| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > issmo2 | GIF version | ||
| Description: Alternate definition of a strictly monotone ordinal function. (Contributed by Mario Carneiro, 12-Mar-2013.) |
| Ref | Expression |
|---|---|
| issmo2 | ⊢ (𝐹:𝐴⟶𝐵 → ((𝐵 ⊆ On ∧ Ord 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) ∈ (𝐹‘𝑥)) → Smo 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fss 5447 | . . . . 5 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐵 ⊆ On) → 𝐹:𝐴⟶On) | |
| 2 | 1 | ex 115 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → (𝐵 ⊆ On → 𝐹:𝐴⟶On)) |
| 3 | fdm 5441 | . . . . 5 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) | |
| 4 | 3 | feq2d 5423 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹:dom 𝐹⟶On ↔ 𝐹:𝐴⟶On)) |
| 5 | 2, 4 | sylibrd 169 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → (𝐵 ⊆ On → 𝐹:dom 𝐹⟶On)) |
| 6 | ordeq 4427 | . . . . 5 ⊢ (dom 𝐹 = 𝐴 → (Ord dom 𝐹 ↔ Ord 𝐴)) | |
| 7 | 3, 6 | syl 14 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → (Ord dom 𝐹 ↔ Ord 𝐴)) |
| 8 | 7 | biimprd 158 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → (Ord 𝐴 → Ord dom 𝐹)) |
| 9 | 3 | raleqdv 2709 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → (∀𝑥 ∈ dom 𝐹∀𝑦 ∈ 𝑥 (𝐹‘𝑦) ∈ (𝐹‘𝑥) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) ∈ (𝐹‘𝑥))) |
| 10 | 9 | biimprd 158 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) ∈ (𝐹‘𝑥) → ∀𝑥 ∈ dom 𝐹∀𝑦 ∈ 𝑥 (𝐹‘𝑦) ∈ (𝐹‘𝑥))) |
| 11 | 5, 8, 10 | 3anim123d 1332 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → ((𝐵 ⊆ On ∧ Ord 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) ∈ (𝐹‘𝑥)) → (𝐹:dom 𝐹⟶On ∧ Ord dom 𝐹 ∧ ∀𝑥 ∈ dom 𝐹∀𝑦 ∈ 𝑥 (𝐹‘𝑦) ∈ (𝐹‘𝑥)))) |
| 12 | dfsmo2 6386 | . 2 ⊢ (Smo 𝐹 ↔ (𝐹:dom 𝐹⟶On ∧ Ord dom 𝐹 ∧ ∀𝑥 ∈ dom 𝐹∀𝑦 ∈ 𝑥 (𝐹‘𝑦) ∈ (𝐹‘𝑥))) | |
| 13 | 11, 12 | imbitrrdi 162 | 1 ⊢ (𝐹:𝐴⟶𝐵 → ((𝐵 ⊆ On ∧ Ord 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 (𝐹‘𝑦) ∈ (𝐹‘𝑥)) → Smo 𝐹)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∧ w3a 981 = wceq 1373 ∈ wcel 2177 ∀wral 2485 ⊆ wss 3170 Ord word 4417 Oncon0 4418 dom cdm 4683 ⟶wf 5276 ‘cfv 5280 Smo wsmo 6384 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-in 3176 df-ss 3183 df-uni 3857 df-tr 4151 df-iord 4421 df-fn 5283 df-f 5284 df-smo 6385 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |