ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1oprg Unicode version

Theorem f1oprg 5486
Description: An unordered pair of ordered pairs with different elements is a one-to-one onto function. (Contributed by Alexander van der Vekens, 14-Aug-2017.)
Assertion
Ref Expression
f1oprg  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  ( C  e.  X  /\  D  e.  Y ) )  -> 
( ( A  =/= 
C  /\  B  =/=  D )  ->  { <. A ,  B >. ,  <. C ,  D >. } : { A ,  C } -1-1-onto-> { B ,  D }
) )

Proof of Theorem f1oprg
StepHypRef Expression
1 f1osng 5483 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  W )  ->  { <. A ,  B >. } : { A }
-1-1-onto-> { B } )
21ad2antrr 485 . . . 4  |-  ( ( ( ( A  e.  V  /\  B  e.  W )  /\  ( C  e.  X  /\  D  e.  Y )
)  /\  ( A  =/=  C  /\  B  =/= 
D ) )  ->  { <. A ,  B >. } : { A }
-1-1-onto-> { B } )
3 f1osng 5483 . . . . 5  |-  ( ( C  e.  X  /\  D  e.  Y )  ->  { <. C ,  D >. } : { C }
-1-1-onto-> { D } )
43ad2antlr 486 . . . 4  |-  ( ( ( ( A  e.  V  /\  B  e.  W )  /\  ( C  e.  X  /\  D  e.  Y )
)  /\  ( A  =/=  C  /\  B  =/= 
D ) )  ->  { <. C ,  D >. } : { C }
-1-1-onto-> { D } )
5 disjsn2 3646 . . . . 5  |-  ( A  =/=  C  ->  ( { A }  i^i  { C } )  =  (/) )
65ad2antrl 487 . . . 4  |-  ( ( ( ( A  e.  V  /\  B  e.  W )  /\  ( C  e.  X  /\  D  e.  Y )
)  /\  ( A  =/=  C  /\  B  =/= 
D ) )  -> 
( { A }  i^i  { C } )  =  (/) )
7 disjsn2 3646 . . . . 5  |-  ( B  =/=  D  ->  ( { B }  i^i  { D } )  =  (/) )
87ad2antll 488 . . . 4  |-  ( ( ( ( A  e.  V  /\  B  e.  W )  /\  ( C  e.  X  /\  D  e.  Y )
)  /\  ( A  =/=  C  /\  B  =/= 
D ) )  -> 
( { B }  i^i  { D } )  =  (/) )
9 f1oun 5462 . . . 4  |-  ( ( ( { <. A ,  B >. } : { A } -1-1-onto-> { B }  /\  {
<. C ,  D >. } : { C } -1-1-onto-> { D } )  /\  (
( { A }  i^i  { C } )  =  (/)  /\  ( { B }  i^i  { D } )  =  (/) ) )  ->  ( { <. A ,  B >. }  u.  { <. C ,  D >. } ) : ( { A }  u.  { C } ) -1-1-onto-> ( { B }  u.  { D } ) )
102, 4, 6, 8, 9syl22anc 1234 . . 3  |-  ( ( ( ( A  e.  V  /\  B  e.  W )  /\  ( C  e.  X  /\  D  e.  Y )
)  /\  ( A  =/=  C  /\  B  =/= 
D ) )  -> 
( { <. A ,  B >. }  u.  { <. C ,  D >. } ) : ( { A }  u.  { C } ) -1-1-onto-> ( { B }  u.  { D } ) )
11 df-pr 3590 . . . . . 6  |-  { <. A ,  B >. ,  <. C ,  D >. }  =  ( { <. A ,  B >. }  u.  { <. C ,  D >. } )
1211eqcomi 2174 . . . . 5  |-  ( {
<. A ,  B >. }  u.  { <. C ,  D >. } )  =  { <. A ,  B >. ,  <. C ,  D >. }
1312a1i 9 . . . 4  |-  ( ( ( ( A  e.  V  /\  B  e.  W )  /\  ( C  e.  X  /\  D  e.  Y )
)  /\  ( A  =/=  C  /\  B  =/= 
D ) )  -> 
( { <. A ,  B >. }  u.  { <. C ,  D >. } )  =  { <. A ,  B >. ,  <. C ,  D >. } )
14 df-pr 3590 . . . . . 6  |-  { A ,  C }  =  ( { A }  u.  { C } )
1514eqcomi 2174 . . . . 5  |-  ( { A }  u.  { C } )  =  { A ,  C }
1615a1i 9 . . . 4  |-  ( ( ( ( A  e.  V  /\  B  e.  W )  /\  ( C  e.  X  /\  D  e.  Y )
)  /\  ( A  =/=  C  /\  B  =/= 
D ) )  -> 
( { A }  u.  { C } )  =  { A ,  C } )
17 df-pr 3590 . . . . . 6  |-  { B ,  D }  =  ( { B }  u.  { D } )
1817eqcomi 2174 . . . . 5  |-  ( { B }  u.  { D } )  =  { B ,  D }
1918a1i 9 . . . 4  |-  ( ( ( ( A  e.  V  /\  B  e.  W )  /\  ( C  e.  X  /\  D  e.  Y )
)  /\  ( A  =/=  C  /\  B  =/= 
D ) )  -> 
( { B }  u.  { D } )  =  { B ,  D } )
2013, 16, 19f1oeq123d 5437 . . 3  |-  ( ( ( ( A  e.  V  /\  B  e.  W )  /\  ( C  e.  X  /\  D  e.  Y )
)  /\  ( A  =/=  C  /\  B  =/= 
D ) )  -> 
( ( { <. A ,  B >. }  u.  {
<. C ,  D >. } ) : ( { A }  u.  { C } ) -1-1-onto-> ( { B }  u.  { D } )  <->  { <. A ,  B >. ,  <. C ,  D >. } : { A ,  C } -1-1-onto-> { B ,  D } ) )
2110, 20mpbid 146 . 2  |-  ( ( ( ( A  e.  V  /\  B  e.  W )  /\  ( C  e.  X  /\  D  e.  Y )
)  /\  ( A  =/=  C  /\  B  =/= 
D ) )  ->  { <. A ,  B >. ,  <. C ,  D >. } : { A ,  C } -1-1-onto-> { B ,  D } )
2221ex 114 1  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  ( C  e.  X  /\  D  e.  Y ) )  -> 
( ( A  =/= 
C  /\  B  =/=  D )  ->  { <. A ,  B >. ,  <. C ,  D >. } : { A ,  C } -1-1-onto-> { B ,  D }
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348    e. wcel 2141    =/= wne 2340    u. cun 3119    i^i cin 3120   (/)c0 3414   {csn 3583   {cpr 3584   <.cop 3586   -1-1-onto->wf1o 5197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator