ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tz6.12-1 Unicode version

Theorem tz6.12-1 5513
Description: Function value. Theorem 6.12(1) of [TakeutiZaring] p. 27. (Contributed by NM, 30-Apr-2004.)
Assertion
Ref Expression
tz6.12-1  |-  ( ( A F y  /\  E! y  A F
y )  ->  ( F `  A )  =  y )
Distinct variable groups:    y, F    y, A

Proof of Theorem tz6.12-1
StepHypRef Expression
1 df-fv 5196 . 2  |-  ( F `
 A )  =  ( iota y A F y )
2 iota1 5167 . . 3  |-  ( E! y  A F y  ->  ( A F y  <->  ( iota y A F y )  =  y ) )
32biimpac 296 . 2  |-  ( ( A F y  /\  E! y  A F
y )  ->  ( iota y A F y )  =  y )
41, 3syl5eq 2211 1  |-  ( ( A F y  /\  E! y  A F
y )  ->  ( F `  A )  =  y )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343   E!weu 2014   class class class wbr 3982   iotacio 5151   ` cfv 5188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-sn 3582  df-pr 3583  df-uni 3790  df-iota 5153  df-fv 5196
This theorem is referenced by:  tz6.12  5514  tz6.12c  5516  funbrfv  5525
  Copyright terms: Public domain W3C validator