Proof of Theorem pfxccat3
| Step | Hyp | Ref
| Expression |
| 1 | | simpll 527 |
. . . 4
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) ∧ 𝑁 ≤ 𝐿) → (𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉)) |
| 2 | | simplrl 535 |
. . . . 5
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) ∧ 𝑁 ≤ 𝐿) → 𝑀 ∈ (0...𝑁)) |
| 3 | | lencl 11035 |
. . . . . . . . 9
⊢ (𝐴 ∈ Word 𝑉 → (♯‘𝐴) ∈
ℕ0) |
| 4 | | elfznn0 10271 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ (0...(𝐿 + (♯‘𝐵))) → 𝑁 ∈
ℕ0) |
| 5 | 4 | ad2antrr 488 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ (0...(𝐿 + (♯‘𝐵))) ∧ (♯‘𝐴) ∈ ℕ0) ∧ 𝑁 ≤ 𝐿) → 𝑁 ∈
ℕ0) |
| 6 | | simplr 528 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ (0...(𝐿 + (♯‘𝐵))) ∧ (♯‘𝐴) ∈ ℕ0) ∧ 𝑁 ≤ 𝐿) → (♯‘𝐴) ∈
ℕ0) |
| 7 | | swrdccatin2.l |
. . . . . . . . . . . . . . 15
⊢ 𝐿 = (♯‘𝐴) |
| 8 | 7 | breq2i 4067 |
. . . . . . . . . . . . . 14
⊢ (𝑁 ≤ 𝐿 ↔ 𝑁 ≤ (♯‘𝐴)) |
| 9 | 8 | biimpi 120 |
. . . . . . . . . . . . 13
⊢ (𝑁 ≤ 𝐿 → 𝑁 ≤ (♯‘𝐴)) |
| 10 | 9 | adantl 277 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ (0...(𝐿 + (♯‘𝐵))) ∧ (♯‘𝐴) ∈ ℕ0) ∧ 𝑁 ≤ 𝐿) → 𝑁 ≤ (♯‘𝐴)) |
| 11 | | elfz2nn0 10269 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈
(0...(♯‘𝐴))
↔ (𝑁 ∈
ℕ0 ∧ (♯‘𝐴) ∈ ℕ0 ∧ 𝑁 ≤ (♯‘𝐴))) |
| 12 | 5, 6, 10, 11 | syl3anbrc 1184 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ (0...(𝐿 + (♯‘𝐵))) ∧ (♯‘𝐴) ∈ ℕ0) ∧ 𝑁 ≤ 𝐿) → 𝑁 ∈ (0...(♯‘𝐴))) |
| 13 | 12 | exp31 364 |
. . . . . . . . . 10
⊢ (𝑁 ∈ (0...(𝐿 + (♯‘𝐵))) → ((♯‘𝐴) ∈ ℕ0 → (𝑁 ≤ 𝐿 → 𝑁 ∈ (0...(♯‘𝐴))))) |
| 14 | 13 | adantl 277 |
. . . . . . . . 9
⊢ ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵)))) → ((♯‘𝐴) ∈ ℕ0
→ (𝑁 ≤ 𝐿 → 𝑁 ∈ (0...(♯‘𝐴))))) |
| 15 | 3, 14 | syl5com 29 |
. . . . . . . 8
⊢ (𝐴 ∈ Word 𝑉 → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵)))) → (𝑁 ≤ 𝐿 → 𝑁 ∈ (0...(♯‘𝐴))))) |
| 16 | 15 | adantr 276 |
. . . . . . 7
⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵)))) → (𝑁 ≤ 𝐿 → 𝑁 ∈ (0...(♯‘𝐴))))) |
| 17 | 16 | imp 124 |
. . . . . 6
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) → (𝑁 ≤ 𝐿 → 𝑁 ∈ (0...(♯‘𝐴)))) |
| 18 | 17 | imp 124 |
. . . . 5
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) ∧ 𝑁 ≤ 𝐿) → 𝑁 ∈ (0...(♯‘𝐴))) |
| 19 | 2, 18 | jca 306 |
. . . 4
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) ∧ 𝑁 ≤ 𝐿) → (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴)))) |
| 20 | | swrdccatin1 11216 |
. . . 4
⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴))) → ((𝐴 ++ 𝐵) substr 〈𝑀, 𝑁〉) = (𝐴 substr 〈𝑀, 𝑁〉))) |
| 21 | 1, 19, 20 | sylc 62 |
. . 3
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) ∧ 𝑁 ≤ 𝐿) → ((𝐴 ++ 𝐵) substr 〈𝑀, 𝑁〉) = (𝐴 substr 〈𝑀, 𝑁〉)) |
| 22 | | simp1l 1024 |
. . . 4
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) ∧ ¬ 𝑁 ≤ 𝐿 ∧ 𝐿 ≤ 𝑀) → (𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉)) |
| 23 | 7 | eleq1i 2273 |
. . . . . . . . . . 11
⊢ (𝐿 ∈ ℕ0
↔ (♯‘𝐴)
∈ ℕ0) |
| 24 | | elfz2nn0 10269 |
. . . . . . . . . . . . . 14
⊢ (𝑀 ∈ (0...𝑁) ↔ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0
∧ 𝑀 ≤ 𝑁)) |
| 25 | | nn0z 9427 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐿 ∈ ℕ0
→ 𝐿 ∈
ℤ) |
| 26 | 25 | adantl 277 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑀
≤ 𝑁) ∧ 𝐿 ∈ ℕ0)
→ 𝐿 ∈
ℤ) |
| 27 | | nn0z 9427 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈
ℤ) |
| 28 | 27 | 3ad2ant2 1022 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑀
≤ 𝑁) → 𝑁 ∈
ℤ) |
| 29 | 28 | adantr 276 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑀
≤ 𝑁) ∧ 𝐿 ∈ ℕ0)
→ 𝑁 ∈
ℤ) |
| 30 | | nn0z 9427 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑀 ∈ ℕ0
→ 𝑀 ∈
ℤ) |
| 31 | 30 | 3ad2ant1 1021 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑀
≤ 𝑁) → 𝑀 ∈
ℤ) |
| 32 | 31 | adantr 276 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑀
≤ 𝑁) ∧ 𝐿 ∈ ℕ0)
→ 𝑀 ∈
ℤ) |
| 33 | 26, 29, 32 | 3jca 1180 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑀
≤ 𝑁) ∧ 𝐿 ∈ ℕ0)
→ (𝐿 ∈ ℤ
∧ 𝑁 ∈ ℤ
∧ 𝑀 ∈
ℤ)) |
| 34 | 33 | adantr 276 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑀
≤ 𝑁) ∧ 𝐿 ∈ ℕ0)
∧ 𝐿 ≤ 𝑀) → (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) |
| 35 | | simpl3 1005 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑀
≤ 𝑁) ∧ 𝐿 ∈ ℕ0)
→ 𝑀 ≤ 𝑁) |
| 36 | 35 | anim1ci 341 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑀
≤ 𝑁) ∧ 𝐿 ∈ ℕ0)
∧ 𝐿 ≤ 𝑀) → (𝐿 ≤ 𝑀 ∧ 𝑀 ≤ 𝑁)) |
| 37 | | elfz2 10172 |
. . . . . . . . . . . . . . . 16
⊢ (𝑀 ∈ (𝐿...𝑁) ↔ ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (𝐿 ≤ 𝑀 ∧ 𝑀 ≤ 𝑁))) |
| 38 | 34, 36, 37 | sylanbrc 417 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑀
≤ 𝑁) ∧ 𝐿 ∈ ℕ0)
∧ 𝐿 ≤ 𝑀) → 𝑀 ∈ (𝐿...𝑁)) |
| 39 | 38 | exp31 364 |
. . . . . . . . . . . . . 14
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑀
≤ 𝑁) → (𝐿 ∈ ℕ0
→ (𝐿 ≤ 𝑀 → 𝑀 ∈ (𝐿...𝑁)))) |
| 40 | 24, 39 | sylbi 121 |
. . . . . . . . . . . . 13
⊢ (𝑀 ∈ (0...𝑁) → (𝐿 ∈ ℕ0 → (𝐿 ≤ 𝑀 → 𝑀 ∈ (𝐿...𝑁)))) |
| 41 | 40 | adantr 276 |
. . . . . . . . . . . 12
⊢ ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵)))) → (𝐿 ∈ ℕ0 → (𝐿 ≤ 𝑀 → 𝑀 ∈ (𝐿...𝑁)))) |
| 42 | 41 | com12 30 |
. . . . . . . . . . 11
⊢ (𝐿 ∈ ℕ0
→ ((𝑀 ∈
(0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵)))) → (𝐿 ≤ 𝑀 → 𝑀 ∈ (𝐿...𝑁)))) |
| 43 | 23, 42 | sylbir 135 |
. . . . . . . . . 10
⊢
((♯‘𝐴)
∈ ℕ0 → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵)))) → (𝐿 ≤ 𝑀 → 𝑀 ∈ (𝐿...𝑁)))) |
| 44 | 3, 43 | syl 14 |
. . . . . . . . 9
⊢ (𝐴 ∈ Word 𝑉 → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵)))) → (𝐿 ≤ 𝑀 → 𝑀 ∈ (𝐿...𝑁)))) |
| 45 | 44 | adantr 276 |
. . . . . . . 8
⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵)))) → (𝐿 ≤ 𝑀 → 𝑀 ∈ (𝐿...𝑁)))) |
| 46 | 45 | imp 124 |
. . . . . . 7
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) → (𝐿 ≤ 𝑀 → 𝑀 ∈ (𝐿...𝑁))) |
| 47 | 46 | a1d 22 |
. . . . . 6
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) → (¬ 𝑁 ≤ 𝐿 → (𝐿 ≤ 𝑀 → 𝑀 ∈ (𝐿...𝑁)))) |
| 48 | 47 | 3imp 1196 |
. . . . 5
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) ∧ ¬ 𝑁 ≤ 𝐿 ∧ 𝐿 ≤ 𝑀) → 𝑀 ∈ (𝐿...𝑁)) |
| 49 | | elfz2nn0 10269 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ (0...(𝐿 + (♯‘𝐵))) ↔ (𝑁 ∈ ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0
∧ 𝑁 ≤ (𝐿 + (♯‘𝐵)))) |
| 50 | | nn0z 9427 |
. . . . . . . . . . . . . . . 16
⊢
((♯‘𝐴)
∈ ℕ0 → (♯‘𝐴) ∈ ℤ) |
| 51 | 7, 50 | eqeltrid 2294 |
. . . . . . . . . . . . . . 15
⊢
((♯‘𝐴)
∈ ℕ0 → 𝐿 ∈ ℤ) |
| 52 | 51 | ad2antrl 490 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℕ0
∧ (𝐿 +
(♯‘𝐵)) ∈
ℕ0 ∧ 𝑁
≤ (𝐿 +
(♯‘𝐵))) ∧
((♯‘𝐴) ∈
ℕ0 ∧ ¬ 𝑁 ≤ 𝐿)) → 𝐿 ∈ ℤ) |
| 53 | | nn0z 9427 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐿 + (♯‘𝐵)) ∈ ℕ0
→ (𝐿 +
(♯‘𝐵)) ∈
ℤ) |
| 54 | 53 | 3ad2ant2 1022 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ℕ0
∧ (𝐿 +
(♯‘𝐵)) ∈
ℕ0 ∧ 𝑁
≤ (𝐿 +
(♯‘𝐵))) →
(𝐿 + (♯‘𝐵)) ∈
ℤ) |
| 55 | 54 | adantr 276 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℕ0
∧ (𝐿 +
(♯‘𝐵)) ∈
ℕ0 ∧ 𝑁
≤ (𝐿 +
(♯‘𝐵))) ∧
((♯‘𝐴) ∈
ℕ0 ∧ ¬ 𝑁 ≤ 𝐿)) → (𝐿 + (♯‘𝐵)) ∈ ℤ) |
| 56 | 27 | 3ad2ant1 1021 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ℕ0
∧ (𝐿 +
(♯‘𝐵)) ∈
ℕ0 ∧ 𝑁
≤ (𝐿 +
(♯‘𝐵))) →
𝑁 ∈
ℤ) |
| 57 | 56 | adantr 276 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℕ0
∧ (𝐿 +
(♯‘𝐵)) ∈
ℕ0 ∧ 𝑁
≤ (𝐿 +
(♯‘𝐵))) ∧
((♯‘𝐴) ∈
ℕ0 ∧ ¬ 𝑁 ≤ 𝐿)) → 𝑁 ∈ ℤ) |
| 58 | 7 | eqcomi 2211 |
. . . . . . . . . . . . . . . . . 18
⊢
(♯‘𝐴) =
𝐿 |
| 59 | 58 | eleq1i 2273 |
. . . . . . . . . . . . . . . . 17
⊢
((♯‘𝐴)
∈ ℕ0 ↔ 𝐿 ∈
ℕ0) |
| 60 | | zltnle 9453 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐿 < 𝑁 ↔ ¬ 𝑁 ≤ 𝐿)) |
| 61 | 25, 27, 60 | syl2anr 290 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑁 ∈ ℕ0
∧ 𝐿 ∈
ℕ0) → (𝐿 < 𝑁 ↔ ¬ 𝑁 ≤ 𝐿)) |
| 62 | 61 | bicomd 141 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑁 ∈ ℕ0
∧ 𝐿 ∈
ℕ0) → (¬ 𝑁 ≤ 𝐿 ↔ 𝐿 < 𝑁)) |
| 63 | | nn0re 9339 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐿 ∈ ℕ0
→ 𝐿 ∈
ℝ) |
| 64 | | nn0re 9339 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈
ℝ) |
| 65 | | ltle 8195 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐿 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝐿 < 𝑁 → 𝐿 ≤ 𝑁)) |
| 66 | 63, 64, 65 | syl2anr 290 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑁 ∈ ℕ0
∧ 𝐿 ∈
ℕ0) → (𝐿 < 𝑁 → 𝐿 ≤ 𝑁)) |
| 67 | 62, 66 | sylbid 150 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑁 ∈ ℕ0
∧ 𝐿 ∈
ℕ0) → (¬ 𝑁 ≤ 𝐿 → 𝐿 ≤ 𝑁)) |
| 68 | 67 | ex 115 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑁 ∈ ℕ0
→ (𝐿 ∈
ℕ0 → (¬ 𝑁 ≤ 𝐿 → 𝐿 ≤ 𝑁))) |
| 69 | 59, 68 | biimtrid 152 |
. . . . . . . . . . . . . . . 16
⊢ (𝑁 ∈ ℕ0
→ ((♯‘𝐴)
∈ ℕ0 → (¬ 𝑁 ≤ 𝐿 → 𝐿 ≤ 𝑁))) |
| 70 | 69 | 3ad2ant1 1021 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ℕ0
∧ (𝐿 +
(♯‘𝐵)) ∈
ℕ0 ∧ 𝑁
≤ (𝐿 +
(♯‘𝐵))) →
((♯‘𝐴) ∈
ℕ0 → (¬ 𝑁 ≤ 𝐿 → 𝐿 ≤ 𝑁))) |
| 71 | 70 | imp32 257 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℕ0
∧ (𝐿 +
(♯‘𝐵)) ∈
ℕ0 ∧ 𝑁
≤ (𝐿 +
(♯‘𝐵))) ∧
((♯‘𝐴) ∈
ℕ0 ∧ ¬ 𝑁 ≤ 𝐿)) → 𝐿 ≤ 𝑁) |
| 72 | | simpl3 1005 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℕ0
∧ (𝐿 +
(♯‘𝐵)) ∈
ℕ0 ∧ 𝑁
≤ (𝐿 +
(♯‘𝐵))) ∧
((♯‘𝐴) ∈
ℕ0 ∧ ¬ 𝑁 ≤ 𝐿)) → 𝑁 ≤ (𝐿 + (♯‘𝐵))) |
| 73 | 52, 55, 57, 71, 72 | elfzd 10173 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ℕ0
∧ (𝐿 +
(♯‘𝐵)) ∈
ℕ0 ∧ 𝑁
≤ (𝐿 +
(♯‘𝐵))) ∧
((♯‘𝐴) ∈
ℕ0 ∧ ¬ 𝑁 ≤ 𝐿)) → 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) |
| 74 | 73 | exp32 365 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ0
∧ (𝐿 +
(♯‘𝐵)) ∈
ℕ0 ∧ 𝑁
≤ (𝐿 +
(♯‘𝐵))) →
((♯‘𝐴) ∈
ℕ0 → (¬ 𝑁 ≤ 𝐿 → 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))))) |
| 75 | 49, 74 | sylbi 121 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ (0...(𝐿 + (♯‘𝐵))) → ((♯‘𝐴) ∈ ℕ0 → (¬
𝑁 ≤ 𝐿 → 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))))) |
| 76 | 75 | adantl 277 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵)))) → ((♯‘𝐴) ∈ ℕ0
→ (¬ 𝑁 ≤ 𝐿 → 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))))) |
| 77 | 3, 76 | syl5com 29 |
. . . . . . . . 9
⊢ (𝐴 ∈ Word 𝑉 → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵)))) → (¬ 𝑁 ≤ 𝐿 → 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))))) |
| 78 | 77 | adantr 276 |
. . . . . . . 8
⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵)))) → (¬ 𝑁 ≤ 𝐿 → 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))))) |
| 79 | 78 | imp 124 |
. . . . . . 7
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) → (¬ 𝑁 ≤ 𝐿 → 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) |
| 80 | 79 | a1dd 48 |
. . . . . 6
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) → (¬ 𝑁 ≤ 𝐿 → (𝐿 ≤ 𝑀 → 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))))) |
| 81 | 80 | 3imp 1196 |
. . . . 5
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) ∧ ¬ 𝑁 ≤ 𝐿 ∧ 𝐿 ≤ 𝑀) → 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) |
| 82 | 48, 81 | jca 306 |
. . . 4
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) ∧ ¬ 𝑁 ≤ 𝐿 ∧ 𝐿 ≤ 𝑀) → (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) |
| 83 | 7 | swrdccatin2 11220 |
. . . 4
⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → ((𝐴 ++ 𝐵) substr 〈𝑀, 𝑁〉) = (𝐵 substr 〈(𝑀 − 𝐿), (𝑁 − 𝐿)〉))) |
| 84 | 22, 82, 83 | sylc 62 |
. . 3
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) ∧ ¬ 𝑁 ≤ 𝐿 ∧ 𝐿 ≤ 𝑀) → ((𝐴 ++ 𝐵) substr 〈𝑀, 𝑁〉) = (𝐵 substr 〈(𝑀 − 𝐿), (𝑁 − 𝐿)〉)) |
| 85 | | simp1l 1024 |
. . . 4
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) ∧ ¬ 𝑁 ≤ 𝐿 ∧ ¬ 𝐿 ≤ 𝑀) → (𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉)) |
| 86 | 30 | adantr 276 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → 𝑀 ∈ ℤ) |
| 87 | | zltnle 9453 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑀 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑀 < 𝐿 ↔ ¬ 𝐿 ≤ 𝑀)) |
| 88 | 86, 25, 87 | syl2anr 290 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐿 ∈ ℕ0
∧ (𝑀 ∈
ℕ0 ∧ 𝑁
∈ ℕ0)) → (𝑀 < 𝐿 ↔ ¬ 𝐿 ≤ 𝑀)) |
| 89 | 88 | bicomd 141 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐿 ∈ ℕ0
∧ (𝑀 ∈
ℕ0 ∧ 𝑁
∈ ℕ0)) → (¬ 𝐿 ≤ 𝑀 ↔ 𝑀 < 𝐿)) |
| 90 | | simpll 527 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑀 ∈ ℕ0
∧ 𝐿 ∈
ℕ0) ∧ 𝑀 < 𝐿) → 𝑀 ∈
ℕ0) |
| 91 | | simplr 528 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑀 ∈ ℕ0
∧ 𝐿 ∈
ℕ0) ∧ 𝑀 < 𝐿) → 𝐿 ∈
ℕ0) |
| 92 | | nn0re 9339 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑀 ∈ ℕ0
→ 𝑀 ∈
ℝ) |
| 93 | | ltle 8195 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑀 ∈ ℝ ∧ 𝐿 ∈ ℝ) → (𝑀 < 𝐿 → 𝑀 ≤ 𝐿)) |
| 94 | 92, 63, 93 | syl2an 289 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑀 ∈ ℕ0
∧ 𝐿 ∈
ℕ0) → (𝑀 < 𝐿 → 𝑀 ≤ 𝐿)) |
| 95 | 94 | imp 124 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑀 ∈ ℕ0
∧ 𝐿 ∈
ℕ0) ∧ 𝑀 < 𝐿) → 𝑀 ≤ 𝐿) |
| 96 | | elfz2nn0 10269 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑀 ∈ (0...𝐿) ↔ (𝑀 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0
∧ 𝑀 ≤ 𝐿)) |
| 97 | 90, 91, 95, 96 | syl3anbrc 1184 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑀 ∈ ℕ0
∧ 𝐿 ∈
ℕ0) ∧ 𝑀 < 𝐿) → 𝑀 ∈ (0...𝐿)) |
| 98 | 97 | exp31 364 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑀 ∈ ℕ0
→ (𝐿 ∈
ℕ0 → (𝑀 < 𝐿 → 𝑀 ∈ (0...𝐿)))) |
| 99 | 98 | adantr 276 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → (𝐿 ∈ ℕ0 → (𝑀 < 𝐿 → 𝑀 ∈ (0...𝐿)))) |
| 100 | 99 | impcom 125 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐿 ∈ ℕ0
∧ (𝑀 ∈
ℕ0 ∧ 𝑁
∈ ℕ0)) → (𝑀 < 𝐿 → 𝑀 ∈ (0...𝐿))) |
| 101 | 89, 100 | sylbid 150 |
. . . . . . . . . . . . . . 15
⊢ ((𝐿 ∈ ℕ0
∧ (𝑀 ∈
ℕ0 ∧ 𝑁
∈ ℕ0)) → (¬ 𝐿 ≤ 𝑀 → 𝑀 ∈ (0...𝐿))) |
| 102 | 101 | expcom 116 |
. . . . . . . . . . . . . 14
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → (𝐿 ∈ ℕ0 → (¬
𝐿 ≤ 𝑀 → 𝑀 ∈ (0...𝐿)))) |
| 103 | 102 | 3adant3 1020 |
. . . . . . . . . . . . 13
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑀
≤ 𝑁) → (𝐿 ∈ ℕ0
→ (¬ 𝐿 ≤ 𝑀 → 𝑀 ∈ (0...𝐿)))) |
| 104 | 24, 103 | sylbi 121 |
. . . . . . . . . . . 12
⊢ (𝑀 ∈ (0...𝑁) → (𝐿 ∈ ℕ0 → (¬
𝐿 ≤ 𝑀 → 𝑀 ∈ (0...𝐿)))) |
| 105 | 59, 104 | biimtrid 152 |
. . . . . . . . . . 11
⊢ (𝑀 ∈ (0...𝑁) → ((♯‘𝐴) ∈ ℕ0 → (¬
𝐿 ≤ 𝑀 → 𝑀 ∈ (0...𝐿)))) |
| 106 | 105 | adantr 276 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵)))) → ((♯‘𝐴) ∈ ℕ0
→ (¬ 𝐿 ≤ 𝑀 → 𝑀 ∈ (0...𝐿)))) |
| 107 | 3, 106 | syl5com 29 |
. . . . . . . . 9
⊢ (𝐴 ∈ Word 𝑉 → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵)))) → (¬ 𝐿 ≤ 𝑀 → 𝑀 ∈ (0...𝐿)))) |
| 108 | 107 | adantr 276 |
. . . . . . . 8
⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵)))) → (¬ 𝐿 ≤ 𝑀 → 𝑀 ∈ (0...𝐿)))) |
| 109 | 108 | imp 124 |
. . . . . . 7
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) → (¬ 𝐿 ≤ 𝑀 → 𝑀 ∈ (0...𝐿))) |
| 110 | 109 | a1d 22 |
. . . . . 6
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) → (¬ 𝑁 ≤ 𝐿 → (¬ 𝐿 ≤ 𝑀 → 𝑀 ∈ (0...𝐿)))) |
| 111 | 110 | 3imp 1196 |
. . . . 5
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) ∧ ¬ 𝑁 ≤ 𝐿 ∧ ¬ 𝐿 ≤ 𝑀) → 𝑀 ∈ (0...𝐿)) |
| 112 | 60 | bicomd 141 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬
𝑁 ≤ 𝐿 ↔ 𝐿 < 𝑁)) |
| 113 | 25, 56, 112 | syl2an 289 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐿 ∈ ℕ0
∧ (𝑁 ∈
ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0 ∧ 𝑁 ≤ (𝐿 + (♯‘𝐵)))) → (¬ 𝑁 ≤ 𝐿 ↔ 𝐿 < 𝑁)) |
| 114 | 25 | adantr 276 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐿 ∈ ℕ0
∧ (𝑁 ∈
ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0 ∧ 𝑁 ≤ (𝐿 + (♯‘𝐵)))) → 𝐿 ∈ ℤ) |
| 115 | 54 | adantl 277 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐿 ∈ ℕ0
∧ (𝑁 ∈
ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0 ∧ 𝑁 ≤ (𝐿 + (♯‘𝐵)))) → (𝐿 + (♯‘𝐵)) ∈ ℤ) |
| 116 | 56 | adantl 277 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐿 ∈ ℕ0
∧ (𝑁 ∈
ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0 ∧ 𝑁 ≤ (𝐿 + (♯‘𝐵)))) → 𝑁 ∈ ℤ) |
| 117 | 114, 115,
116 | 3jca 1180 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐿 ∈ ℕ0
∧ (𝑁 ∈
ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0 ∧ 𝑁 ≤ (𝐿 + (♯‘𝐵)))) → (𝐿 ∈ ℤ ∧ (𝐿 + (♯‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ)) |
| 118 | 117 | adantr 276 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐿 ∈ ℕ0
∧ (𝑁 ∈
ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0 ∧ 𝑁 ≤ (𝐿 + (♯‘𝐵)))) ∧ 𝐿 < 𝑁) → (𝐿 ∈ ℤ ∧ (𝐿 + (♯‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ)) |
| 119 | 64 | 3ad2ant1 1021 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑁 ∈ ℕ0
∧ (𝐿 +
(♯‘𝐵)) ∈
ℕ0 ∧ 𝑁
≤ (𝐿 +
(♯‘𝐵))) →
𝑁 ∈
ℝ) |
| 120 | 63, 119, 65 | syl2an 289 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐿 ∈ ℕ0
∧ (𝑁 ∈
ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0 ∧ 𝑁 ≤ (𝐿 + (♯‘𝐵)))) → (𝐿 < 𝑁 → 𝐿 ≤ 𝑁)) |
| 121 | 120 | imp 124 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐿 ∈ ℕ0
∧ (𝑁 ∈
ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0 ∧ 𝑁 ≤ (𝐿 + (♯‘𝐵)))) ∧ 𝐿 < 𝑁) → 𝐿 ≤ 𝑁) |
| 122 | | simplr3 1044 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐿 ∈ ℕ0
∧ (𝑁 ∈
ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0 ∧ 𝑁 ≤ (𝐿 + (♯‘𝐵)))) ∧ 𝐿 < 𝑁) → 𝑁 ≤ (𝐿 + (♯‘𝐵))) |
| 123 | 121, 122 | jca 306 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐿 ∈ ℕ0
∧ (𝑁 ∈
ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0 ∧ 𝑁 ≤ (𝐿 + (♯‘𝐵)))) ∧ 𝐿 < 𝑁) → (𝐿 ≤ 𝑁 ∧ 𝑁 ≤ (𝐿 + (♯‘𝐵)))) |
| 124 | | elfz2 10172 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))) ↔ ((𝐿 ∈ ℤ ∧ (𝐿 + (♯‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐿 ≤ 𝑁 ∧ 𝑁 ≤ (𝐿 + (♯‘𝐵))))) |
| 125 | 118, 123,
124 | sylanbrc 417 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐿 ∈ ℕ0
∧ (𝑁 ∈
ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0 ∧ 𝑁 ≤ (𝐿 + (♯‘𝐵)))) ∧ 𝐿 < 𝑁) → 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) |
| 126 | 125 | ex 115 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐿 ∈ ℕ0
∧ (𝑁 ∈
ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0 ∧ 𝑁 ≤ (𝐿 + (♯‘𝐵)))) → (𝐿 < 𝑁 → 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) |
| 127 | 113, 126 | sylbid 150 |
. . . . . . . . . . . . . . 15
⊢ ((𝐿 ∈ ℕ0
∧ (𝑁 ∈
ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0 ∧ 𝑁 ≤ (𝐿 + (♯‘𝐵)))) → (¬ 𝑁 ≤ 𝐿 → 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) |
| 128 | 127 | ex 115 |
. . . . . . . . . . . . . 14
⊢ (𝐿 ∈ ℕ0
→ ((𝑁 ∈
ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0 ∧ 𝑁 ≤ (𝐿 + (♯‘𝐵))) → (¬ 𝑁 ≤ 𝐿 → 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))))) |
| 129 | 59, 128 | sylbi 121 |
. . . . . . . . . . . . 13
⊢
((♯‘𝐴)
∈ ℕ0 → ((𝑁 ∈ ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0
∧ 𝑁 ≤ (𝐿 + (♯‘𝐵))) → (¬ 𝑁 ≤ 𝐿 → 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))))) |
| 130 | 3, 129 | syl 14 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ Word 𝑉 → ((𝑁 ∈ ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0
∧ 𝑁 ≤ (𝐿 + (♯‘𝐵))) → (¬ 𝑁 ≤ 𝐿 → 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))))) |
| 131 | 130 | adantr 276 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) → ((𝑁 ∈ ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0
∧ 𝑁 ≤ (𝐿 + (♯‘𝐵))) → (¬ 𝑁 ≤ 𝐿 → 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))))) |
| 132 | 131 | com12 30 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ0
∧ (𝐿 +
(♯‘𝐵)) ∈
ℕ0 ∧ 𝑁
≤ (𝐿 +
(♯‘𝐵))) →
((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) → (¬ 𝑁 ≤ 𝐿 → 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))))) |
| 133 | 49, 132 | sylbi 121 |
. . . . . . . . 9
⊢ (𝑁 ∈ (0...(𝐿 + (♯‘𝐵))) → ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) → (¬ 𝑁 ≤ 𝐿 → 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))))) |
| 134 | 133 | adantl 277 |
. . . . . . . 8
⊢ ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵)))) → ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) → (¬ 𝑁 ≤ 𝐿 → 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))))) |
| 135 | 134 | impcom 125 |
. . . . . . 7
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) → (¬ 𝑁 ≤ 𝐿 → 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) |
| 136 | 135 | a1dd 48 |
. . . . . 6
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) → (¬ 𝑁 ≤ 𝐿 → (¬ 𝐿 ≤ 𝑀 → 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))))) |
| 137 | 136 | 3imp 1196 |
. . . . 5
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) ∧ ¬ 𝑁 ≤ 𝐿 ∧ ¬ 𝐿 ≤ 𝑀) → 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) |
| 138 | 111, 137 | jca 306 |
. . . 4
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) ∧ ¬ 𝑁 ≤ 𝐿 ∧ ¬ 𝐿 ≤ 𝑀) → (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) |
| 139 | 7 | pfxccatin12 11224 |
. . . 4
⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → ((𝐴 ++ 𝐵) substr 〈𝑀, 𝑁〉) = ((𝐴 substr 〈𝑀, 𝐿〉) ++ (𝐵 prefix (𝑁 − 𝐿))))) |
| 140 | 85, 138, 139 | sylc 62 |
. . 3
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) ∧ ¬ 𝑁 ≤ 𝐿 ∧ ¬ 𝐿 ≤ 𝑀) → ((𝐴 ++ 𝐵) substr 〈𝑀, 𝑁〉) = ((𝐴 substr 〈𝑀, 𝐿〉) ++ (𝐵 prefix (𝑁 − 𝐿)))) |
| 141 | | elfzelz 10182 |
. . . . 5
⊢ (𝑁 ∈ (0...(𝐿 + (♯‘𝐵))) → 𝑁 ∈ ℤ) |
| 142 | 141 | ad2antll 491 |
. . . 4
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) → 𝑁 ∈ ℤ) |
| 143 | 3, 51 | syl 14 |
. . . . 5
⊢ (𝐴 ∈ Word 𝑉 → 𝐿 ∈ ℤ) |
| 144 | 143 | ad2antrr 488 |
. . . 4
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) → 𝐿 ∈ ℤ) |
| 145 | | zdcle 9484 |
. . . 4
⊢ ((𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) →
DECID 𝑁 ≤
𝐿) |
| 146 | 142, 144,
145 | syl2anc 411 |
. . 3
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) → DECID 𝑁 ≤ 𝐿) |
| 147 | 144 | adantr 276 |
. . . 4
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) ∧ ¬ 𝑁 ≤ 𝐿) → 𝐿 ∈ ℤ) |
| 148 | | elfzelz 10182 |
. . . . . 6
⊢ (𝑀 ∈ (0...𝑁) → 𝑀 ∈ ℤ) |
| 149 | 148 | ad2antrl 490 |
. . . . 5
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) → 𝑀 ∈ ℤ) |
| 150 | 149 | adantr 276 |
. . . 4
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) ∧ ¬ 𝑁 ≤ 𝐿) → 𝑀 ∈ ℤ) |
| 151 | | zdcle 9484 |
. . . 4
⊢ ((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) →
DECID 𝐿 ≤
𝑀) |
| 152 | 147, 150,
151 | syl2anc 411 |
. . 3
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) ∧ ¬ 𝑁 ≤ 𝐿) → DECID 𝐿 ≤ 𝑀) |
| 153 | 21, 84, 140, 146, 152 | 2if2dc 3619 |
. 2
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) → ((𝐴 ++ 𝐵) substr 〈𝑀, 𝑁〉) = if(𝑁 ≤ 𝐿, (𝐴 substr 〈𝑀, 𝑁〉), if(𝐿 ≤ 𝑀, (𝐵 substr 〈(𝑀 − 𝐿), (𝑁 − 𝐿)〉), ((𝐴 substr 〈𝑀, 𝐿〉) ++ (𝐵 prefix (𝑁 − 𝐿)))))) |
| 154 | 153 | ex 115 |
1
⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵)))) → ((𝐴 ++ 𝐵) substr 〈𝑀, 𝑁〉) = if(𝑁 ≤ 𝐿, (𝐴 substr 〈𝑀, 𝑁〉), if(𝐿 ≤ 𝑀, (𝐵 substr 〈(𝑀 − 𝐿), (𝑁 − 𝐿)〉), ((𝐴 substr 〈𝑀, 𝐿〉) ++ (𝐵 prefix (𝑁 − 𝐿))))))) |