| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > eqtr4d | GIF version | ||
| Description: An equality transitivity equality deduction. (Contributed by NM, 18-Jul-1995.) | 
| Ref | Expression | 
|---|---|
| eqtr4d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) | 
| eqtr4d.2 | ⊢ (𝜑 → 𝐶 = 𝐵) | 
| Ref | Expression | 
|---|---|
| eqtr4d | ⊢ (𝜑 → 𝐴 = 𝐶) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqtr4d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | eqtr4d.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐵) | |
| 3 | 2 | eqcomd 2202 | . 2 ⊢ (𝜑 → 𝐵 = 𝐶) | 
| 4 | 1, 3 | eqtrd 2229 | 1 ⊢ (𝜑 → 𝐴 = 𝐶) | 
| Copyright terms: Public domain | W3C validator |