| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tz6.12 | GIF version | ||
| Description: Function value. Theorem 6.12(1) of [TakeutiZaring] p. 27. (Contributed by NM, 10-Jul-1994.) |
| Ref | Expression |
|---|---|
| tz6.12 | ⊢ ((〈𝐴, 𝑦〉 ∈ 𝐹 ∧ ∃!𝑦〈𝐴, 𝑦〉 ∈ 𝐹) → (𝐹‘𝐴) = 𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br 4045 | . 2 ⊢ (𝐴𝐹𝑦 ↔ 〈𝐴, 𝑦〉 ∈ 𝐹) | |
| 2 | 1 | eubii 2063 | . 2 ⊢ (∃!𝑦 𝐴𝐹𝑦 ↔ ∃!𝑦〈𝐴, 𝑦〉 ∈ 𝐹) |
| 3 | tz6.12-1 5603 | . 2 ⊢ ((𝐴𝐹𝑦 ∧ ∃!𝑦 𝐴𝐹𝑦) → (𝐹‘𝐴) = 𝑦) | |
| 4 | 1, 2, 3 | syl2anbr 292 | 1 ⊢ ((〈𝐴, 𝑦〉 ∈ 𝐹 ∧ ∃!𝑦〈𝐴, 𝑦〉 ∈ 𝐹) → (𝐹‘𝐴) = 𝑦) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∃!weu 2054 ∈ wcel 2176 〈cop 3636 class class class wbr 4044 ‘cfv 5271 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-rex 2490 df-v 2774 df-sbc 2999 df-un 3170 df-sn 3639 df-pr 3640 df-uni 3851 df-br 4045 df-iota 5232 df-fv 5279 |
| This theorem is referenced by: tz6.12f 5605 |
| Copyright terms: Public domain | W3C validator |