| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > undifdcss | Unicode version | ||
| Description: Union of complementary parts into whole and decidability. (Contributed by Jim Kingdon, 17-Jun-2022.) |
| Ref | Expression |
|---|---|
| undifdcss |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqimss2 3256 |
. . . 4
| |
| 2 | undifss 3549 |
. . . 4
| |
| 3 | 1, 2 | sylibr 134 |
. . 3
|
| 4 | eleq2 2271 |
. . . . . . . 8
| |
| 5 | 4 | biimpa 296 |
. . . . . . 7
|
| 6 | elun 3322 |
. . . . . . 7
| |
| 7 | 5, 6 | sylib 122 |
. . . . . 6
|
| 8 | eldifn 3304 |
. . . . . . 7
| |
| 9 | 8 | orim2i 763 |
. . . . . 6
|
| 10 | 7, 9 | syl 14 |
. . . . 5
|
| 11 | df-dc 837 |
. . . . 5
| |
| 12 | 10, 11 | sylibr 134 |
. . . 4
|
| 13 | 12 | ralrimiva 2581 |
. . 3
|
| 14 | 3, 13 | jca 306 |
. 2
|
| 15 | elun1 3348 |
. . . . . . 7
| |
| 16 | 15 | adantl 277 |
. . . . . 6
|
| 17 | simplr 528 |
. . . . . . . 8
| |
| 18 | simpr 110 |
. . . . . . . 8
| |
| 19 | 17, 18 | eldifd 3184 |
. . . . . . 7
|
| 20 | elun2 3349 |
. . . . . . 7
| |
| 21 | 19, 20 | syl 14 |
. . . . . 6
|
| 22 | eleq1 2270 |
. . . . . . . . 9
| |
| 23 | 22 | dcbid 840 |
. . . . . . . 8
|
| 24 | simplr 528 |
. . . . . . . 8
| |
| 25 | simpr 110 |
. . . . . . . 8
| |
| 26 | 23, 24, 25 | rspcdva 2889 |
. . . . . . 7
|
| 27 | exmiddc 838 |
. . . . . . 7
| |
| 28 | 26, 27 | syl 14 |
. . . . . 6
|
| 29 | 16, 21, 28 | mpjaodan 800 |
. . . . 5
|
| 30 | 29 | ex 115 |
. . . 4
|
| 31 | 30 | ssrdv 3207 |
. . 3
|
| 32 | 2 | biimpi 120 |
. . . 4
|
| 33 | 32 | adantr 276 |
. . 3
|
| 34 | 31, 33 | eqssd 3218 |
. 2
|
| 35 | 14, 34 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 |
| This theorem is referenced by: sbthlemi5 7089 sbthlemi6 7090 exmidfodomrlemim 7340 bj-charfundcALT 15944 |
| Copyright terms: Public domain | W3C validator |