| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tfis3 | GIF version | ||
| Description: Transfinite Induction Schema, using implicit substitution. (Contributed by NM, 4-Nov-2003.) |
| Ref | Expression |
|---|---|
| tfis3.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| tfis3.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) |
| tfis3.3 | ⊢ (𝑥 ∈ On → (∀𝑦 ∈ 𝑥 𝜓 → 𝜑)) |
| Ref | Expression |
|---|---|
| tfis3 | ⊢ (𝐴 ∈ On → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tfis3.2 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) | |
| 2 | tfis3.1 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 3 | tfis3.3 | . . 3 ⊢ (𝑥 ∈ On → (∀𝑦 ∈ 𝑥 𝜓 → 𝜑)) | |
| 4 | 2, 3 | tfis2 4677 | . 2 ⊢ (𝑥 ∈ On → 𝜑) |
| 5 | 1, 4 | vtoclga 2867 | 1 ⊢ (𝐴 ∈ On → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1395 ∈ wcel 2200 ∀wral 2508 Oncon0 4454 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-setind 4629 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-in 3203 df-ss 3210 df-uni 3889 df-tr 4183 df-iord 4457 df-on 4459 |
| This theorem is referenced by: tfisi 4679 tfrlemi1 6484 tfr1onlemaccex 6500 tfrcllemaccex 6513 tfrcl 6516 |
| Copyright terms: Public domain | W3C validator |