ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  undifdcss Unicode version

Theorem undifdcss 6940
Description: Union of complementary parts into whole and decidability. (Contributed by Jim Kingdon, 17-Jun-2022.)
Assertion
Ref Expression
undifdcss  |-  ( A  =  ( B  u.  ( A  \  B ) )  <->  ( B  C_  A  /\  A. x  e.  A DECID  x  e.  B ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem undifdcss
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eqimss2 3225 . . . 4  |-  ( A  =  ( B  u.  ( A  \  B ) )  ->  ( B  u.  ( A  \  B
) )  C_  A
)
2 undifss 3518 . . . 4  |-  ( B 
C_  A  <->  ( B  u.  ( A  \  B
) )  C_  A
)
31, 2sylibr 134 . . 3  |-  ( A  =  ( B  u.  ( A  \  B ) )  ->  B  C_  A
)
4 eleq2 2253 . . . . . . . 8  |-  ( A  =  ( B  u.  ( A  \  B ) )  ->  ( x  e.  A  <->  x  e.  ( B  u.  ( A  \  B ) ) ) )
54biimpa 296 . . . . . . 7  |-  ( ( A  =  ( B  u.  ( A  \  B ) )  /\  x  e.  A )  ->  x  e.  ( B  u.  ( A  \  B ) ) )
6 elun 3291 . . . . . . 7  |-  ( x  e.  ( B  u.  ( A  \  B ) )  <->  ( x  e.  B  \/  x  e.  ( A  \  B
) ) )
75, 6sylib 122 . . . . . 6  |-  ( ( A  =  ( B  u.  ( A  \  B ) )  /\  x  e.  A )  ->  ( x  e.  B  \/  x  e.  ( A  \  B ) ) )
8 eldifn 3273 . . . . . . 7  |-  ( x  e.  ( A  \  B )  ->  -.  x  e.  B )
98orim2i 762 . . . . . 6  |-  ( ( x  e.  B  \/  x  e.  ( A  \  B ) )  -> 
( x  e.  B  \/  -.  x  e.  B
) )
107, 9syl 14 . . . . 5  |-  ( ( A  =  ( B  u.  ( A  \  B ) )  /\  x  e.  A )  ->  ( x  e.  B  \/  -.  x  e.  B
) )
11 df-dc 836 . . . . 5  |-  (DECID  x  e.  B  <->  ( x  e.  B  \/  -.  x  e.  B ) )
1210, 11sylibr 134 . . . 4  |-  ( ( A  =  ( B  u.  ( A  \  B ) )  /\  x  e.  A )  -> DECID  x  e.  B )
1312ralrimiva 2563 . . 3  |-  ( A  =  ( B  u.  ( A  \  B ) )  ->  A. x  e.  A DECID  x  e.  B
)
143, 13jca 306 . 2  |-  ( A  =  ( B  u.  ( A  \  B ) )  ->  ( B  C_  A  /\  A. x  e.  A DECID  x  e.  B
) )
15 elun1 3317 . . . . . . 7  |-  ( y  e.  B  ->  y  e.  ( B  u.  ( A  \  B ) ) )
1615adantl 277 . . . . . 6  |-  ( ( ( ( B  C_  A  /\  A. x  e.  A DECID  x  e.  B )  /\  y  e.  A
)  /\  y  e.  B )  ->  y  e.  ( B  u.  ( A  \  B ) ) )
17 simplr 528 . . . . . . . 8  |-  ( ( ( ( B  C_  A  /\  A. x  e.  A DECID  x  e.  B )  /\  y  e.  A
)  /\  -.  y  e.  B )  ->  y  e.  A )
18 simpr 110 . . . . . . . 8  |-  ( ( ( ( B  C_  A  /\  A. x  e.  A DECID  x  e.  B )  /\  y  e.  A
)  /\  -.  y  e.  B )  ->  -.  y  e.  B )
1917, 18eldifd 3154 . . . . . . 7  |-  ( ( ( ( B  C_  A  /\  A. x  e.  A DECID  x  e.  B )  /\  y  e.  A
