ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfis3 GIF version

Theorem tfis3 4508
Description: Transfinite Induction Schema, using implicit substitution. (Contributed by NM, 4-Nov-2003.)
Hypotheses
Ref Expression
tfis3.1 (𝑥 = 𝑦 → (𝜑𝜓))
tfis3.2 (𝑥 = 𝐴 → (𝜑𝜒))
tfis3.3 (𝑥 ∈ On → (∀𝑦𝑥 𝜓𝜑))
Assertion
Ref Expression
tfis3 (𝐴 ∈ On → 𝜒)
Distinct variable groups:   𝜓,𝑥   𝜑,𝑦   𝜒,𝑥   𝑥,𝐴   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑦)   𝐴(𝑦)

Proof of Theorem tfis3
StepHypRef Expression
1 tfis3.2 . 2 (𝑥 = 𝐴 → (𝜑𝜒))
2 tfis3.1 . . 3 (𝑥 = 𝑦 → (𝜑𝜓))
3 tfis3.3 . . 3 (𝑥 ∈ On → (∀𝑦𝑥 𝜓𝜑))
42, 3tfis2 4507 . 2 (𝑥 ∈ On → 𝜑)
51, 4vtoclga 2755 1 (𝐴 ∈ On → 𝜒)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104   = wceq 1332  wcel 1481  wral 2417  Oncon0 4293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-setind 4460
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-rab 2426  df-v 2691  df-in 3082  df-ss 3089  df-uni 3745  df-tr 4035  df-iord 4296  df-on 4298
This theorem is referenced by:  tfisi  4509  tfrlemi1  6237  tfr1onlemaccex  6253  tfrcllemaccex  6266  tfrcl  6269
  Copyright terms: Public domain W3C validator