| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > undifdcss | Unicode version | ||
| Description: Union of complementary parts into whole and decidability. (Contributed by Jim Kingdon, 17-Jun-2022.) |
| Ref | Expression |
|---|---|
| undifdcss |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqimss2 3239 |
. . . 4
| |
| 2 | undifss 3532 |
. . . 4
| |
| 3 | 1, 2 | sylibr 134 |
. . 3
|
| 4 | eleq2 2260 |
. . . . . . . 8
| |
| 5 | 4 | biimpa 296 |
. . . . . . 7
|
| 6 | elun 3305 |
. . . . . . 7
| |
| 7 | 5, 6 | sylib 122 |
. . . . . 6
|
| 8 | eldifn 3287 |
. . . . . . 7
| |
| 9 | 8 | orim2i 762 |
. . . . . 6
|
| 10 | 7, 9 | syl 14 |
. . . . 5
|
| 11 | df-dc 836 |
. . . . 5
| |
| 12 | 10, 11 | sylibr 134 |
. . . 4
|
| 13 | 12 | ralrimiva 2570 |
. . 3
|
| 14 | 3, 13 | jca 306 |
. 2
|
| 15 | elun1 3331 |
. . . . . . 7
| |
| 16 | 15 | adantl 277 |
. . . . . 6
|
| 17 | simplr 528 |
. . . . . . . 8
| |
| 18 | simpr 110 |
. . . . . . . 8
| |
| 19 | 17, 18 | eldifd 3167 |
. . . . . . 7
|
| 20 | elun2 3332 |
. . . . . . 7
| |
| 21 | 19, 20 | syl 14 |
. . . . . 6
|
| 22 | eleq1 2259 |
. . . . . . . . 9
| |
| 23 | 22 | dcbid 839 |
. . . . . . . 8
|
| 24 | simplr 528 |
. . . . . . . 8
| |
| 25 | simpr 110 |
. . . . . . . 8
| |
| 26 | 23, 24, 25 | rspcdva 2873 |
. . . . . . 7
|
| 27 | exmiddc 837 |
. . . . . . 7
| |
| 28 | 26, 27 | syl 14 |
. . . . . 6
|
| 29 | 16, 21, 28 | mpjaodan 799 |
. . . . 5
|
| 30 | 29 | ex 115 |
. . . 4
|
| 31 | 30 | ssrdv 3190 |
. . 3
|
| 32 | 2 | biimpi 120 |
. . . 4
|
| 33 | 32 | adantr 276 |
. . 3
|
| 34 | 31, 33 | eqssd 3201 |
. 2
|
| 35 | 14, 34 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 |
| This theorem is referenced by: sbthlemi5 7036 sbthlemi6 7037 exmidfodomrlemim 7280 bj-charfundcALT 15539 |
| Copyright terms: Public domain | W3C validator |