ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  issmo2 GIF version

Theorem issmo2 6268
Description: Alternate definition of a strictly monotone ordinal function. (Contributed by Mario Carneiro, 12-Mar-2013.)
Assertion
Ref Expression
issmo2 (𝐹:𝐴𝐵 → ((𝐵 ⊆ On ∧ Ord 𝐴 ∧ ∀𝑥𝐴𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥)) → Smo 𝐹))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹,𝑦
Allowed substitution hints:   𝐴(𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem issmo2
StepHypRef Expression
1 fss 5359 . . . . 5 ((𝐹:𝐴𝐵𝐵 ⊆ On) → 𝐹:𝐴⟶On)
21ex 114 . . . 4 (𝐹:𝐴𝐵 → (𝐵 ⊆ On → 𝐹:𝐴⟶On))
3 fdm 5353 . . . . 5 (𝐹:𝐴𝐵 → dom 𝐹 = 𝐴)
43feq2d 5335 . . . 4 (𝐹:𝐴𝐵 → (𝐹:dom 𝐹⟶On ↔ 𝐹:𝐴⟶On))
52, 4sylibrd 168 . . 3 (𝐹:𝐴𝐵 → (𝐵 ⊆ On → 𝐹:dom 𝐹⟶On))
6 ordeq 4357 . . . . 5 (dom 𝐹 = 𝐴 → (Ord dom 𝐹 ↔ Ord 𝐴))
73, 6syl 14 . . . 4 (𝐹:𝐴𝐵 → (Ord dom 𝐹 ↔ Ord 𝐴))
87biimprd 157 . . 3 (𝐹:𝐴𝐵 → (Ord 𝐴 → Ord dom 𝐹))
93raleqdv 2671 . . . 4 (𝐹:𝐴𝐵 → (∀𝑥 ∈ dom 𝐹𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥) ↔ ∀𝑥𝐴𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥)))
109biimprd 157 . . 3 (𝐹:𝐴𝐵 → (∀𝑥𝐴𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥) → ∀𝑥 ∈ dom 𝐹𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥)))
115, 8, 103anim123d 1314 . 2 (𝐹:𝐴𝐵 → ((𝐵 ⊆ On ∧ Ord 𝐴 ∧ ∀𝑥𝐴𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥)) → (𝐹:dom 𝐹⟶On ∧ Ord dom 𝐹 ∧ ∀𝑥 ∈ dom 𝐹𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥))))
12 dfsmo2 6266 . 2 (Smo 𝐹 ↔ (𝐹:dom 𝐹⟶On ∧ Ord dom 𝐹 ∧ ∀𝑥 ∈ dom 𝐹𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥)))
1311, 12syl6ibr 161 1 (𝐹:𝐴𝐵 → ((𝐵 ⊆ On ∧ Ord 𝐴 ∧ ∀𝑥𝐴𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥)) → Smo 𝐹))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  w3a 973   = wceq 1348  wcel 2141  wral 2448  wss 3121  Ord word 4347  Oncon0 4348  dom cdm 4611  wf 5194  cfv 5198  Smo wsmo 6264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-in 3127  df-ss 3134  df-uni 3797  df-tr 4088  df-iord 4351  df-fn 5201  df-f 5202  df-smo 6265
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator