ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tz6.12-2 GIF version

Theorem tz6.12-2 5366
Description: Function value when 𝐹 is not a function. Theorem 6.12(2) of [TakeutiZaring] p. 27. (Contributed by NM, 30-Apr-2004.) (Proof shortened by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
tz6.12-2 (¬ ∃!𝑥 𝐴𝐹𝑥 → (𝐹𝐴) = ∅)
Distinct variable groups:   𝑥,𝐹   𝑥,𝐴

Proof of Theorem tz6.12-2
StepHypRef Expression
1 df-fv 5089 . 2 (𝐹𝐴) = (℩𝑥𝐴𝐹𝑥)
2 iotanul 5061 . 2 (¬ ∃!𝑥 𝐴𝐹𝑥 → (℩𝑥𝐴𝐹𝑥) = ∅)
31, 2syl5eq 2159 1 (¬ ∃!𝑥 𝐴𝐹𝑥 → (𝐹𝐴) = ∅)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1314  ∃!weu 1975  c0 3329   class class class wbr 3895  cio 5044  cfv 5081
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097
This theorem depends on definitions:  df-bi 116  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ral 2395  df-rex 2396  df-v 2659  df-dif 3039  df-in 3043  df-ss 3050  df-nul 3330  df-sn 3499  df-uni 3703  df-iota 5046  df-fv 5089
This theorem is referenced by:  fvprc  5369  ndmfvg  5406  nfunsn  5409
  Copyright terms: Public domain W3C validator