ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ndmfvg Unicode version

Theorem ndmfvg 5585
Description: The value of a class outside its domain is the empty set. (Contributed by Jim Kingdon, 15-Jan-2019.)
Assertion
Ref Expression
ndmfvg  |-  ( ( A  e.  _V  /\  -.  A  e.  dom  F )  ->  ( F `  A )  =  (/) )

Proof of Theorem ndmfvg
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 euex 2072 . . . . 5  |-  ( E! x  A F x  ->  E. x  A F x )
2 eldmg 4857 . . . . 5  |-  ( A  e.  _V  ->  ( A  e.  dom  F  <->  E. x  A F x ) )
31, 2imbitrrid 156 . . . 4  |-  ( A  e.  _V  ->  ( E! x  A F x  ->  A  e.  dom  F ) )
43con3d 632 . . 3  |-  ( A  e.  _V  ->  ( -.  A  e.  dom  F  ->  -.  E! x  A F x ) )
5 tz6.12-2 5545 . . 3  |-  ( -.  E! x  A F x  ->  ( F `  A )  =  (/) )
64, 5syl6 33 . 2  |-  ( A  e.  _V  ->  ( -.  A  e.  dom  F  ->  ( F `  A )  =  (/) ) )
76imp 124 1  |-  ( ( A  e.  _V  /\  -.  A  e.  dom  F )  ->  ( F `  A )  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    = wceq 1364   E.wex 1503   E!weu 2042    e. wcel 2164   _Vcvv 2760   (/)c0 3446   class class class wbr 4029   dom cdm 4659   ` cfv 5254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-dm 4669  df-iota 5215  df-fv 5262
This theorem is referenced by:  ovprc  5953  wrdsymb0  10946  sumnul  11567
  Copyright terms: Public domain W3C validator