ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sslm GIF version

Theorem sslm 13786
Description: A finer topology has fewer convergent sequences (but the sequences that do converge, converge to the same value). (Contributed by Mario Carneiro, 15-Sep-2015.)
Assertion
Ref Expression
sslm ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘‹) ∧ 𝐽 βŠ† 𝐾) β†’ (β‡π‘‘β€˜πΎ) βŠ† (β‡π‘‘β€˜π½))

Proof of Theorem sslm
Dummy variables 𝑒 𝑓 π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 idd 21 . . . . 5 (𝐽 βŠ† 𝐾 β†’ (𝑓 ∈ (𝑋 ↑pm β„‚) β†’ 𝑓 ∈ (𝑋 ↑pm β„‚)))
2 idd 21 . . . . 5 (𝐽 βŠ† 𝐾 β†’ (π‘₯ ∈ 𝑋 β†’ π‘₯ ∈ 𝑋))
3 ssralv 3221 . . . . 5 (𝐽 βŠ† 𝐾 β†’ (βˆ€π‘’ ∈ 𝐾 (π‘₯ ∈ 𝑒 β†’ βˆƒπ‘¦ ∈ ran β„€β‰₯(𝑓 β†Ύ 𝑦):π‘¦βŸΆπ‘’) β†’ βˆ€π‘’ ∈ 𝐽 (π‘₯ ∈ 𝑒 β†’ βˆƒπ‘¦ ∈ ran β„€β‰₯(𝑓 β†Ύ 𝑦):π‘¦βŸΆπ‘’)))
41, 2, 33anim123d 1319 . . . 4 (𝐽 βŠ† 𝐾 β†’ ((𝑓 ∈ (𝑋 ↑pm β„‚) ∧ π‘₯ ∈ 𝑋 ∧ βˆ€π‘’ ∈ 𝐾 (π‘₯ ∈ 𝑒 β†’ βˆƒπ‘¦ ∈ ran β„€β‰₯(𝑓 β†Ύ 𝑦):π‘¦βŸΆπ‘’)) β†’ (𝑓 ∈ (𝑋 ↑pm β„‚) ∧ π‘₯ ∈ 𝑋 ∧ βˆ€π‘’ ∈ 𝐽 (π‘₯ ∈ 𝑒 β†’ βˆƒπ‘¦ ∈ ran β„€β‰₯(𝑓 β†Ύ 𝑦):π‘¦βŸΆπ‘’))))
54ssopab2dv 4280 . . 3 (𝐽 βŠ† 𝐾 β†’ {βŸ¨π‘“, π‘₯⟩ ∣ (𝑓 ∈ (𝑋 ↑pm β„‚) ∧ π‘₯ ∈ 𝑋 ∧ βˆ€π‘’ ∈ 𝐾 (π‘₯ ∈ 𝑒 β†’ βˆƒπ‘¦ ∈ ran β„€β‰₯(𝑓 β†Ύ 𝑦):π‘¦βŸΆπ‘’))} βŠ† {βŸ¨π‘“, π‘₯⟩ ∣ (𝑓 ∈ (𝑋 ↑pm β„‚) ∧ π‘₯ ∈ 𝑋 ∧ βˆ€π‘’ ∈ 𝐽 (π‘₯ ∈ 𝑒 β†’ βˆƒπ‘¦ ∈ ran β„€β‰₯(𝑓 β†Ύ 𝑦):π‘¦βŸΆπ‘’))})
653ad2ant3 1020 . 2 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘‹) ∧ 𝐽 βŠ† 𝐾) β†’ {βŸ¨π‘“, π‘₯⟩ ∣ (𝑓 ∈ (𝑋 ↑pm β„‚) ∧ π‘₯ ∈ 𝑋 ∧ βˆ€π‘’ ∈ 𝐾 (π‘₯ ∈ 𝑒 β†’ βˆƒπ‘¦ ∈ ran β„€β‰₯(𝑓 β†Ύ 𝑦):π‘¦βŸΆπ‘’))} βŠ† {βŸ¨π‘“, π‘₯⟩ ∣ (𝑓 ∈ (𝑋 ↑pm β„‚) ∧ π‘₯ ∈ 𝑋 ∧ βˆ€π‘’ ∈ 𝐽 (π‘₯ ∈ 𝑒 β†’ βˆƒπ‘¦ ∈ ran β„€β‰₯(𝑓 β†Ύ 𝑦):π‘¦βŸΆπ‘’))})
7 lmfval 13731 . . 3 (𝐾 ∈ (TopOnβ€˜π‘‹) β†’ (β‡π‘‘β€˜πΎ) = {βŸ¨π‘“, π‘₯⟩ ∣ (𝑓 ∈ (𝑋 ↑pm β„‚) ∧ π‘₯ ∈ 𝑋 ∧ βˆ€π‘’ ∈ 𝐾 (π‘₯ ∈ 𝑒 β†’ βˆƒπ‘¦ ∈ ran β„€β‰₯(𝑓 β†Ύ 𝑦):π‘¦βŸΆπ‘’))})
873ad2ant2 1019 . 2 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘‹) ∧ 𝐽 βŠ† 𝐾) β†’ (β‡π‘‘β€˜πΎ) = {βŸ¨π‘“, π‘₯⟩ ∣ (𝑓 ∈ (𝑋 ↑pm β„‚) ∧ π‘₯ ∈ 𝑋 ∧ βˆ€π‘’ ∈ 𝐾 (π‘₯ ∈ 𝑒 β†’ βˆƒπ‘¦ ∈ ran β„€β‰₯(𝑓 β†Ύ 𝑦):π‘¦βŸΆπ‘’))})
9 lmfval 13731 . . 3 (𝐽 ∈ (TopOnβ€˜π‘‹) β†’ (β‡π‘‘β€˜π½) = {βŸ¨π‘“, π‘₯⟩ ∣ (𝑓 ∈ (𝑋 ↑pm β„‚) ∧ π‘₯ ∈ 𝑋 ∧ βˆ€π‘’ ∈ 𝐽 (π‘₯ ∈ 𝑒 β†’ βˆƒπ‘¦ ∈ ran β„€β‰₯(𝑓 β†Ύ 𝑦):π‘¦βŸΆπ‘’))})
1093ad2ant1 1018 . 2 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘‹) ∧ 𝐽 βŠ† 𝐾) β†’ (β‡π‘‘β€˜π½) = {βŸ¨π‘“, π‘₯⟩ ∣ (𝑓 ∈ (𝑋 ↑pm β„‚) ∧ π‘₯ ∈ 𝑋 ∧ βˆ€π‘’ ∈ 𝐽 (π‘₯ ∈ 𝑒 β†’ βˆƒπ‘¦ ∈ ran β„€β‰₯(𝑓 β†Ύ 𝑦):π‘¦βŸΆπ‘’))})
116, 8, 103sstr4d 3202 1 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘‹) ∧ 𝐽 βŠ† 𝐾) β†’ (β‡π‘‘β€˜πΎ) βŠ† (β‡π‘‘β€˜π½))
Colors of variables: wff set class
Syntax hints:   β†’ wi 4   ∧ w3a 978   = wceq 1353   ∈ wcel 2148  βˆ€wral 2455  βˆƒwrex 2456   βŠ† wss 3131  {copab 4065  ran crn 4629   β†Ύ cres 4630  βŸΆwf 5214  β€˜cfv 5218  (class class class)co 5877   ↑pm cpm 6651  β„‚cc 7811  β„€β‰₯cuz 9530  TopOnctopon 13549  β‡π‘‘clm 13726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-cnex 7904
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-pm 6653  df-top 13537  df-topon 13550  df-lm 13729
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator