ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  swrdccat3b GIF version

Theorem swrdccat3b 11231
Description: A suffix of a concatenation is either a suffix of the second concatenated word or a concatenation of a suffix of the first word with the second word. (Contributed by Alexander van der Vekens, 31-Mar-2018.) (Revised by Alexander van der Vekens, 30-May-2018.) (Proof shortened by AV, 14-Oct-2022.)
Hypothesis
Ref Expression
swrdccatin2.l 𝐿 = (♯‘𝐴)
Assertion
Ref Expression
swrdccat3b ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝑀 ∈ (0...(𝐿 + (♯‘𝐵))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, (𝐿 + (♯‘𝐵))⟩) = if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵))))

Proof of Theorem swrdccat3b
StepHypRef Expression
1 simpl 109 . . . 4 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) → (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉))
2 simpr 110 . . . 4 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) → 𝑀 ∈ (0...(𝐿 + (♯‘𝐵))))
3 elfzubelfz 10193 . . . . 5 (𝑀 ∈ (0...(𝐿 + (♯‘𝐵))) → (𝐿 + (♯‘𝐵)) ∈ (0...(𝐿 + (♯‘𝐵))))
43adantl 277 . . . 4 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) → (𝐿 + (♯‘𝐵)) ∈ (0...(𝐿 + (♯‘𝐵))))
5 swrdccatin2.l . . . . . 6 𝐿 = (♯‘𝐴)
65pfxccat3 11225 . . . . 5 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (0...(𝐿 + (♯‘𝐵))) ∧ (𝐿 + (♯‘𝐵)) ∈ (0...(𝐿 + (♯‘𝐵)))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, (𝐿 + (♯‘𝐵))⟩) = if((𝐿 + (♯‘𝐵)) ≤ 𝐿, (𝐴 substr ⟨𝑀, (𝐿 + (♯‘𝐵))⟩), if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), ((𝐿 + (♯‘𝐵)) − 𝐿)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 prefix ((𝐿 + (♯‘𝐵)) − 𝐿)))))))
76imp 124 . . . 4 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...(𝐿 + (♯‘𝐵))) ∧ (𝐿 + (♯‘𝐵)) ∈ (0...(𝐿 + (♯‘𝐵))))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, (𝐿 + (♯‘𝐵))⟩) = if((𝐿 + (♯‘𝐵)) ≤ 𝐿, (𝐴 substr ⟨𝑀, (𝐿 + (♯‘𝐵))⟩), if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), ((𝐿 + (♯‘𝐵)) − 𝐿)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 prefix ((𝐿 + (♯‘𝐵)) − 𝐿))))))
81, 2, 4, 7syl12anc 1248 . . 3 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, (𝐿 + (♯‘𝐵))⟩) = if((𝐿 + (♯‘𝐵)) ≤ 𝐿, (𝐴 substr ⟨𝑀, (𝐿 + (♯‘𝐵))⟩), if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), ((𝐿 + (♯‘𝐵)) − 𝐿)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 prefix ((𝐿 + (♯‘𝐵)) − 𝐿))))))
95swrdccat3blem 11230 . . . 4 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) ∧ (𝐿 + (♯‘𝐵)) ≤ 𝐿) → if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵)) = (𝐴 substr ⟨𝑀, (𝐿 + (♯‘𝐵))⟩))
10 iftrue 3584 . . . . . 6 (𝐿𝑀 → if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵)) = (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩))
11103ad2ant3 1023 . . . . 5 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) ∧ ¬ (𝐿 + (♯‘𝐵)) ≤ 𝐿𝐿𝑀) → if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵)) = (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩))
12 lencl 11035 . . . . . . . . . . . 12 (𝐴 ∈ Word 𝑉 → (♯‘𝐴) ∈ ℕ0)
1312nn0cnd 9385 . . . . . . . . . . 11 (𝐴 ∈ Word 𝑉 → (♯‘𝐴) ∈ ℂ)
14 lencl 11035 . . . . . . . . . . . 12 (𝐵 ∈ Word 𝑉 → (♯‘𝐵) ∈ ℕ0)
1514nn0cnd 9385 . . . . . . . . . . 11 (𝐵 ∈ Word 𝑉 → (♯‘𝐵) ∈ ℂ)
165eqcomi 2211 . . . . . . . . . . . . 13 (♯‘𝐴) = 𝐿
1716eleq1i 2273 . . . . . . . . . . . 12 ((♯‘𝐴) ∈ ℂ ↔ 𝐿 ∈ ℂ)
18 pncan2 8314 . . . . . . . . . . . 12 ((𝐿 ∈ ℂ ∧ (♯‘𝐵) ∈ ℂ) → ((𝐿 + (♯‘𝐵)) − 𝐿) = (♯‘𝐵))
1917, 18sylanb 284 . . . . . . . . . . 11 (((♯‘𝐴) ∈ ℂ ∧ (♯‘𝐵) ∈ ℂ) → ((𝐿 + (♯‘𝐵)) − 𝐿) = (♯‘𝐵))
2013, 15, 19syl2an 289 . . . . . . . . . 10 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝐿 + (♯‘𝐵)) − 𝐿) = (♯‘𝐵))
2120eqcomd 2213 . . . . . . . . 9 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (♯‘𝐵) = ((𝐿 + (♯‘𝐵)) − 𝐿))
2221adantr 276 . . . . . . . 8 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) → (♯‘𝐵) = ((𝐿 + (♯‘𝐵)) − 𝐿))
23223ad2ant1 1021 . . . . . . 7 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) ∧ ¬ (𝐿 + (♯‘𝐵)) ≤ 𝐿𝐿𝑀) → (♯‘𝐵) = ((𝐿 + (♯‘𝐵)) − 𝐿))
2423opeq2d 3840 . . . . . 6 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) ∧ ¬ (𝐿 + (♯‘𝐵)) ≤ 𝐿𝐿𝑀) → ⟨(𝑀𝐿), (♯‘𝐵)⟩ = ⟨(𝑀𝐿), ((𝐿 + (♯‘𝐵)) − 𝐿)⟩)
2524oveq2d 5983 . . . . 5 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) ∧ ¬ (𝐿 + (♯‘𝐵)) ≤ 𝐿𝐿𝑀) → (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩) = (𝐵 substr ⟨(𝑀𝐿), ((𝐿 + (♯‘𝐵)) − 𝐿)⟩))
2611, 25eqtrd 2240 . . . 4 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) ∧ ¬ (𝐿 + (♯‘𝐵)) ≤ 𝐿𝐿𝑀) → if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵)) = (𝐵 substr ⟨(𝑀𝐿), ((𝐿 + (♯‘𝐵)) − 𝐿)⟩))
27 iffalse 3587 . . . . . 6 𝐿𝑀 → if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵)) = ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵))
28273ad2ant3 1023 . . . . 5 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) ∧ ¬ (𝐿 + (♯‘𝐵)) ≤ 𝐿 ∧ ¬ 𝐿𝑀) → if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵)) = ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵))
2920adantr 276 . . . . . . . . 9 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) → ((𝐿 + (♯‘𝐵)) − 𝐿) = (♯‘𝐵))
30293ad2ant1 1021 . . . . . . . 8 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) ∧ ¬ (𝐿 + (♯‘𝐵)) ≤ 𝐿 ∧ ¬ 𝐿𝑀) → ((𝐿 + (♯‘𝐵)) − 𝐿) = (♯‘𝐵))
3130oveq2d 5983 . . . . . . 7 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) ∧ ¬ (𝐿 + (♯‘𝐵)) ≤ 𝐿 ∧ ¬ 𝐿𝑀) → (𝐵 prefix ((𝐿 + (♯‘𝐵)) − 𝐿)) = (𝐵 prefix (♯‘𝐵)))
32 pfxid 11177 . . . . . . . . 9 (𝐵 ∈ Word 𝑉 → (𝐵 prefix (♯‘𝐵)) = 𝐵)
3332ad2antlr 489 . . . . . . . 8 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) → (𝐵 prefix (♯‘𝐵)) = 𝐵)
34333ad2ant1 1021 . . . . . . 7 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) ∧ ¬ (𝐿 + (♯‘𝐵)) ≤ 𝐿 ∧ ¬ 𝐿𝑀) → (𝐵 prefix (♯‘𝐵)) = 𝐵)
3531, 34eqtr2d 2241 . . . . . 6 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) ∧ ¬ (𝐿 + (♯‘𝐵)) ≤ 𝐿 ∧ ¬ 𝐿𝑀) → 𝐵 = (𝐵 prefix ((𝐿 + (♯‘𝐵)) − 𝐿)))
3635oveq2d 5983 . . . . 5 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) ∧ ¬ (𝐿 + (♯‘𝐵)) ≤ 𝐿 ∧ ¬ 𝐿𝑀) → ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵) = ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 prefix ((𝐿 + (♯‘𝐵)) − 𝐿))))
3728, 36eqtrd 2240 . . . 4 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) ∧ ¬ (𝐿 + (♯‘𝐵)) ≤ 𝐿 ∧ ¬ 𝐿𝑀) → if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵)) = ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 prefix ((𝐿 + (♯‘𝐵)) − 𝐿))))
384elfzelzd 10183 . . . . 5 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) → (𝐿 + (♯‘𝐵)) ∈ ℤ)
395, 12eqeltrid 2294 . . . . . . 7 (𝐴 ∈ Word 𝑉𝐿 ∈ ℕ0)
4039ad2antrr 488 . . . . . 6 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) → 𝐿 ∈ ℕ0)
4140nn0zd 9528 . . . . 5 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) → 𝐿 ∈ ℤ)
42 zdcle 9484 . . . . 5 (((𝐿 + (♯‘𝐵)) ∈ ℤ ∧ 𝐿 ∈ ℤ) → DECID (𝐿 + (♯‘𝐵)) ≤ 𝐿)
4338, 41, 42syl2anc 411 . . . 4 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) → DECID (𝐿 + (♯‘𝐵)) ≤ 𝐿)
4441adantr 276 . . . . 5 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) ∧ ¬ (𝐿 + (♯‘𝐵)) ≤ 𝐿) → 𝐿 ∈ ℤ)
45 elfznn0 10271 . . . . . . 7 (𝑀 ∈ (0...(𝐿 + (♯‘𝐵))) → 𝑀 ∈ ℕ0)
4645ad2antlr 489 . . . . . 6 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) ∧ ¬ (𝐿 + (♯‘𝐵)) ≤ 𝐿) → 𝑀 ∈ ℕ0)
4746nn0zd 9528 . . . . 5 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) ∧ ¬ (𝐿 + (♯‘𝐵)) ≤ 𝐿) → 𝑀 ∈ ℤ)
48 zdcle 9484 . . . . 5 ((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) → DECID 𝐿𝑀)
4944, 47, 48syl2anc 411 . . . 4 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) ∧ ¬ (𝐿 + (♯‘𝐵)) ≤ 𝐿) → DECID 𝐿𝑀)
509, 26, 37, 43, 492if2dc 3619 . . 3 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) → if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵)) = if((𝐿 + (♯‘𝐵)) ≤ 𝐿, (𝐴 substr ⟨𝑀, (𝐿 + (♯‘𝐵))⟩), if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), ((𝐿 + (♯‘𝐵)) − 𝐿)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 prefix ((𝐿 + (♯‘𝐵)) − 𝐿))))))
518, 50eqtr4d 2243 . 2 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, (𝐿 + (♯‘𝐵))⟩) = if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵)))
5251ex 115 1 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝑀 ∈ (0...(𝐿 + (♯‘𝐵))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, (𝐿 + (♯‘𝐵))⟩) = if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  DECID wdc 836  w3a 981   = wceq 1373  wcel 2178  ifcif 3579  cop 3646   class class class wbr 4059  cfv 5290  (class class class)co 5967  cc 7958  0cc0 7960   + caddc 7963  cle 8143  cmin 8278  0cn0 9330  cz 9407  ...cfz 10165  chash 10957  Word cword 11031   ++ cconcat 11084   substr csubstr 11136   prefix cpfx 11163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-1o 6525  df-er 6643  df-en 6851  df-dom 6852  df-fin 6853  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-inn 9072  df-n0 9331  df-z 9408  df-uz 9684  df-fz 10166  df-fzo 10300  df-ihash 10958  df-word 11032  df-concat 11085  df-substr 11137  df-pfx 11164
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator