ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1oprg Unicode version

Theorem f1oprg 5470
Description: An unordered pair of ordered pairs with different elements is a one-to-one onto function. (Contributed by Alexander van der Vekens, 14-Aug-2017.)
Assertion
Ref Expression
f1oprg  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  ( C  e.  X  /\  D  e.  Y ) )  -> 
( ( A  =/= 
C  /\  B  =/=  D )  ->  { <. A ,  B >. ,  <. C ,  D >. } : { A ,  C } -1-1-onto-> { B ,  D }
) )

Proof of Theorem f1oprg
StepHypRef Expression
1 f1osng 5467 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  W )  ->  { <. A ,  B >. } : { A }
-1-1-onto-> { B } )
21ad2antrr 480 . . . 4  |-  ( ( ( ( A  e.  V  /\  B  e.  W )  /\  ( C  e.  X  /\  D  e.  Y )
)  /\  ( A  =/=  C  /\  B  =/= 
D ) )  ->  { <. A ,  B >. } : { A }
-1-1-onto-> { B } )
3 f1osng 5467 . . . . 5  |-  ( ( C  e.  X  /\  D  e.  Y )  ->  { <. C ,  D >. } : { C }
-1-1-onto-> { D } )
43ad2antlr 481 . . . 4  |-  ( ( ( ( A  e.  V  /\  B  e.  W )  /\  ( C  e.  X  /\  D  e.  Y )
)  /\  ( A  =/=  C  /\  B  =/= 
D ) )  ->  { <. C ,  D >. } : { C }
-1-1-onto-> { D } )
5 disjsn2 3633 . . . . 5  |-  ( A  =/=  C  ->  ( { A }  i^i  { C } )  =  (/) )
65ad2antrl 482 . . . 4  |-  ( ( ( ( A  e.  V  /\  B  e.  W )  /\  ( C  e.  X  /\  D  e.  Y )
)  /\  ( A  =/=  C  /\  B  =/= 
D ) )  -> 
( { A }  i^i  { C } )  =  (/) )
7 disjsn2 3633 . . . . 5  |-  ( B  =/=  D  ->  ( { B }  i^i  { D } )  =  (/) )
87ad2antll 483 . . . 4  |-  ( ( ( ( A  e.  V  /\  B  e.  W )  /\  ( C  e.  X  /\  D  e.  Y )
)  /\  ( A  =/=  C  /\  B  =/= 
D ) )  -> 
( { B }  i^i  { D } )  =  (/) )
9 f1oun 5446 . . . 4  |-  ( ( ( { <. A ,  B >. } : { A } -1-1-onto-> { B }  /\  {
<. C ,  D >. } : { C } -1-1-onto-> { D } )  /\  (
( { A }  i^i  { C } )  =  (/)  /\  ( { B }  i^i  { D } )  =  (/) ) )  ->  ( { <. A ,  B >. }  u.  { <. C ,  D >. } ) : ( { A }  u.  { C } ) -1-1-onto-> ( { B }  u.  { D } ) )
102, 4, 6, 8, 9syl22anc 1228 . . 3  |-  ( ( ( ( A  e.  V  /\  B  e.  W )  /\  ( C  e.  X  /\  D  e.  Y )
)  /\  ( A  =/=  C  /\  B  =/= 
D ) )  -> 
( { <. A ,  B >. }  u.  { <. C ,  D >. } ) : ( { A }  u.  { C } ) -1-1-onto-> ( { B }  u.  { D } ) )
11 df-pr 3577 . . . . . 6  |-  { <. A ,  B >. ,  <. C ,  D >. }  =  ( { <. A ,  B >. }  u.  { <. C ,  D >. } )
1211eqcomi 2168 . . . . 5  |-  ( {
<. A ,  B >. }  u.  { <. C ,  D >. } )  =  { <. A ,  B >. ,  <. C ,  D >. }
1312a1i 9 . . . 4  |-  ( ( ( ( A  e.  V  /\  B  e.  W )  /\  ( C  e.  X  /\  D  e.  Y )
)  /\  ( A  =/=  C  /\  B  =/= 
D ) )  -> 
( { <. A ,  B >. }  u.  { <. C ,  D >. } )  =  { <. A ,  B >. ,  <. C ,  D >. } )
14 df-pr 3577 . . . . . 6  |-  { A ,  C }  =  ( { A }  u.  { C } )
1514eqcomi 2168 . . . . 5  |-  ( { A }  u.  { C } )  =  { A ,  C }
1615a1i 9 . . . 4  |-  ( ( ( ( A  e.  V  /\  B  e.  W )  /\  ( C  e.  X  /\  D  e.  Y )
)  /\  ( A  =/=  C  /\  B  =/= 
D ) )  -> 
( { A }  u.  { C } )  =  { A ,  C } )
17 df-pr 3577 . . . . . 6  |-  { B ,  D }  =  ( { B }  u.  { D } )
1817eqcomi 2168 . . . . 5  |-  ( { B }  u.  { D } )  =  { B ,  D }
1918a1i 9 . . . 4  |-  ( ( ( ( A  e.  V  /\  B  e.  W )  /\  ( C  e.  X  /\  D  e.  Y )
)  /\  ( A  =/=  C  /\  B  =/= 
D ) )  -> 
( { B }  u.  { D } )  =  { B ,  D } )
2013, 16, 19f1oeq123d 5421 . . 3  |-  ( ( ( ( A  e.  V  /\  B  e.  W )  /\  ( C  e.  X  /\  D  e.  Y )
)  /\  ( A  =/=  C  /\  B  =/= 
D ) )  -> 
( ( { <. A ,  B >. }  u.  {
<. C ,  D >. } ) : ( { A }  u.  { C } ) -1-1-onto-> ( { B }  u.  { D } )  <->  { <. A ,  B >. ,  <. C ,  D >. } : { A ,  C } -1-1-onto-> { B ,  D } ) )
2110, 20mpbid 146 . 2  |-  ( ( ( ( A  e.  V  /\  B  e.  W )  /\  ( C  e.  X  /\  D  e.  Y )
)  /\  ( A  =/=  C  /\  B  =/= 
D ) )  ->  { <. A ,  B >. ,  <. C ,  D >. } : { A ,  C } -1-1-onto-> { B ,  D } )
2221ex 114 1  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  ( C  e.  X  /\  D  e.  Y ) )  -> 
( ( A  =/= 
C  /\  B  =/=  D )  ->  { <. A ,  B >. ,  <. C ,  D >. } : { A ,  C } -1-1-onto-> { B ,  D }
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1342    e. wcel 2135    =/= wne 2334    u. cun 3109    i^i cin 3110   (/)c0 3404   {csn 3570   {cpr 3571   <.cop 3573   -1-1-onto->wf1o 5181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-14 2138  ax-ext 2146  ax-sep 4094  ax-pow 4147  ax-pr 4181
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-ral 2447  df-rex 2448  df-v 2723  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-nul 3405  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-br 3977  df-opab 4038  df-id 4265  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-fun 5184  df-fn 5185  df-f 5186  df-f1 5187  df-fo 5188  df-f1o 5189
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator