![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > tz6.12-2 | GIF version |
Description: Function value when 𝐹 is not a function. Theorem 6.12(2) of [TakeutiZaring] p. 27. (Contributed by NM, 30-Apr-2004.) (Proof shortened by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
tz6.12-2 | ⊢ (¬ ∃!𝑥 𝐴𝐹𝑥 → (𝐹‘𝐴) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fv 5089 | . 2 ⊢ (𝐹‘𝐴) = (℩𝑥𝐴𝐹𝑥) | |
2 | iotanul 5061 | . 2 ⊢ (¬ ∃!𝑥 𝐴𝐹𝑥 → (℩𝑥𝐴𝐹𝑥) = ∅) | |
3 | 1, 2 | syl5eq 2159 | 1 ⊢ (¬ ∃!𝑥 𝐴𝐹𝑥 → (𝐹‘𝐴) = ∅) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1314 ∃!weu 1975 ∅c0 3329 class class class wbr 3895 ℩cio 5044 ‘cfv 5081 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 586 ax-in2 587 ax-io 681 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-10 1466 ax-11 1467 ax-i12 1468 ax-bndl 1469 ax-4 1470 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 ax-ext 2097 |
This theorem depends on definitions: df-bi 116 df-tru 1317 df-fal 1320 df-nf 1420 df-sb 1719 df-eu 1978 df-clab 2102 df-cleq 2108 df-clel 2111 df-nfc 2244 df-ral 2395 df-rex 2396 df-v 2659 df-dif 3039 df-in 3043 df-ss 3050 df-nul 3330 df-sn 3499 df-uni 3703 df-iota 5046 df-fv 5089 |
This theorem is referenced by: fvprc 5369 ndmfvg 5406 nfunsn 5409 |
Copyright terms: Public domain | W3C validator |