ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tz6.12-1 Unicode version

Theorem tz6.12-1 5554
Description: Function value. Theorem 6.12(1) of [TakeutiZaring] p. 27. (Contributed by NM, 30-Apr-2004.)
Assertion
Ref Expression
tz6.12-1  |-  ( ( A F y  /\  E! y  A F
y )  ->  ( F `  A )  =  y )
Distinct variable groups:    y, F    y, A

Proof of Theorem tz6.12-1
StepHypRef Expression
1 df-fv 5236 . 2  |-  ( F `
 A )  =  ( iota y A F y )
2 iota1 5204 . . 3  |-  ( E! y  A F y  ->  ( A F y  <->  ( iota y A F y )  =  y ) )
32biimpac 298 . 2  |-  ( ( A F y  /\  E! y  A F
y )  ->  ( iota y A F y )  =  y )
41, 3eqtrid 2232 1  |-  ( ( A F y  /\  E! y  A F
y )  ->  ( F `  A )  =  y )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1363   E!weu 2036   class class class wbr 4015   iotacio 5188   ` cfv 5228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2169
This theorem depends on definitions:  df-bi 117  df-tru 1366  df-nf 1471  df-sb 1773  df-eu 2039  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-rex 2471  df-v 2751  df-sbc 2975  df-un 3145  df-sn 3610  df-pr 3611  df-uni 3822  df-iota 5190  df-fv 5236
This theorem is referenced by:  tz6.12  5555  tz6.12c  5557  funbrfv  5567
  Copyright terms: Public domain W3C validator