![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > issmo2 | GIF version |
Description: Alternate definition of a strictly monotone ordinal function. (Contributed by Mario Carneiro, 12-Mar-2013.) |
Ref | Expression |
---|---|
issmo2 | ⊢ (𝐹:𝐴⟶𝐵 → ((𝐵 ⊆ On ∧ Ord 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) ∈ (𝐹‘𝑥)) → Smo 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fss 5377 | . . . . 5 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ On) → 𝐹:𝐴⟶On) | |
2 | 1 | ex 115 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → (𝐵 ⊆ On → 𝐹:𝐴⟶On)) |
3 | fdm 5371 | . . . . 5 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) | |
4 | 3 | feq2d 5353 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹:dom 𝐹⟶On ↔ 𝐹:𝐴⟶On)) |
5 | 2, 4 | sylibrd 169 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → (𝐵 ⊆ On → 𝐹:dom 𝐹⟶On)) |
6 | ordeq 4372 | . . . . 5 ⊢ (dom 𝐹 = 𝐴 → (Ord dom 𝐹 ↔ Ord 𝐴)) | |
7 | 3, 6 | syl 14 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → (Ord dom 𝐹 ↔ Ord 𝐴)) |
8 | 7 | biimprd 158 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → (Ord 𝐴 → Ord dom 𝐹)) |
9 | 3 | raleqdv 2678 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → (∀𝑥 ∈ dom 𝐹∀𝑦 ∈ 𝑥 (𝐹‘𝑦) ∈ (𝐹‘𝑥) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) ∈ (𝐹‘𝑥))) |
10 | 9 | biimprd 158 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) ∈ (𝐹‘𝑥) → ∀𝑥 ∈ dom 𝐹∀𝑦 ∈ 𝑥 (𝐹‘𝑦) ∈ (𝐹‘𝑥))) |
11 | 5, 8, 10 | 3anim123d 1319 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → ((𝐵 ⊆ On ∧ Ord 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) ∈ (𝐹‘𝑥)) → (𝐹:dom 𝐹⟶On ∧ Ord dom 𝐹 ∧ ∀𝑥 ∈ dom 𝐹∀𝑦 ∈ 𝑥 (𝐹‘𝑦) ∈ (𝐹‘𝑥)))) |
12 | dfsmo2 6287 | . 2 ⊢ (Smo 𝐹 ↔ (𝐹:dom 𝐹⟶On ∧ Ord dom 𝐹 ∧ ∀𝑥 ∈ dom 𝐹∀𝑦 ∈ 𝑥 (𝐹‘𝑦) ∈ (𝐹‘𝑥))) | |
13 | 11, 12 | syl6ibr 162 | 1 ⊢ (𝐹:𝐴⟶𝐵 → ((𝐵 ⊆ On ∧ Ord 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) ∈ (𝐹‘𝑥)) → Smo 𝐹)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∧ w3a 978 = wceq 1353 ∈ wcel 2148 ∀wral 2455 ⊆ wss 3129 Ord word 4362 Oncon0 4363 dom cdm 4626 ⟶wf 5212 ‘cfv 5216 Smo wsmo 6285 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2739 df-in 3135 df-ss 3142 df-uni 3810 df-tr 4102 df-iord 4366 df-fn 5219 df-f 5220 df-smo 6286 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |