| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ndmfvg | Unicode version | ||
| Description: The value of a class outside its domain is the empty set. (Contributed by Jim Kingdon, 15-Jan-2019.) |
| Ref | Expression |
|---|---|
| ndmfvg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | euex 2107 |
. . . . 5
| |
| 2 | eldmg 4918 |
. . . . 5
| |
| 3 | 1, 2 | imbitrrid 156 |
. . . 4
|
| 4 | 3 | con3d 634 |
. . 3
|
| 5 | tz6.12-2 5618 |
. . 3
| |
| 6 | 4, 5 | syl6 33 |
. 2
|
| 7 | 6 | imp 124 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-dm 4729 df-iota 5278 df-fv 5326 |
| This theorem is referenced by: ovprc 6037 wrdsymb0 11104 lsw0 11119 pfxclz 11211 sumnul 11935 structiedg0val 15841 |
| Copyright terms: Public domain | W3C validator |