ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  undifdcss Unicode version

Theorem undifdcss 6779
Description: Union of complementary parts into whole and decidability. (Contributed by Jim Kingdon, 17-Jun-2022.)
Assertion
Ref Expression
undifdcss  |-  ( A  =  ( B  u.  ( A  \  B ) )  <->  ( B  C_  A  /\  A. x  e.  A DECID  x  e.  B ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem undifdcss
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eqimss2 3122 . . . 4  |-  ( A  =  ( B  u.  ( A  \  B ) )  ->  ( B  u.  ( A  \  B
) )  C_  A
)
2 undifss 3413 . . . 4  |-  ( B 
C_  A  <->  ( B  u.  ( A  \  B
) )  C_  A
)
31, 2sylibr 133 . . 3  |-  ( A  =  ( B  u.  ( A  \  B ) )  ->  B  C_  A
)
4 eleq2 2181 . . . . . . . 8  |-  ( A  =  ( B  u.  ( A  \  B ) )  ->  ( x  e.  A  <->  x  e.  ( B  u.  ( A  \  B ) ) ) )
54biimpa 294 . . . . . . 7  |-  ( ( A  =  ( B  u.  ( A  \  B ) )  /\  x  e.  A )  ->  x  e.  ( B  u.  ( A  \  B ) ) )
6 elun 3187 . . . . . . 7  |-  ( x  e.  ( B  u.  ( A  \  B ) )  <->  ( x  e.  B  \/  x  e.  ( A  \  B
) ) )
75, 6sylib 121 . . . . . 6  |-  ( ( A  =  ( B  u.  ( A  \  B ) )  /\  x  e.  A )  ->  ( x  e.  B  \/  x  e.  ( A  \  B ) ) )
8 eldifn 3169 . . . . . . 7  |-  ( x  e.  ( A  \  B )  ->  -.  x  e.  B )
98orim2i 735 . . . . . 6  |-  ( ( x  e.  B  \/  x  e.  ( A  \  B ) )  -> 
( x  e.  B  \/  -.  x  e.  B
) )
107, 9syl 14 . . . . 5  |-  ( ( A  =  ( B  u.  ( A  \  B ) )  /\  x  e.  A )  ->  ( x  e.  B  \/  -.  x  e.  B
) )
11 df-dc 805 . . . . 5  |-  (DECID  x  e.  B  <->  ( x  e.  B  \/  -.  x  e.  B ) )
1210, 11sylibr 133 . . . 4  |-  ( ( A  =  ( B  u.  ( A  \  B ) )  /\  x  e.  A )  -> DECID  x  e.  B )
1312ralrimiva 2482 . . 3  |-  ( A  =  ( B  u.  ( A  \  B ) )  ->  A. x  e.  A DECID  x  e.  B
)
143, 13jca 304 . 2  |-  ( A  =  ( B  u.  ( A  \  B ) )  ->  ( B  C_  A  /\  A. x  e.  A DECID  x  e.  B
) )
15 elun1 3213 . . . . . . 7  |-  ( y  e.  B  ->  y  e.  ( B  u.  ( A  \  B ) ) )
1615adantl 275 . . . . . 6  |-  ( ( ( ( B  C_  A  /\  A. x  e.  A DECID  x  e.  B )  /\  y  e.  A
)  /\  y  e.  B )  ->  y  e.  ( B  u.  ( A  \  B ) ) )
17 simplr 504 . . . . . . . 8  |-  ( ( ( ( B  C_  A  /\  A. x  e.  A DECID  x  e.  B )  /\  y  e.  A
)  /\  -.  y  e.  B )  ->  y  e.  A )
18 simpr 109 . . . . . . . 8  |-  ( ( ( ( B  C_  A  /\  A. x  e.  A DECID  x  e.  B )  /\  y  e.  A
)  /\  -.  y  e.  B )  ->  -.  y  e.  B )
1917, 18eldifd 3051 . . . . . . 7  |-  ( ( ( ( B  C_  A  /\  A. x  e.  A DECID  x  e.  B )  /\  y  e.  A
)  /\  -.  y  e.  B )  ->  y  e.  ( A  \  B
) )
20 elun2 3214 . . . . . . 7  |-  ( y  e.  ( A  \  B )  ->  y  e.  ( B  u.  ( A  \  B ) ) )
2119, 20syl 14 . . . . . 6  |-  ( ( ( ( B  C_  A  /\  A. x  e.  A DECID  x  e.  B )  /\  y  e.  A
)  /\  -.  y  e.  B )  ->  y  e.  ( B  u.  ( A  \  B ) ) )
22 eleq1 2180 . . . . . . . . 9  |-  ( x  =  y  ->  (
x  e.  B  <->  y  e.  B ) )
2322dcbid 808 . . . . . . . 8  |-  ( x  =  y  ->  (DECID  x  e.  B  <-> DECID  y  e.  B )
)
24 simplr 504 . . . . . . . 8  |-  ( ( ( B  C_  A  /\  A. x  e.  A DECID  x  e.  B )  /\  y  e.  A )  ->  A. x  e.  A DECID  x  e.  B
)
25 simpr 109 . . . . . . . 8  |-  ( ( ( B  C_  A  /\  A. x  e.  A DECID  x  e.  B )  /\  y  e.  A )  ->  y  e.  A )
2623, 24, 25rspcdva 2768 . . . . . . 7  |-  ( ( ( B  C_  A  /\  A. x  e.  A DECID  x  e.  B )  /\  y  e.  A )  -> DECID  y  e.  B
)
27 exmiddc 806 . . . . . . 7  |-  (DECID  y  e.  B  ->  ( y  e.  B  \/  -.  y  e.  B )
)
2826, 27syl 14 . . . . . 6  |-  ( ( ( B  C_  A  /\  A. x  e.  A DECID  x  e.  B )  /\  y  e.  A )  ->  (
y  e.  B  \/  -.  y  e.  B
) )
2916, 21, 28mpjaodan 772 . . . . 5  |-  ( ( ( B  C_  A  /\  A. x  e.  A DECID  x  e.  B )  /\  y  e.  A )  ->  y  e.  ( B  u.  ( A  \  B ) ) )
3029ex 114 . . . 4  |-  ( ( B  C_  A  /\  A. x  e.  A DECID  x  e.  B )  ->  (
y  e.  A  -> 
y  e.  ( B  u.  ( A  \  B ) ) ) )
3130ssrdv 3073 . . 3  |-  ( ( B  C_  A  /\  A. x  e.  A DECID  x  e.  B )  ->  A  C_  ( B  u.  ( A  \  B ) ) )
322biimpi 119 . . . 4  |-  ( B 
C_  A  ->  ( B  u.  ( A  \  B ) )  C_  A )
3332adantr 274 . . 3  |-  ( ( B  C_  A  /\  A. x  e.  A DECID  x  e.  B )  ->  ( B  u.  ( A  \  B ) )  C_  A )
3431, 33eqssd 3084 . 2  |-  ( ( B  C_  A  /\  A. x  e.  A DECID  x  e.  B )  ->  A  =  ( B  u.  ( A  \  B ) ) )
3514, 34impbii 125 1  |-  ( A  =  ( B  u.  ( A  \  B ) )  <->  ( B  C_  A  /\  A. x  e.  A DECID  x  e.  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 103    <-> wb 104    \/ wo 682  DECID wdc 804    = wceq 1316    e. wcel 1465   A.wral 2393    \ cdif 3038    u. cun 3039    C_ wss 3041
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099
This theorem depends on definitions:  df-bi 116  df-dc 805  df-tru 1319  df-nf 1422  df-sb 1721  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ral 2398  df-v 2662  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054
This theorem is referenced by:  sbthlemi5  6817  sbthlemi6  6818  exmidfodomrlemim  7025
  Copyright terms: Public domain W3C validator