ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfunsn Unicode version

Theorem nfunsn 5664
Description: If the restriction of a class to a singleton is not a function, its value is the empty set. (Contributed by NM, 8-Aug-2010.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
nfunsn  |-  ( -. 
Fun  ( F  |`  { A } )  -> 
( F `  A
)  =  (/) )

Proof of Theorem nfunsn
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eumo 2109 . . . . . . 7  |-  ( E! y  A F y  ->  E* y  A F y )
2 vex 2802 . . . . . . . . . 10  |-  y  e. 
_V
32brres 5011 . . . . . . . . 9  |-  ( x ( F  |`  { A } ) y  <->  ( x F y  /\  x  e.  { A } ) )
4 velsn 3683 . . . . . . . . . . 11  |-  ( x  e.  { A }  <->  x  =  A )
5 breq1 4086 . . . . . . . . . . 11  |-  ( x  =  A  ->  (
x F y  <->  A F
y ) )
64, 5sylbi 121 . . . . . . . . . 10  |-  ( x  e.  { A }  ->  ( x F y  <-> 
A F y ) )
76biimpac 298 . . . . . . . . 9  |-  ( ( x F y  /\  x  e.  { A } )  ->  A F y )
83, 7sylbi 121 . . . . . . . 8  |-  ( x ( F  |`  { A } ) y  ->  A F y )
98moimi 2143 . . . . . . 7  |-  ( E* y  A F y  ->  E* y  x ( F  |`  { A } ) y )
101, 9syl 14 . . . . . 6  |-  ( E! y  A F y  ->  E* y  x ( F  |`  { A } ) y )
1110alrimiv 1920 . . . . 5  |-  ( E! y  A F y  ->  A. x E* y  x ( F  |`  { A } ) y )
12 relres 5033 . . . . 5  |-  Rel  ( F  |`  { A }
)
1311, 12jctil 312 . . . 4  |-  ( E! y  A F y  ->  ( Rel  ( F  |`  { A }
)  /\  A. x E* y  x ( F  |`  { A }
) y ) )
14 dffun6 5332 . . . 4  |-  ( Fun  ( F  |`  { A } )  <->  ( Rel  ( F  |`  { A } )  /\  A. x E* y  x ( F  |`  { A } ) y ) )
1513, 14sylibr 134 . . 3  |-  ( E! y  A F y  ->  Fun  ( F  |` 
{ A } ) )
1615con3i 635 . 2  |-  ( -. 
Fun  ( F  |`  { A } )  ->  -.  E! y  A F y )
17 tz6.12-2 5618 . 2  |-  ( -.  E! y  A F y  ->  ( F `  A )  =  (/) )
1816, 17syl 14 1  |-  ( -. 
Fun  ( F  |`  { A } )  -> 
( F `  A
)  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1393    = wceq 1395   E!weu 2077   E*wmo 2078    e. wcel 2200   (/)c0 3491   {csn 3666   class class class wbr 4083    |` cres 4721   Rel wrel 4724   Fun wfun 5312   ` cfv 5318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-res 4731  df-iota 5278  df-fun 5320  df-fv 5326
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator