ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfunsn Unicode version

Theorem nfunsn 5593
Description: If the restriction of a class to a singleton is not a function, its value is the empty set. (Contributed by NM, 8-Aug-2010.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
nfunsn  |-  ( -. 
Fun  ( F  |`  { A } )  -> 
( F `  A
)  =  (/) )

Proof of Theorem nfunsn
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eumo 2077 . . . . . . 7  |-  ( E! y  A F y  ->  E* y  A F y )
2 vex 2766 . . . . . . . . . 10  |-  y  e. 
_V
32brres 4952 . . . . . . . . 9  |-  ( x ( F  |`  { A } ) y  <->  ( x F y  /\  x  e.  { A } ) )
4 velsn 3639 . . . . . . . . . . 11  |-  ( x  e.  { A }  <->  x  =  A )
5 breq1 4036 . . . . . . . . . . 11  |-  ( x  =  A  ->  (
x F y  <->  A F
y ) )
64, 5sylbi 121 . . . . . . . . . 10  |-  ( x  e.  { A }  ->  ( x F y  <-> 
A F y ) )
76biimpac 298 . . . . . . . . 9  |-  ( ( x F y  /\  x  e.  { A } )  ->  A F y )
83, 7sylbi 121 . . . . . . . 8  |-  ( x ( F  |`  { A } ) y  ->  A F y )
98moimi 2110 . . . . . . 7  |-  ( E* y  A F y  ->  E* y  x ( F  |`  { A } ) y )
101, 9syl 14 . . . . . 6  |-  ( E! y  A F y  ->  E* y  x ( F  |`  { A } ) y )
1110alrimiv 1888 . . . . 5  |-  ( E! y  A F y  ->  A. x E* y  x ( F  |`  { A } ) y )
12 relres 4974 . . . . 5  |-  Rel  ( F  |`  { A }
)
1311, 12jctil 312 . . . 4  |-  ( E! y  A F y  ->  ( Rel  ( F  |`  { A }
)  /\  A. x E* y  x ( F  |`  { A }
) y ) )
14 dffun6 5272 . . . 4  |-  ( Fun  ( F  |`  { A } )  <->  ( Rel  ( F  |`  { A } )  /\  A. x E* y  x ( F  |`  { A } ) y ) )
1513, 14sylibr 134 . . 3  |-  ( E! y  A F y  ->  Fun  ( F  |` 
{ A } ) )
1615con3i 633 . 2  |-  ( -. 
Fun  ( F  |`  { A } )  ->  -.  E! y  A F y )
17 tz6.12-2 5549 . 2  |-  ( -.  E! y  A F y  ->  ( F `  A )  =  (/) )
1816, 17syl 14 1  |-  ( -. 
Fun  ( F  |`  { A } )  -> 
( F `  A
)  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1362    = wceq 1364   E!weu 2045   E*wmo 2046    e. wcel 2167   (/)c0 3450   {csn 3622   class class class wbr 4033    |` cres 4665   Rel wrel 4668   Fun wfun 5252   ` cfv 5258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-res 4675  df-iota 5219  df-fun 5260  df-fv 5266
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator