ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ndmfvg Unicode version

Theorem ndmfvg 5547
Description: The value of a class outside its domain is the empty set. (Contributed by Jim Kingdon, 15-Jan-2019.)
Assertion
Ref Expression
ndmfvg  |-  ( ( A  e.  _V  /\  -.  A  e.  dom  F )  ->  ( F `  A )  =  (/) )

Proof of Theorem ndmfvg
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 euex 2056 . . . . 5  |-  ( E! x  A F x  ->  E. x  A F x )
2 eldmg 4823 . . . . 5  |-  ( A  e.  _V  ->  ( A  e.  dom  F  <->  E. x  A F x ) )
31, 2imbitrrid 156 . . . 4  |-  ( A  e.  _V  ->  ( E! x  A F x  ->  A  e.  dom  F ) )
43con3d 631 . . 3  |-  ( A  e.  _V  ->  ( -.  A  e.  dom  F  ->  -.  E! x  A F x ) )
5 tz6.12-2 5507 . . 3  |-  ( -.  E! x  A F x  ->  ( F `  A )  =  (/) )
64, 5syl6 33 . 2  |-  ( A  e.  _V  ->  ( -.  A  e.  dom  F  ->  ( F `  A )  =  (/) ) )
76imp 124 1  |-  ( ( A  e.  _V  /\  -.  A  e.  dom  F )  ->  ( F `  A )  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    = wceq 1353   E.wex 1492   E!weu 2026    e. wcel 2148   _Vcvv 2738   (/)c0 3423   class class class wbr 4004   dom cdm 4627   ` cfv 5217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2740  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-br 4005  df-dm 4637  df-iota 5179  df-fv 5225
This theorem is referenced by:  ovprc  5910  sumnul  11432
  Copyright terms: Public domain W3C validator