)  /\  -.  y  e.  B )  ->  y  e.  ( A  \  B
) )
20 elun2 3318 . . . . . . 7  |-  ( y  e.  ( A  \  B )  ->  y  e.  ( B  u.  ( A  \  B ) ) )
2119, 20syl 14 . . . . . 6  |-  ( ( ( ( B  C_  A  /\  A. x  e.  A DECID  x  e.  B )  /\  y  e.  A
)  /\  -.  y  e.  B )  ->  y  e.  ( B  u.  ( A  \  B ) ) )
22 eleq1 2252 . . . . . . . . 9  |-  ( x  =  y  ->  (
x  e.  B  <->  y  e.  B ) )
2322dcbid 839 . . . . . . . 8  |-  ( x  =  y  ->  (DECID  x  e.  B  <-> DECID  y  e.  B )
)
24 simplr 528 . . . . . . . 8  |-  ( ( ( B  C_  A  /\  A. x  e.  A DECID  x  e.  B )  /\  y  e.  A )  ->  A. x  e.  A DECID  x  e.  B
)
25 simpr 110 . . . . . . . 8  |-  ( ( ( B  C_  A  /\  A. x  e.  A DECID  x  e.  B )  /\  y  e.  A )  ->  y  e.  A )
2623, 24, 25rspcdva 2861 . . . . . . 7  |-  ( ( ( B  C_  A  /\  A. x  e.  A DECID  x  e.  B )  /\  y  e.  A )  -> DECID  y  e.  B
)
27 exmiddc 837 . . . . . . 7  |-  (DECID  y  e.  B  ->  ( y  e.  B  \/  -.  y  e.  B )
)
2826, 27syl 14 . . . . . 6  |-  ( ( ( B  C_  A  /\  A. x  e.  A DECID  x  e.  B )  /\  y  e.  A )  ->  (
y  e.  B  \/  -.  y  e.  B
) )
2916, 21, 28mpjaodan 799 . . . . 5  |-  ( ( ( B  C_  A  /\  A. x  e.  A DECID  x  e.  B )  /\  y  e.  A )  ->  y  e.  ( B  u.  ( A  \  B ) ) )
3029ex 115 . . . 4  |-  ( ( B  C_  A  /\  A. x  e.  A DECID  x  e.  B )  ->  (
y  e.  A  -> 
y  e.  ( B  u.  ( A  \  B ) ) ) )
3130ssrdv 3176 . . 3  |-  ( ( B  C_  A  /\  A. x  e.  A DECID  x  e.  B )  ->  A  C_  ( B  u.  ( A  \  B ) ) )
322biimpi 120 . . . 4  |-  ( B 
C_  A  ->  ( B  u.  ( A  \  B ) )  C_  A )
3332adantr 276 . . 3  |-  ( ( B  C_  A  /\  A. x  e.  A DECID  x  e.  B )  ->  ( B  u.  ( A  \  B ) )  C_  A )
3431, 33eqssd 3187 . 2  |-  ( ( B  C_  A  /\  A. x  e.  A DECID  x  e.  B )  ->  A  =  ( B  u.  ( A  \  B ) ) )
3514, 34impbii 126 1  |-  ( A  =  ( B  u.  ( A  \  B ) )  <->  ( B  C_  A  /\  A. x  e.  A DECID  x  e.  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 104    <-> wb 105    \/ wo 709  DECID wdc 835    = wceq 1364    e. wcel 2160   A.wral 2468    \ cdif 3141    u. cun 3142    C_ wss 3144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-dc 836  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-v 2754  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157
This theorem is referenced by:  sbthlemi5  6979  sbthlemi6  6980  exmidfodomrlemim  7219  bj-charfundcALT  14964
  Copyright terms: Public domain W3C validator