ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sslm GIF version

Theorem sslm 14929
Description: A finer topology has fewer convergent sequences (but the sequences that do converge, converge to the same value). (Contributed by Mario Carneiro, 15-Sep-2015.)
Assertion
Ref Expression
sslm ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) → (⇝𝑡𝐾) ⊆ (⇝𝑡𝐽))

Proof of Theorem sslm
Dummy variables 𝑢 𝑓 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 idd 21 . . . . 5 (𝐽𝐾 → (𝑓 ∈ (𝑋pm ℂ) → 𝑓 ∈ (𝑋pm ℂ)))
2 idd 21 . . . . 5 (𝐽𝐾 → (𝑥𝑋𝑥𝑋))
3 ssralv 3288 . . . . 5 (𝐽𝐾 → (∀𝑢𝐾 (𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝑓𝑦):𝑦𝑢) → ∀𝑢𝐽 (𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝑓𝑦):𝑦𝑢)))
41, 2, 33anim123d 1353 . . . 4 (𝐽𝐾 → ((𝑓 ∈ (𝑋pm ℂ) ∧ 𝑥𝑋 ∧ ∀𝑢𝐾 (𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝑓𝑦):𝑦𝑢)) → (𝑓 ∈ (𝑋pm ℂ) ∧ 𝑥𝑋 ∧ ∀𝑢𝐽 (𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝑓𝑦):𝑦𝑢))))
54ssopab2dv 4367 . . 3 (𝐽𝐾 → {⟨𝑓, 𝑥⟩ ∣ (𝑓 ∈ (𝑋pm ℂ) ∧ 𝑥𝑋 ∧ ∀𝑢𝐾 (𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝑓𝑦):𝑦𝑢))} ⊆ {⟨𝑓, 𝑥⟩ ∣ (𝑓 ∈ (𝑋pm ℂ) ∧ 𝑥𝑋 ∧ ∀𝑢𝐽 (𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝑓𝑦):𝑦𝑢))})
653ad2ant3 1044 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) → {⟨𝑓, 𝑥⟩ ∣ (𝑓 ∈ (𝑋pm ℂ) ∧ 𝑥𝑋 ∧ ∀𝑢𝐾 (𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝑓𝑦):𝑦𝑢))} ⊆ {⟨𝑓, 𝑥⟩ ∣ (𝑓 ∈ (𝑋pm ℂ) ∧ 𝑥𝑋 ∧ ∀𝑢𝐽 (𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝑓𝑦):𝑦𝑢))})
7 lmfval 14875 . . 3 (𝐾 ∈ (TopOn‘𝑋) → (⇝𝑡𝐾) = {⟨𝑓, 𝑥⟩ ∣ (𝑓 ∈ (𝑋pm ℂ) ∧ 𝑥𝑋 ∧ ∀𝑢𝐾 (𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝑓𝑦):𝑦𝑢))})
873ad2ant2 1043 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) → (⇝𝑡𝐾) = {⟨𝑓, 𝑥⟩ ∣ (𝑓 ∈ (𝑋pm ℂ) ∧ 𝑥𝑋 ∧ ∀𝑢𝐾 (𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝑓𝑦):𝑦𝑢))})
9 lmfval 14875 . . 3 (𝐽 ∈ (TopOn‘𝑋) → (⇝𝑡𝐽) = {⟨𝑓, 𝑥⟩ ∣ (𝑓 ∈ (𝑋pm ℂ) ∧ 𝑥𝑋 ∧ ∀𝑢𝐽 (𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝑓𝑦):𝑦𝑢))})
1093ad2ant1 1042 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) → (⇝𝑡𝐽) = {⟨𝑓, 𝑥⟩ ∣ (𝑓 ∈ (𝑋pm ℂ) ∧ 𝑥𝑋 ∧ ∀𝑢𝐽 (𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝑓𝑦):𝑦𝑢))})
116, 8, 103sstr4d 3269 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) → (⇝𝑡𝐾) ⊆ (⇝𝑡𝐽))
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 1002   = wceq 1395  wcel 2200  wral 2508  wrex 2509  wss 3197  {copab 4144  ran crn 4720  cres 4721  wf 5314  cfv 5318  (class class class)co 6007  pm cpm 6804  cc 8005  cuz 9730  TopOnctopon 14692  𝑡clm 14869
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-cnex 8098
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-pm 6806  df-top 14680  df-topon 14693  df-lm 14872
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator