| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > issmo2 | GIF version | ||
| Description: Alternate definition of a strictly monotone ordinal function. (Contributed by Mario Carneiro, 12-Mar-2013.) |
| Ref | Expression |
|---|---|
| issmo2 | ⊢ (𝐹:𝐴⟶𝐵 → ((𝐵 ⊆ On ∧ Ord 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) ∈ (𝐹‘𝑥)) → Smo 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fss 5484 | . . . . 5 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ On) → 𝐹:𝐴⟶On) | |
| 2 | 1 | ex 115 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → (𝐵 ⊆ On → 𝐹:𝐴⟶On)) |
| 3 | fdm 5478 | . . . . 5 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) | |
| 4 | 3 | feq2d 5460 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹:dom 𝐹⟶On ↔ 𝐹:𝐴⟶On)) |
| 5 | 2, 4 | sylibrd 169 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → (𝐵 ⊆ On → 𝐹:dom 𝐹⟶On)) |
| 6 | ordeq 4462 | . . . . 5 ⊢ (dom 𝐹 = 𝐴 → (Ord dom 𝐹 ↔ Ord 𝐴)) | |
| 7 | 3, 6 | syl 14 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → (Ord dom 𝐹 ↔ Ord 𝐴)) |
| 8 | 7 | biimprd 158 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → (Ord 𝐴 → Ord dom 𝐹)) |
| 9 | 3 | raleqdv 2734 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → (∀𝑥 ∈ dom 𝐹∀𝑦 ∈ 𝑥 (𝐹‘𝑦) ∈ (𝐹‘𝑥) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) ∈ (𝐹‘𝑥))) |
| 10 | 9 | biimprd 158 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) ∈ (𝐹‘𝑥) → ∀𝑥 ∈ dom 𝐹∀𝑦 ∈ 𝑥 (𝐹‘𝑦) ∈ (𝐹‘𝑥))) |
| 11 | 5, 8, 10 | 3anim123d 1353 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → ((𝐵 ⊆ On ∧ Ord 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) ∈ (𝐹‘𝑥)) → (𝐹:dom 𝐹⟶On ∧ Ord dom 𝐹 ∧ ∀𝑥 ∈ dom 𝐹∀𝑦 ∈ 𝑥 (𝐹‘𝑦) ∈ (𝐹‘𝑥)))) |
| 12 | dfsmo2 6431 | . 2 ⊢ (Smo 𝐹 ↔ (𝐹:dom 𝐹⟶On ∧ Ord dom 𝐹 ∧ ∀𝑥 ∈ dom 𝐹∀𝑦 ∈ 𝑥 (𝐹‘𝑦) ∈ (𝐹‘𝑥))) | |
| 13 | 11, 12 | imbitrrdi 162 | 1 ⊢ (𝐹:𝐴⟶𝐵 → ((𝐵 ⊆ On ∧ Ord 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) ∈ (𝐹‘𝑥)) → Smo 𝐹)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∧ w3a 1002 = wceq 1395 ∈ wcel 2200 ∀wral 2508 ⊆ wss 3197 Ord word 4452 Oncon0 4453 dom cdm 4718 ⟶wf 5313 ‘cfv 5317 Smo wsmo 6429 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-in 3203 df-ss 3210 df-uni 3888 df-tr 4182 df-iord 4456 df-fn 5320 df-f 5321 df-smo 6430 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |