑥𝐴𝑥𝐵) ↔ ((𝑥𝐴 ∧ ¬ 𝑥𝐵) ∨ (¬ 𝑥𝐴𝑥𝐵)))
6 ancom 266 . . . . 5 ((¬ 𝑥𝐴𝑥𝐵) ↔ (𝑥𝐵 ∧ ¬ 𝑥𝐴))
76orbi2i 764 . . . 4 (((𝑥𝐴 ∧ ¬ 𝑥𝐵) ∨ (¬ 𝑥𝐴𝑥𝐵)) ↔ ((𝑥𝐴 ∧ ¬ 𝑥𝐵) ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐴)))
85, 7bitri 184 . . 3 ((𝑥𝐴𝑥𝐵) ↔ ((𝑥𝐴 ∧ ¬ 𝑥𝐵) ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐴)))
93, 4, 83bitr4i 212 . 2 (𝑥 ∈ ((𝐴𝐵) ∪ (𝐵𝐴)) ↔ (𝑥𝐴𝑥𝐵))
109abbi2i 2321 1 ((𝐴𝐵) ∪ (𝐵𝐴)) = {𝑥 ∣ (𝑥𝐴𝑥𝐵)}
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 104  wo 710   = wceq 1373  wxo 1395  wcel 2177  {cab 2192  cdif 3167  cun 3168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-xor 1396  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-dif 3172  df-un 3174
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator