ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ndmfvg Unicode version

Theorem ndmfvg 5517
Description: The value of a class outside its domain is the empty set. (Contributed by Jim Kingdon, 15-Jan-2019.)
Assertion
Ref Expression
ndmfvg  |-  ( ( A  e.  _V  /\  -.  A  e.  dom  F )  ->  ( F `  A )  =  (/) )

Proof of Theorem ndmfvg
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 euex 2044 . . . . 5  |-  ( E! x  A F x  ->  E. x  A F x )
2 eldmg 4799 . . . . 5  |-  ( A  e.  _V  ->  ( A  e.  dom  F  <->  E. x  A F x ) )
31, 2syl5ibr 155 . . . 4  |-  ( A  e.  _V  ->  ( E! x  A F x  ->  A  e.  dom  F ) )
43con3d 621 . . 3  |-  ( A  e.  _V  ->  ( -.  A  e.  dom  F  ->  -.  E! x  A F x ) )
5 tz6.12-2 5477 . . 3  |-  ( -.  E! x  A F x  ->  ( F `  A )  =  (/) )
64, 5syl6 33 . 2  |-  ( A  e.  _V  ->  ( -.  A  e.  dom  F  ->  ( F `  A )  =  (/) ) )
76imp 123 1  |-  ( ( A  e.  _V  /\  -.  A  e.  dom  F )  ->  ( F `  A )  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    = wceq 1343   E.wex 1480   E!weu 2014    e. wcel 2136   _Vcvv 2726   (/)c0 3409   class class class wbr 3982   dom cdm 4604   ` cfv 5188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-dm 4614  df-iota 5153  df-fv 5196
This theorem is referenced by:  ovprc  5877  sumnul  11365
  Copyright terms: Public domain W3C validator