| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1oprg | Unicode version | ||
| Description: An unordered pair of ordered pairs with different elements is a one-to-one onto function. (Contributed by Alexander van der Vekens, 14-Aug-2017.) |
| Ref | Expression |
|---|---|
| f1oprg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1osng 5586 |
. . . . 5
| |
| 2 | 1 | ad2antrr 488 |
. . . 4
|
| 3 | f1osng 5586 |
. . . . 5
| |
| 4 | 3 | ad2antlr 489 |
. . . 4
|
| 5 | disjsn2 3706 |
. . . . 5
| |
| 6 | 5 | ad2antrl 490 |
. . . 4
|
| 7 | disjsn2 3706 |
. . . . 5
| |
| 8 | 7 | ad2antll 491 |
. . . 4
|
| 9 | f1oun 5564 |
. . . 4
| |
| 10 | 2, 4, 6, 8, 9 | syl22anc 1251 |
. . 3
|
| 11 | df-pr 3650 |
. . . . . 6
| |
| 12 | 11 | eqcomi 2211 |
. . . . 5
|
| 13 | 12 | a1i 9 |
. . . 4
|
| 14 | df-pr 3650 |
. . . . . 6
| |
| 15 | 14 | eqcomi 2211 |
. . . . 5
|
| 16 | 15 | a1i 9 |
. . . 4
|
| 17 | df-pr 3650 |
. . . . . 6
| |
| 18 | 17 | eqcomi 2211 |
. . . . 5
|
| 19 | 18 | a1i 9 |
. . . 4
|
| 20 | 13, 16, 19 | f1oeq123d 5538 |
. . 3
|
| 21 | 10, 20 | mpbid 147 |
. 2
|
| 22 | 21 | ex 115 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-br 4060 df-opab 4122 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 |
| This theorem is referenced by: en2prd 6933 |
| Copyright terms: Public domain | W3C validator |