Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > f1oprg | Unicode version |
Description: An unordered pair of ordered pairs with different elements is a one-to-one onto function. (Contributed by Alexander van der Vekens, 14-Aug-2017.) |
Ref | Expression |
---|---|
f1oprg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1osng 5473 | . . . . 5 | |
2 | 1 | ad2antrr 480 | . . . 4 |
3 | f1osng 5473 | . . . . 5 | |
4 | 3 | ad2antlr 481 | . . . 4 |
5 | disjsn2 3639 | . . . . 5 | |
6 | 5 | ad2antrl 482 | . . . 4 |
7 | disjsn2 3639 | . . . . 5 | |
8 | 7 | ad2antll 483 | . . . 4 |
9 | f1oun 5452 | . . . 4 | |
10 | 2, 4, 6, 8, 9 | syl22anc 1229 | . . 3 |
11 | df-pr 3583 | . . . . . 6 | |
12 | 11 | eqcomi 2169 | . . . . 5 |
13 | 12 | a1i 9 | . . . 4 |
14 | df-pr 3583 | . . . . . 6 | |
15 | 14 | eqcomi 2169 | . . . . 5 |
16 | 15 | a1i 9 | . . . 4 |
17 | df-pr 3583 | . . . . . 6 | |
18 | 17 | eqcomi 2169 | . . . . 5 |
19 | 18 | a1i 9 | . . . 4 |
20 | 13, 16, 19 | f1oeq123d 5427 | . . 3 |
21 | 10, 20 | mpbid 146 | . 2 |
22 | 21 | ex 114 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 wcel 2136 wne 2336 cun 3114 cin 3115 c0 3409 csn 3576 cpr 3577 cop 3579 wf1o 5187 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |