| Step | Hyp | Ref
| Expression |
| 1 | | rngabl 13567 |
. . . 4
⊢ (𝑅 ∈ Rng → 𝑅 ∈ Abel) |
| 2 | 1 | 3ad2ant1 1020 |
. . 3
⊢ ((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ (SubGrp‘𝑅)) → 𝑅 ∈ Abel) |
| 3 | | simp3 1001 |
. . 3
⊢ ((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ (SubGrp‘𝑅)) → 𝑈 ∈ (SubGrp‘𝑅)) |
| 4 | | rnglidlabl.i |
. . . 4
⊢ 𝐼 = (𝑅 ↾s 𝑈) |
| 5 | 4 | subgabl 13538 |
. . 3
⊢ ((𝑅 ∈ Abel ∧ 𝑈 ∈ (SubGrp‘𝑅)) → 𝐼 ∈ Abel) |
| 6 | 2, 3, 5 | syl2anc 411 |
. 2
⊢ ((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ (SubGrp‘𝑅)) → 𝐼 ∈ Abel) |
| 7 | | eqid 2196 |
. . . 4
⊢
(0g‘𝑅) = (0g‘𝑅) |
| 8 | 7 | subg0cl 13388 |
. . 3
⊢ (𝑈 ∈ (SubGrp‘𝑅) →
(0g‘𝑅)
∈ 𝑈) |
| 9 | | rnglidlabl.l |
. . . 4
⊢ 𝐿 = (LIdeal‘𝑅) |
| 10 | 9, 4, 7 | rnglidlmsgrp 14129 |
. . 3
⊢ ((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ (0g‘𝑅) ∈ 𝑈) → (mulGrp‘𝐼) ∈ Smgrp) |
| 11 | 8, 10 | syl3an3 1284 |
. 2
⊢ ((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ (SubGrp‘𝑅)) → (mulGrp‘𝐼) ∈ Smgrp) |
| 12 | | simpl1 1002 |
. . . . 5
⊢ (((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ (SubGrp‘𝑅)) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼))) → 𝑅 ∈ Rng) |
| 13 | 9, 4 | lidlssbas 14109 |
. . . . . . . . 9
⊢ (𝑈 ∈ 𝐿 → (Base‘𝐼) ⊆ (Base‘𝑅)) |
| 14 | 13 | sseld 3183 |
. . . . . . . 8
⊢ (𝑈 ∈ 𝐿 → (𝑎 ∈ (Base‘𝐼) → 𝑎 ∈ (Base‘𝑅))) |
| 15 | 13 | sseld 3183 |
. . . . . . . 8
⊢ (𝑈 ∈ 𝐿 → (𝑏 ∈ (Base‘𝐼) → 𝑏 ∈ (Base‘𝑅))) |
| 16 | 13 | sseld 3183 |
. . . . . . . 8
⊢ (𝑈 ∈ 𝐿 → (𝑐 ∈ (Base‘𝐼) → 𝑐 ∈ (Base‘𝑅))) |
| 17 | 14, 15, 16 | 3anim123d 1330 |
. . . . . . 7
⊢ (𝑈 ∈ 𝐿 → ((𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼)) → (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅) ∧ 𝑐 ∈ (Base‘𝑅)))) |
| 18 | 17 | 3ad2ant2 1021 |
. . . . . 6
⊢ ((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ (SubGrp‘𝑅)) → ((𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼)) → (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅) ∧ 𝑐 ∈ (Base‘𝑅)))) |
| 19 | 18 | imp 124 |
. . . . 5
⊢ (((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ (SubGrp‘𝑅)) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼))) → (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅) ∧ 𝑐 ∈ (Base‘𝑅))) |
| 20 | | eqid 2196 |
. . . . . 6
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 21 | | eqid 2196 |
. . . . . 6
⊢
(+g‘𝑅) = (+g‘𝑅) |
| 22 | | eqid 2196 |
. . . . . 6
⊢
(.r‘𝑅) = (.r‘𝑅) |
| 23 | 20, 21, 22 | rngdi 13572 |
. . . . 5
⊢ ((𝑅 ∈ Rng ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅) ∧ 𝑐 ∈ (Base‘𝑅))) → (𝑎(.r‘𝑅)(𝑏(+g‘𝑅)𝑐)) = ((𝑎(.r‘𝑅)𝑏)(+g‘𝑅)(𝑎(.r‘𝑅)𝑐))) |
| 24 | 12, 19, 23 | syl2anc 411 |
. . . 4
⊢ (((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ (SubGrp‘𝑅)) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼))) → (𝑎(.r‘𝑅)(𝑏(+g‘𝑅)𝑐)) = ((𝑎(.r‘𝑅)𝑏)(+g‘𝑅)(𝑎(.r‘𝑅)𝑐))) |
| 25 | 20, 21, 22 | rngdir 13573 |
. . . . 5
⊢ ((𝑅 ∈ Rng ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅) ∧ 𝑐 ∈ (Base‘𝑅))) → ((𝑎(+g‘𝑅)𝑏)(.r‘𝑅)𝑐) = ((𝑎(.r‘𝑅)𝑐)(+g‘𝑅)(𝑏(.r‘𝑅)𝑐))) |
| 26 | 12, 19, 25 | syl2anc 411 |
. . . 4
⊢ (((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ (SubGrp‘𝑅)) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼))) → ((𝑎(+g‘𝑅)𝑏)(.r‘𝑅)𝑐) = ((𝑎(.r‘𝑅)𝑐)(+g‘𝑅)(𝑏(.r‘𝑅)𝑐))) |
| 27 | | simp2 1000 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ (SubGrp‘𝑅)) → 𝑈 ∈ 𝐿) |
| 28 | | simp1 999 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ (SubGrp‘𝑅)) → 𝑅 ∈ Rng) |
| 29 | 4, 22 | ressmulrg 12847 |
. . . . . . . . . 10
⊢ ((𝑈 ∈ 𝐿 ∧ 𝑅 ∈ Rng) →
(.r‘𝑅) =
(.r‘𝐼)) |
| 30 | 27, 28, 29 | syl2anc 411 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ (SubGrp‘𝑅)) → (.r‘𝑅) = (.r‘𝐼)) |
| 31 | 30 | eqcomd 2202 |
. . . . . . . 8
⊢ ((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ (SubGrp‘𝑅)) → (.r‘𝐼) = (.r‘𝑅)) |
| 32 | | eqidd 2197 |
. . . . . . . 8
⊢ ((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ (SubGrp‘𝑅)) → 𝑎 = 𝑎) |
| 33 | 4 | a1i 9 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ (SubGrp‘𝑅)) → 𝐼 = (𝑅 ↾s 𝑈)) |
| 34 | | eqidd 2197 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ (SubGrp‘𝑅)) → (+g‘𝑅) = (+g‘𝑅)) |
| 35 | 33, 34, 27, 28 | ressplusgd 12831 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ (SubGrp‘𝑅)) → (+g‘𝑅) = (+g‘𝐼)) |
| 36 | 35 | eqcomd 2202 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ (SubGrp‘𝑅)) → (+g‘𝐼) = (+g‘𝑅)) |
| 37 | 36 | oveqd 5942 |
. . . . . . . 8
⊢ ((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ (SubGrp‘𝑅)) → (𝑏(+g‘𝐼)𝑐) = (𝑏(+g‘𝑅)𝑐)) |
| 38 | 31, 32, 37 | oveq123d 5946 |
. . . . . . 7
⊢ ((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ (SubGrp‘𝑅)) → (𝑎(.r‘𝐼)(𝑏(+g‘𝐼)𝑐)) = (𝑎(.r‘𝑅)(𝑏(+g‘𝑅)𝑐))) |
| 39 | 31 | oveqd 5942 |
. . . . . . . 8
⊢ ((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ (SubGrp‘𝑅)) → (𝑎(.r‘𝐼)𝑏) = (𝑎(.r‘𝑅)𝑏)) |
| 40 | 31 | oveqd 5942 |
. . . . . . . 8
⊢ ((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ (SubGrp‘𝑅)) → (𝑎(.r‘𝐼)𝑐) = (𝑎(.r‘𝑅)𝑐)) |
| 41 | 36, 39, 40 | oveq123d 5946 |
. . . . . . 7
⊢ ((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ (SubGrp‘𝑅)) → ((𝑎(.r‘𝐼)𝑏)(+g‘𝐼)(𝑎(.r‘𝐼)𝑐)) = ((𝑎(.r‘𝑅)𝑏)(+g‘𝑅)(𝑎(.r‘𝑅)𝑐))) |
| 42 | 38, 41 | eqeq12d 2211 |
. . . . . 6
⊢ ((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ (SubGrp‘𝑅)) → ((𝑎(.r‘𝐼)(𝑏(+g‘𝐼)𝑐)) = ((𝑎(.r‘𝐼)𝑏)(+g‘𝐼)(𝑎(.r‘𝐼)𝑐)) ↔ (𝑎(.r‘𝑅)(𝑏(+g‘𝑅)𝑐)) = ((𝑎(.r‘𝑅)𝑏)(+g‘𝑅)(𝑎(.r‘𝑅)𝑐)))) |
| 43 | 36 | oveqd 5942 |
. . . . . . . 8
⊢ ((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ (SubGrp‘𝑅)) → (𝑎(+g‘𝐼)𝑏) = (𝑎(+g‘𝑅)𝑏)) |
| 44 | | eqidd 2197 |
. . . . . . . 8
⊢ ((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ (SubGrp‘𝑅)) → 𝑐 = 𝑐) |
| 45 | 31, 43, 44 | oveq123d 5946 |
. . . . . . 7
⊢ ((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ (SubGrp‘𝑅)) → ((𝑎(+g‘𝐼)𝑏)(.r‘𝐼)𝑐) = ((𝑎(+g‘𝑅)𝑏)(.r‘𝑅)𝑐)) |
| 46 | 31 | oveqd 5942 |
. . . . . . . 8
⊢ ((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ (SubGrp‘𝑅)) → (𝑏(.r‘𝐼)𝑐) = (𝑏(.r‘𝑅)𝑐)) |
| 47 | 36, 40, 46 | oveq123d 5946 |
. . . . . . 7
⊢ ((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ (SubGrp‘𝑅)) → ((𝑎(.r‘𝐼)𝑐)(+g‘𝐼)(𝑏(.r‘𝐼)𝑐)) = ((𝑎(.r‘𝑅)𝑐)(+g‘𝑅)(𝑏(.r‘𝑅)𝑐))) |
| 48 | 45, 47 | eqeq12d 2211 |
. . . . . 6
⊢ ((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ (SubGrp‘𝑅)) → (((𝑎(+g‘𝐼)𝑏)(.r‘𝐼)𝑐) = ((𝑎(.r‘𝐼)𝑐)(+g‘𝐼)(𝑏(.r‘𝐼)𝑐)) ↔ ((𝑎(+g‘𝑅)𝑏)(.r‘𝑅)𝑐) = ((𝑎(.r‘𝑅)𝑐)(+g‘𝑅)(𝑏(.r‘𝑅)𝑐)))) |
| 49 | 42, 48 | anbi12d 473 |
. . . . 5
⊢ ((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ (SubGrp‘𝑅)) → (((𝑎(.r‘𝐼)(𝑏(+g‘𝐼)𝑐)) = ((𝑎(.r‘𝐼)𝑏)(+g‘𝐼)(𝑎(.r‘𝐼)𝑐)) ∧ ((𝑎(+g‘𝐼)𝑏)(.r‘𝐼)𝑐) = ((𝑎(.r‘𝐼)𝑐)(+g‘𝐼)(𝑏(.r‘𝐼)𝑐))) ↔ ((𝑎(.r‘𝑅)(𝑏(+g‘𝑅)𝑐)) = ((𝑎(.r‘𝑅)𝑏)(+g‘𝑅)(𝑎(.r‘𝑅)𝑐)) ∧ ((𝑎(+g‘𝑅)𝑏)(.r‘𝑅)𝑐) = ((𝑎(.r‘𝑅)𝑐)(+g‘𝑅)(𝑏(.r‘𝑅)𝑐))))) |
| 50 | 49 | adantr 276 |
. . . 4
⊢ (((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ (SubGrp‘𝑅)) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼))) → (((𝑎(.r‘𝐼)(𝑏(+g‘𝐼)𝑐)) = ((𝑎(.r‘𝐼)𝑏)(+g‘𝐼)(𝑎(.r‘𝐼)𝑐)) ∧ ((𝑎(+g‘𝐼)𝑏)(.r‘𝐼)𝑐) = ((𝑎(.r‘𝐼)𝑐)(+g‘𝐼)(𝑏(.r‘𝐼)𝑐))) ↔ ((𝑎(.r‘𝑅)(𝑏(+g‘𝑅)𝑐)) = ((𝑎(.r‘𝑅)𝑏)(+g‘𝑅)(𝑎(.r‘𝑅)𝑐)) ∧ ((𝑎(+g‘𝑅)𝑏)(.r‘𝑅)𝑐) = ((𝑎(.r‘𝑅)𝑐)(+g‘𝑅)(𝑏(.r‘𝑅)𝑐))))) |
| 51 | 24, 26, 50 | mpbir2and 946 |
. . 3
⊢ (((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ (SubGrp‘𝑅)) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼))) → ((𝑎(.r‘𝐼)(𝑏(+g‘𝐼)𝑐)) = ((𝑎(.r‘𝐼)𝑏)(+g‘𝐼)(𝑎(.r‘𝐼)𝑐)) ∧ ((𝑎(+g‘𝐼)𝑏)(.r‘𝐼)𝑐) = ((𝑎(.r‘𝐼)𝑐)(+g‘𝐼)(𝑏(.r‘𝐼)𝑐)))) |
| 52 | 51 | ralrimivvva 2580 |
. 2
⊢ ((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ (SubGrp‘𝑅)) → ∀𝑎 ∈ (Base‘𝐼)∀𝑏 ∈ (Base‘𝐼)∀𝑐 ∈ (Base‘𝐼)((𝑎(.r‘𝐼)(𝑏(+g‘𝐼)𝑐)) = ((𝑎(.r‘𝐼)𝑏)(+g‘𝐼)(𝑎(.r‘𝐼)𝑐)) ∧ ((𝑎(+g‘𝐼)𝑏)(.r‘𝐼)𝑐) = ((𝑎(.r‘𝐼)𝑐)(+g‘𝐼)(𝑏(.r‘𝐼)𝑐)))) |
| 53 | | eqid 2196 |
. . 3
⊢
(Base‘𝐼) =
(Base‘𝐼) |
| 54 | | eqid 2196 |
. . 3
⊢
(mulGrp‘𝐼) =
(mulGrp‘𝐼) |
| 55 | | eqid 2196 |
. . 3
⊢
(+g‘𝐼) = (+g‘𝐼) |
| 56 | | eqid 2196 |
. . 3
⊢
(.r‘𝐼) = (.r‘𝐼) |
| 57 | 53, 54, 55, 56 | isrng 13566 |
. 2
⊢ (𝐼 ∈ Rng ↔ (𝐼 ∈ Abel ∧
(mulGrp‘𝐼) ∈
Smgrp ∧ ∀𝑎
∈ (Base‘𝐼)∀𝑏 ∈ (Base‘𝐼)∀𝑐 ∈ (Base‘𝐼)((𝑎(.r‘𝐼)(𝑏(+g‘𝐼)𝑐)) = ((𝑎(.r‘𝐼)𝑏)(+g‘𝐼)(𝑎(.r‘𝐼)𝑐)) ∧ ((𝑎(+g‘𝐼)𝑏)(.r‘𝐼)𝑐) = ((𝑎(.r‘𝐼)𝑐)(+g‘𝐼)(𝑏(.r‘𝐼)𝑐))))) |
| 58 | 6, 11, 52, 57 | syl3anbrc 1183 |
1
⊢ ((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ (SubGrp‘𝑅)) → 𝐼 ∈ Rng) |