ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rnglidlrng GIF version

Theorem rnglidlrng 14310
Description: A (left) ideal of a non-unital ring is a non-unital ring. (Contributed by AV, 17-Feb-2020.) Generalization for non-unital rings. The assumption 𝑈 ∈ (SubGrp‘𝑅) is required because a left ideal of a non-unital ring does not have to be a subgroup. (Revised by AV, 11-Mar-2025.)
Hypotheses
Ref Expression
rnglidlabl.l 𝐿 = (LIdeal‘𝑅)
rnglidlabl.i 𝐼 = (𝑅s 𝑈)
Assertion
Ref Expression
rnglidlrng ((𝑅 ∈ Rng ∧ 𝑈𝐿𝑈 ∈ (SubGrp‘𝑅)) → 𝐼 ∈ Rng)

Proof of Theorem rnglidlrng
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rngabl 13747 . . . 4 (𝑅 ∈ Rng → 𝑅 ∈ Abel)
213ad2ant1 1021 . . 3 ((𝑅 ∈ Rng ∧ 𝑈𝐿𝑈 ∈ (SubGrp‘𝑅)) → 𝑅 ∈ Abel)
3 simp3 1002 . . 3 ((𝑅 ∈ Rng ∧ 𝑈𝐿𝑈 ∈ (SubGrp‘𝑅)) → 𝑈 ∈ (SubGrp‘𝑅))
4 rnglidlabl.i . . . 4 𝐼 = (𝑅s 𝑈)
54subgabl 13718 . . 3 ((𝑅 ∈ Abel ∧ 𝑈 ∈ (SubGrp‘𝑅)) → 𝐼 ∈ Abel)
62, 3, 5syl2anc 411 . 2 ((𝑅 ∈ Rng ∧ 𝑈𝐿𝑈 ∈ (SubGrp‘𝑅)) → 𝐼 ∈ Abel)
7 eqid 2206 . . . 4 (0g𝑅) = (0g𝑅)
87subg0cl 13568 . . 3 (𝑈 ∈ (SubGrp‘𝑅) → (0g𝑅) ∈ 𝑈)
9 rnglidlabl.l . . . 4 𝐿 = (LIdeal‘𝑅)
109, 4, 7rnglidlmsgrp 14309 . . 3 ((𝑅 ∈ Rng ∧ 𝑈𝐿 ∧ (0g𝑅) ∈ 𝑈) → (mulGrp‘𝐼) ∈ Smgrp)
118, 10syl3an3 1285 . 2 ((𝑅 ∈ Rng ∧ 𝑈𝐿𝑈 ∈ (SubGrp‘𝑅)) → (mulGrp‘𝐼) ∈ Smgrp)
12 simpl1 1003 . . . . 5 (((𝑅 ∈ Rng ∧ 𝑈𝐿𝑈 ∈ (SubGrp‘𝑅)) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼))) → 𝑅 ∈ Rng)
139, 4lidlssbas 14289 . . . . . . . . 9 (𝑈𝐿 → (Base‘𝐼) ⊆ (Base‘𝑅))
1413sseld 3194 . . . . . . . 8 (𝑈𝐿 → (𝑎 ∈ (Base‘𝐼) → 𝑎 ∈ (Base‘𝑅)))
1513sseld 3194 . . . . . . . 8 (𝑈𝐿 → (𝑏 ∈ (Base‘𝐼) → 𝑏 ∈ (Base‘𝑅)))
1613sseld 3194 . . . . . . . 8 (𝑈𝐿 → (𝑐 ∈ (Base‘𝐼) → 𝑐 ∈ (Base‘𝑅)))
1714, 15, 163anim123d 1332 . . . . . . 7 (𝑈𝐿 → ((𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼)) → (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅) ∧ 𝑐 ∈ (Base‘𝑅))))
18173ad2ant2 1022 . . . . . 6 ((𝑅 ∈ Rng ∧ 𝑈𝐿𝑈 ∈ (SubGrp‘𝑅)) → ((𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼)) → (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅) ∧ 𝑐 ∈ (Base‘𝑅))))
1918imp 124 . . . . 5 (((𝑅 ∈ Rng ∧ 𝑈𝐿𝑈 ∈ (SubGrp‘𝑅)) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼))) → (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅) ∧ 𝑐 ∈ (Base‘𝑅)))
20 eqid 2206 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
21 eqid 2206 . . . . . 6 (+g𝑅) = (+g𝑅)
22 eqid 2206 . . . . . 6 (.r𝑅) = (.r𝑅)
2320, 21, 22rngdi 13752 . . . . 5 ((𝑅 ∈ Rng ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅) ∧ 𝑐 ∈ (Base‘𝑅))) → (𝑎(.r𝑅)(𝑏(+g𝑅)𝑐)) = ((𝑎(.r𝑅)𝑏)(+g𝑅)(𝑎(.r𝑅)𝑐)))
2412, 19, 23syl2anc 411 . . . 4 (((𝑅 ∈ Rng ∧ 𝑈𝐿𝑈 ∈ (SubGrp‘𝑅)) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼))) → (𝑎(.r𝑅)(𝑏(+g𝑅)𝑐)) = ((𝑎(.r𝑅)𝑏)(+g𝑅)(𝑎(.r𝑅)𝑐)))
2520, 21, 22rngdir 13753 . . . . 5 ((𝑅 ∈ Rng ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅) ∧ 𝑐 ∈ (Base‘𝑅))) → ((𝑎(+g𝑅)𝑏)(.r𝑅)𝑐) = ((𝑎(.r𝑅)𝑐)(+g𝑅)(𝑏(.r𝑅)𝑐)))
2612, 19, 25syl2anc 411 . . . 4 (((𝑅 ∈ Rng ∧ 𝑈𝐿𝑈 ∈ (SubGrp‘𝑅)) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼))) → ((𝑎(+g𝑅)𝑏)(.r𝑅)𝑐) = ((𝑎(.r𝑅)𝑐)(+g𝑅)(𝑏(.r𝑅)𝑐)))
27 simp2 1001 . . . . . . . . . 10 ((𝑅 ∈ Rng ∧ 𝑈𝐿𝑈 ∈ (SubGrp‘𝑅)) → 𝑈𝐿)
28 simp1 1000 . . . . . . . . . 10 ((𝑅 ∈ Rng ∧ 𝑈𝐿𝑈 ∈ (SubGrp‘𝑅)) → 𝑅 ∈ Rng)
294, 22ressmulrg 13027 . . . . . . . . . 10 ((𝑈𝐿𝑅 ∈ Rng) → (.r𝑅) = (.r𝐼))
3027, 28, 29syl2anc 411 . . . . . . . . 9 ((𝑅 ∈ Rng ∧ 𝑈𝐿𝑈 ∈ (SubGrp‘𝑅)) → (.r𝑅) = (.r𝐼))
3130eqcomd 2212 . . . . . . . 8 ((𝑅 ∈ Rng ∧ 𝑈𝐿𝑈 ∈ (SubGrp‘𝑅)) → (.r𝐼) = (.r𝑅))
32 eqidd 2207 . . . . . . . 8 ((𝑅 ∈ Rng ∧ 𝑈𝐿𝑈 ∈ (SubGrp‘𝑅)) → 𝑎 = 𝑎)
334a1i 9 . . . . . . . . . . 11 ((𝑅 ∈ Rng ∧ 𝑈𝐿𝑈 ∈ (SubGrp‘𝑅)) → 𝐼 = (𝑅s 𝑈))
34 eqidd 2207 . . . . . . . . . . 11 ((𝑅 ∈ Rng ∧ 𝑈𝐿𝑈 ∈ (SubGrp‘𝑅)) → (+g𝑅) = (+g𝑅))
3533, 34, 27, 28ressplusgd 13011 . . . . . . . . . 10 ((𝑅 ∈ Rng ∧ 𝑈𝐿𝑈 ∈ (SubGrp‘𝑅)) → (+g𝑅) = (+g𝐼))
3635eqcomd 2212 . . . . . . . . 9 ((𝑅 ∈ Rng ∧ 𝑈𝐿𝑈 ∈ (SubGrp‘𝑅)) → (+g𝐼) = (+g𝑅))
3736oveqd 5971 . . . . . . . 8 ((𝑅 ∈ Rng ∧ 𝑈𝐿𝑈 ∈ (SubGrp‘𝑅)) → (𝑏(+g𝐼)𝑐) = (𝑏(+g𝑅)𝑐))
3831, 32, 37oveq123d 5975 . . . . . . 7 ((𝑅 ∈ Rng ∧ 𝑈𝐿𝑈 ∈ (SubGrp‘𝑅)) → (𝑎(.r𝐼)(𝑏(+g𝐼)𝑐)) = (𝑎(.r𝑅)(𝑏(+g𝑅)𝑐)))
3931oveqd 5971 . . . . . . . 8 ((𝑅 ∈ Rng ∧ 𝑈𝐿𝑈 ∈ (SubGrp‘𝑅)) → (𝑎(.r𝐼)𝑏) = (𝑎(.r𝑅)𝑏))
4031oveqd 5971 . . . . . . . 8 ((𝑅 ∈ Rng ∧ 𝑈𝐿𝑈 ∈ (SubGrp‘𝑅)) → (𝑎(.r𝐼)𝑐) = (𝑎(.r𝑅)𝑐))
4136, 39, 40oveq123d 5975 . . . . . . 7 ((𝑅 ∈ Rng ∧ 𝑈𝐿𝑈 ∈ (SubGrp‘𝑅)) → ((𝑎(.r𝐼)𝑏)(+g𝐼)(𝑎(.r𝐼)𝑐)) = ((𝑎(.r𝑅)𝑏)(+g𝑅)(𝑎(.r𝑅)𝑐)))
4238, 41eqeq12d 2221 . . . . . 6 ((𝑅 ∈ Rng ∧ 𝑈𝐿𝑈 ∈ (SubGrp‘𝑅)) → ((𝑎(.r𝐼)(𝑏(+g𝐼)𝑐)) = ((𝑎(.r𝐼)𝑏)(+g𝐼)(𝑎(.r𝐼)𝑐)) ↔ (𝑎(.r𝑅)(𝑏(+g𝑅)𝑐)) = ((𝑎(.r𝑅)𝑏)(+g𝑅)(𝑎(.r𝑅)𝑐))))
4336oveqd 5971 . . . . . . . 8 ((𝑅 ∈ Rng ∧ 𝑈𝐿𝑈 ∈ (SubGrp‘𝑅)) → (𝑎(+g𝐼)𝑏) = (𝑎(+g𝑅)𝑏))
44 eqidd 2207 . . . . . . . 8 ((𝑅 ∈ Rng ∧ 𝑈𝐿𝑈 ∈ (SubGrp‘𝑅)) → 𝑐 = 𝑐)
4531, 43, 44oveq123d 5975 . . . . . . 7 ((𝑅 ∈ Rng ∧ 𝑈𝐿𝑈 ∈ (SubGrp‘𝑅)) → ((𝑎(+g𝐼)𝑏)(.r𝐼)𝑐) = ((𝑎(+g𝑅)𝑏)(.r𝑅)𝑐))
4631oveqd 5971 . . . . . . . 8 ((𝑅 ∈ Rng ∧ 𝑈𝐿𝑈 ∈ (SubGrp‘𝑅)) → (𝑏(.r𝐼)𝑐) = (𝑏(.r𝑅)𝑐))
4736, 40, 46oveq123d 5975 . . . . . . 7 ((𝑅 ∈ Rng ∧ 𝑈𝐿𝑈 ∈ (SubGrp‘𝑅)) → ((𝑎(.r𝐼)𝑐)(+g𝐼)(𝑏(.r𝐼)𝑐)) = ((𝑎(.r𝑅)𝑐)(+g𝑅)(𝑏(.r𝑅)𝑐)))
4845, 47eqeq12d 2221 . . . . . 6 ((𝑅 ∈ Rng ∧ 𝑈𝐿𝑈 ∈ (SubGrp‘𝑅)) → (((𝑎(+g𝐼)𝑏)(.r𝐼)𝑐) = ((𝑎(.r𝐼)𝑐)(+g𝐼)(𝑏(.r𝐼)𝑐)) ↔ ((𝑎(+g𝑅)𝑏)(.r𝑅)𝑐) = ((𝑎(.r𝑅)𝑐)(+g𝑅)(𝑏(.r𝑅)𝑐))))
4942, 48anbi12d 473 . . . . 5 ((𝑅 ∈ Rng ∧ 𝑈𝐿𝑈 ∈ (SubGrp‘𝑅)) → (((𝑎(.r𝐼)(𝑏(+g𝐼)𝑐)) = ((𝑎(.r𝐼)𝑏)(+g𝐼)(𝑎(.r𝐼)𝑐)) ∧ ((𝑎(+g𝐼)𝑏)(.r𝐼)𝑐) = ((𝑎(.r𝐼)𝑐)(+g𝐼)(𝑏(.r𝐼)𝑐))) ↔ ((𝑎(.r𝑅)(𝑏(+g𝑅)𝑐)) = ((𝑎(.r𝑅)𝑏)(+g𝑅)(𝑎(.r𝑅)𝑐)) ∧ ((𝑎(+g𝑅)𝑏)(.r𝑅)𝑐) = ((𝑎(.r𝑅)𝑐)(+g𝑅)(𝑏(.r𝑅)𝑐)))))
5049adantr 276 . . . 4 (((𝑅 ∈ Rng ∧ 𝑈𝐿𝑈 ∈ (SubGrp‘𝑅)) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼))) → (((𝑎(.r𝐼)(𝑏(+g𝐼)𝑐)) = ((𝑎(.r𝐼)𝑏)(+g𝐼)(𝑎(.r𝐼)𝑐)) ∧ ((𝑎(+g𝐼)𝑏)(.r𝐼)𝑐) = ((𝑎(.r𝐼)𝑐)(+g𝐼)(𝑏(.r𝐼)𝑐))) ↔ ((𝑎(.r𝑅)(𝑏(+g𝑅)𝑐)) = ((𝑎(.r𝑅)𝑏)(+g𝑅)(𝑎(.r𝑅)𝑐)) ∧ ((𝑎(+g𝑅)𝑏)(.r𝑅)𝑐) = ((𝑎(.r𝑅)𝑐)(+g𝑅)(𝑏(.r𝑅)𝑐)))))
5124, 26, 50mpbir2and 947 . . 3 (((𝑅 ∈ Rng ∧ 𝑈𝐿𝑈 ∈ (SubGrp‘𝑅)) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼))) → ((𝑎(.r𝐼)(𝑏(+g𝐼)𝑐)) = ((𝑎(.r𝐼)𝑏)(+g𝐼)(𝑎(.r𝐼)𝑐)) ∧ ((𝑎(+g𝐼)𝑏)(.r𝐼)𝑐) = ((𝑎(.r𝐼)𝑐)(+g𝐼)(𝑏(.r𝐼)𝑐))))
5251ralrimivvva 2590 . 2 ((𝑅 ∈ Rng ∧ 𝑈𝐿𝑈 ∈ (SubGrp‘𝑅)) → ∀𝑎 ∈ (Base‘𝐼)∀𝑏 ∈ (Base‘𝐼)∀𝑐 ∈ (Base‘𝐼)((𝑎(.r𝐼)(𝑏(+g𝐼)𝑐)) = ((𝑎(.r𝐼)𝑏)(+g𝐼)(𝑎(.r𝐼)𝑐)) ∧ ((𝑎(+g𝐼)𝑏)(.r𝐼)𝑐) = ((𝑎(.r𝐼)𝑐)(+g𝐼)(𝑏(.r𝐼)𝑐))))
53 eqid 2206 . . 3 (Base‘𝐼) = (Base‘𝐼)
54 eqid 2206 . . 3 (mulGrp‘𝐼) = (mulGrp‘𝐼)
55 eqid 2206 . . 3 (+g𝐼) = (+g𝐼)
56 eqid 2206 . . 3 (.r𝐼) = (.r𝐼)
5753, 54, 55, 56isrng 13746 . 2 (𝐼 ∈ Rng ↔ (𝐼 ∈ Abel ∧ (mulGrp‘𝐼) ∈ Smgrp ∧ ∀𝑎 ∈ (Base‘𝐼)∀𝑏 ∈ (Base‘𝐼)∀𝑐 ∈ (Base‘𝐼)((𝑎(.r𝐼)(𝑏(+g𝐼)𝑐)) = ((𝑎(.r𝐼)𝑏)(+g𝐼)(𝑎(.r𝐼)𝑐)) ∧ ((𝑎(+g𝐼)𝑏)(.r𝐼)𝑐) = ((𝑎(.r𝐼)𝑐)(+g𝐼)(𝑏(.r𝐼)𝑐)))))
586, 11, 52, 57syl3anbrc 1184 1 ((𝑅 ∈ Rng ∧ 𝑈𝐿𝑈 ∈ (SubGrp‘𝑅)) → 𝐼 ∈ Rng)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 981   = wceq 1373  wcel 2177  wral 2485  cfv 5277  (class class class)co 5954  Basecbs 12882  s cress 12883  +gcplusg 12959  .rcmulr 12960  0gc0g 13138  Smgrpcsgrp 13283  SubGrpcsubg 13553  Abelcabl 13671  mulGrpcmgp 13732  Rngcrng 13744  LIdealclidl 14279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4164  ax-sep 4167  ax-pow 4223  ax-pr 4258  ax-un 4485  ax-setind 4590  ax-cnex 8029  ax-resscn 8030  ax-1cn 8031  ax-1re 8032  ax-icn 8033  ax-addcl 8034  ax-addrcl 8035  ax-mulcl 8036  ax-addcom 8038  ax-addass 8040  ax-i2m1 8043  ax-0lt1 8044  ax-0id 8046  ax-rnegex 8047  ax-pre-ltirr 8050  ax-pre-lttrn 8052  ax-pre-ltadd 8054
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3001  df-csb 3096  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-nul 3463  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-int 3889  df-iun 3932  df-br 4049  df-opab 4111  df-mpt 4112  df-id 4345  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-ima 4693  df-iota 5238  df-fun 5279  df-fn 5280  df-f 5281  df-f1 5282  df-fo 5283  df-f1o 5284  df-fv 5285  df-riota 5909  df-ov 5957  df-oprab 5958  df-mpo 5959  df-pnf 8122  df-mnf 8123  df-ltxr 8125  df-inn 9050  df-2 9108  df-3 9109  df-4 9110  df-5 9111  df-6 9112  df-7 9113  df-8 9114  df-ndx 12885  df-slot 12886  df-base 12888  df-sets 12889  df-iress 12890  df-plusg 12972  df-mulr 12973  df-sca 12975  df-vsca 12976  df-ip 12977  df-0g 13140  df-mgm 13238  df-sgrp 13284  df-mnd 13299  df-grp 13385  df-subg 13556  df-cmn 13672  df-abl 13673  df-mgp 13733  df-rng 13745  df-lssm 14165  df-sra 14247  df-rgmod 14248  df-lidl 14281
This theorem is referenced by:  rng2idlsubgsubrng  14332
  Copyright terms: Public domain W3C validator