ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfunsn Unicode version

Theorem nfunsn 5530
Description: If the restriction of a class to a singleton is not a function, its value is the empty set. (Contributed by NM, 8-Aug-2010.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
nfunsn  |-  ( -. 
Fun  ( F  |`  { A } )  -> 
( F `  A
)  =  (/) )

Proof of Theorem nfunsn
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eumo 2051 . . . . . . 7  |-  ( E! y  A F y  ->  E* y  A F y )
2 vex 2733 . . . . . . . . . 10  |-  y  e. 
_V
32brres 4897 . . . . . . . . 9  |-  ( x ( F  |`  { A } ) y  <->  ( x F y  /\  x  e.  { A } ) )
4 velsn 3600 . . . . . . . . . . 11  |-  ( x  e.  { A }  <->  x  =  A )
5 breq1 3992 . . . . . . . . . . 11  |-  ( x  =  A  ->  (
x F y  <->  A F
y ) )
64, 5sylbi 120 . . . . . . . . . 10  |-  ( x  e.  { A }  ->  ( x F y  <-> 
A F y ) )
76biimpac 296 . . . . . . . . 9  |-  ( ( x F y  /\  x  e.  { A } )  ->  A F y )
83, 7sylbi 120 . . . . . . . 8  |-  ( x ( F  |`  { A } ) y  ->  A F y )
98moimi 2084 . . . . . . 7  |-  ( E* y  A F y  ->  E* y  x ( F  |`  { A } ) y )
101, 9syl 14 . . . . . 6  |-  ( E! y  A F y  ->  E* y  x ( F  |`  { A } ) y )
1110alrimiv 1867 . . . . 5  |-  ( E! y  A F y  ->  A. x E* y  x ( F  |`  { A } ) y )
12 relres 4919 . . . . 5  |-  Rel  ( F  |`  { A }
)
1311, 12jctil 310 . . . 4  |-  ( E! y  A F y  ->  ( Rel  ( F  |`  { A }
)  /\  A. x E* y  x ( F  |`  { A }
) y ) )
14 dffun6 5212 . . . 4  |-  ( Fun  ( F  |`  { A } )  <->  ( Rel  ( F  |`  { A } )  /\  A. x E* y  x ( F  |`  { A } ) y ) )
1513, 14sylibr 133 . . 3  |-  ( E! y  A F y  ->  Fun  ( F  |` 
{ A } ) )
1615con3i 627 . 2  |-  ( -. 
Fun  ( F  |`  { A } )  ->  -.  E! y  A F y )
17 tz6.12-2 5487 . 2  |-  ( -.  E! y  A F y  ->  ( F `  A )  =  (/) )
1816, 17syl 14 1  |-  ( -. 
Fun  ( F  |`  { A } )  -> 
( F `  A
)  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104   A.wal 1346    = wceq 1348   E!weu 2019   E*wmo 2020    e. wcel 2141   (/)c0 3414   {csn 3583   class class class wbr 3989    |` cres 4613   Rel wrel 4616   Fun wfun 5192   ` cfv 5198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-res 4623  df-iota 5160  df-fun 5200  df-fv 5206
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator