Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > f1oprg | Unicode version |
Description: An unordered pair of ordered pairs with different elements is a one-to-one onto function. (Contributed by Alexander van der Vekens, 14-Aug-2017.) |
Ref | Expression |
---|---|
f1oprg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1osng 5481 | . . . . 5 | |
2 | 1 | ad2antrr 485 | . . . 4 |
3 | f1osng 5481 | . . . . 5 | |
4 | 3 | ad2antlr 486 | . . . 4 |
5 | disjsn2 3644 | . . . . 5 | |
6 | 5 | ad2antrl 487 | . . . 4 |
7 | disjsn2 3644 | . . . . 5 | |
8 | 7 | ad2antll 488 | . . . 4 |
9 | f1oun 5460 | . . . 4 | |
10 | 2, 4, 6, 8, 9 | syl22anc 1234 | . . 3 |
11 | df-pr 3588 | . . . . . 6 | |
12 | 11 | eqcomi 2174 | . . . . 5 |
13 | 12 | a1i 9 | . . . 4 |
14 | df-pr 3588 | . . . . . 6 | |
15 | 14 | eqcomi 2174 | . . . . 5 |
16 | 15 | a1i 9 | . . . 4 |
17 | df-pr 3588 | . . . . . 6 | |
18 | 17 | eqcomi 2174 | . . . . 5 |
19 | 18 | a1i 9 | . . . 4 |
20 | 13, 16, 19 | f1oeq123d 5435 | . . 3 |
21 | 10, 20 | mpbid 146 | . 2 |
22 | 21 | ex 114 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 wcel 2141 wne 2340 cun 3119 cin 3120 c0 3414 csn 3581 cpr 3582 cop 3584 wf1o 5195 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-br 3988 df-opab 4049 df-id 4276 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-fun 5198 df-fn 5199 df-f 5200 df-f1 5201 df-fo 5202 df-f1o 5203 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |