ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfunsn Unicode version

Theorem nfunsn 5550
Description: If the restriction of a class to a singleton is not a function, its value is the empty set. (Contributed by NM, 8-Aug-2010.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
nfunsn  |-  ( -. 
Fun  ( F  |`  { A } )  -> 
( F `  A
)  =  (/) )

Proof of Theorem nfunsn
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eumo 2058 . . . . . . 7  |-  ( E! y  A F y  ->  E* y  A F y )
2 vex 2741 . . . . . . . . . 10  |-  y  e. 
_V
32brres 4914 . . . . . . . . 9  |-  ( x ( F  |`  { A } ) y  <->  ( x F y  /\  x  e.  { A } ) )
4 velsn 3610 . . . . . . . . . . 11  |-  ( x  e.  { A }  <->  x  =  A )
5 breq1 4007 . . . . . . . . . . 11  |-  ( x  =  A  ->  (
x F y  <->  A F
y ) )
64, 5sylbi 121 . . . . . . . . . 10  |-  ( x  e.  { A }  ->  ( x F y  <-> 
A F y ) )
76biimpac 298 . . . . . . . . 9  |-  ( ( x F y  /\  x  e.  { A } )  ->  A F y )
83, 7sylbi 121 . . . . . . . 8  |-  ( x ( F  |`  { A } ) y  ->  A F y )
98moimi 2091 . . . . . . 7  |-  ( E* y  A F y  ->  E* y  x ( F  |`  { A } ) y )
101, 9syl 14 . . . . . 6  |-  ( E! y  A F y  ->  E* y  x ( F  |`  { A } ) y )
1110alrimiv 1874 . . . . 5  |-  ( E! y  A F y  ->  A. x E* y  x ( F  |`  { A } ) y )
12 relres 4936 . . . . 5  |-  Rel  ( F  |`  { A }
)
1311, 12jctil 312 . . . 4  |-  ( E! y  A F y  ->  ( Rel  ( F  |`  { A }
)  /\  A. x E* y  x ( F  |`  { A }
) y ) )
14 dffun6 5231 . . . 4  |-  ( Fun  ( F  |`  { A } )  <->  ( Rel  ( F  |`  { A } )  /\  A. x E* y  x ( F  |`  { A } ) y ) )
1513, 14sylibr 134 . . 3  |-  ( E! y  A F y  ->  Fun  ( F  |` 
{ A } ) )
1615con3i 632 . 2  |-  ( -. 
Fun  ( F  |`  { A } )  ->  -.  E! y  A F y )
17 tz6.12-2 5507 . 2  |-  ( -.  E! y  A F y  ->  ( F `  A )  =  (/) )
1816, 17syl 14 1  |-  ( -. 
Fun  ( F  |`  { A } )  -> 
( F `  A
)  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1351    = wceq 1353   E!weu 2026   E*wmo 2027    e. wcel 2148   (/)c0 3423   {csn 3593   class class class wbr 4004    |` cres 4629   Rel wrel 4632   Fun wfun 5211   ` cfv 5217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2740  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-br 4005  df-opab 4066  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-res 4639  df-iota 5179  df-fun 5219  df-fv 5225
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator