| Step | Hyp | Ref
| Expression |
| 1 | | subrngsubg 13760 |
. . 3
⊢ (𝐴 ∈ (SubRng‘𝑅) → 𝐴 ∈ (SubGrp‘𝑅)) |
| 2 | | issubrng2.t |
. . . . . 6
⊢ · =
(.r‘𝑅) |
| 3 | 2 | subrngmcl 13765 |
. . . . 5
⊢ ((𝐴 ∈ (SubRng‘𝑅) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 · 𝑦) ∈ 𝐴) |
| 4 | 3 | 3expb 1206 |
. . . 4
⊢ ((𝐴 ∈ (SubRng‘𝑅) ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑥 · 𝑦) ∈ 𝐴) |
| 5 | 4 | ralrimivva 2579 |
. . 3
⊢ (𝐴 ∈ (SubRng‘𝑅) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴) |
| 6 | 1, 5 | jca 306 |
. 2
⊢ (𝐴 ∈ (SubRng‘𝑅) → (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) |
| 7 | | simpl 109 |
. . . 4
⊢ ((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → 𝑅 ∈ Rng) |
| 8 | | simprl 529 |
. . . . . 6
⊢ ((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → 𝐴 ∈ (SubGrp‘𝑅)) |
| 9 | | eqid 2196 |
. . . . . . 7
⊢ (𝑅 ↾s 𝐴) = (𝑅 ↾s 𝐴) |
| 10 | 9 | subgbas 13308 |
. . . . . 6
⊢ (𝐴 ∈ (SubGrp‘𝑅) → 𝐴 = (Base‘(𝑅 ↾s 𝐴))) |
| 11 | 8, 10 | syl 14 |
. . . . 5
⊢ ((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → 𝐴 = (Base‘(𝑅 ↾s 𝐴))) |
| 12 | | eqidd 2197 |
. . . . . . 7
⊢ (𝐴 ∈ (SubGrp‘𝑅) → (𝑅 ↾s 𝐴) = (𝑅 ↾s 𝐴)) |
| 13 | | eqidd 2197 |
. . . . . . 7
⊢ (𝐴 ∈ (SubGrp‘𝑅) →
(+g‘𝑅) =
(+g‘𝑅)) |
| 14 | | id 19 |
. . . . . . 7
⊢ (𝐴 ∈ (SubGrp‘𝑅) → 𝐴 ∈ (SubGrp‘𝑅)) |
| 15 | | subgrcl 13309 |
. . . . . . 7
⊢ (𝐴 ∈ (SubGrp‘𝑅) → 𝑅 ∈ Grp) |
| 16 | 12, 13, 14, 15 | ressplusgd 12806 |
. . . . . 6
⊢ (𝐴 ∈ (SubGrp‘𝑅) →
(+g‘𝑅) =
(+g‘(𝑅
↾s 𝐴))) |
| 17 | 8, 16 | syl 14 |
. . . . 5
⊢ ((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → (+g‘𝑅) = (+g‘(𝑅 ↾s 𝐴))) |
| 18 | 9, 2 | ressmulrg 12822 |
. . . . . 6
⊢ ((𝐴 ∈ (SubGrp‘𝑅) ∧ 𝑅 ∈ Grp) → · =
(.r‘(𝑅
↾s 𝐴))) |
| 19 | 8, 15, 18 | syl2anc2 412 |
. . . . 5
⊢ ((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → · =
(.r‘(𝑅
↾s 𝐴))) |
| 20 | | rngabl 13491 |
. . . . . 6
⊢ (𝑅 ∈ Rng → 𝑅 ∈ Abel) |
| 21 | 9 | subgabl 13462 |
. . . . . 6
⊢ ((𝑅 ∈ Abel ∧ 𝐴 ∈ (SubGrp‘𝑅)) → (𝑅 ↾s 𝐴) ∈ Abel) |
| 22 | 20, 8, 21 | syl2an2r 595 |
. . . . 5
⊢ ((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → (𝑅 ↾s 𝐴) ∈ Abel) |
| 23 | | simprr 531 |
. . . . . . 7
⊢ ((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴) |
| 24 | | oveq1 5929 |
. . . . . . . . 9
⊢ (𝑥 = 𝑢 → (𝑥 · 𝑦) = (𝑢 · 𝑦)) |
| 25 | 24 | eleq1d 2265 |
. . . . . . . 8
⊢ (𝑥 = 𝑢 → ((𝑥 · 𝑦) ∈ 𝐴 ↔ (𝑢 · 𝑦) ∈ 𝐴)) |
| 26 | | oveq2 5930 |
. . . . . . . . 9
⊢ (𝑦 = 𝑣 → (𝑢 · 𝑦) = (𝑢 · 𝑣)) |
| 27 | 26 | eleq1d 2265 |
. . . . . . . 8
⊢ (𝑦 = 𝑣 → ((𝑢 · 𝑦) ∈ 𝐴 ↔ (𝑢 · 𝑣) ∈ 𝐴)) |
| 28 | 25, 27 | rspc2v 2881 |
. . . . . . 7
⊢ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴 → (𝑢 · 𝑣) ∈ 𝐴)) |
| 29 | 23, 28 | syl5com 29 |
. . . . . 6
⊢ ((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) → (𝑢 · 𝑣) ∈ 𝐴)) |
| 30 | 29 | 3impib 1203 |
. . . . 5
⊢ (((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) ∧ 𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) → (𝑢 · 𝑣) ∈ 𝐴) |
| 31 | | issubrng2.b |
. . . . . . . . . . 11
⊢ 𝐵 = (Base‘𝑅) |
| 32 | 31 | subgss 13304 |
. . . . . . . . . 10
⊢ (𝐴 ∈ (SubGrp‘𝑅) → 𝐴 ⊆ 𝐵) |
| 33 | 8, 32 | syl 14 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → 𝐴 ⊆ 𝐵) |
| 34 | 33 | sseld 3182 |
. . . . . . . 8
⊢ ((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → (𝑢 ∈ 𝐴 → 𝑢 ∈ 𝐵)) |
| 35 | 33 | sseld 3182 |
. . . . . . . 8
⊢ ((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → (𝑣 ∈ 𝐴 → 𝑣 ∈ 𝐵)) |
| 36 | 33 | sseld 3182 |
. . . . . . . 8
⊢ ((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → (𝑤 ∈ 𝐴 → 𝑤 ∈ 𝐵)) |
| 37 | 34, 35, 36 | 3anim123d 1330 |
. . . . . . 7
⊢ ((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) → (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵))) |
| 38 | 37 | imp 124 |
. . . . . 6
⊢ (((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) → (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) |
| 39 | 31, 2 | rngass 13495 |
. . . . . . 7
⊢ ((𝑅 ∈ Rng ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → ((𝑢 · 𝑣) · 𝑤) = (𝑢 · (𝑣 · 𝑤))) |
| 40 | 39 | adantlr 477 |
. . . . . 6
⊢ (((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → ((𝑢 · 𝑣) · 𝑤) = (𝑢 · (𝑣 · 𝑤))) |
| 41 | 38, 40 | syldan 282 |
. . . . 5
⊢ (((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) → ((𝑢 · 𝑣) · 𝑤) = (𝑢 · (𝑣 · 𝑤))) |
| 42 | | eqid 2196 |
. . . . . . . 8
⊢
(+g‘𝑅) = (+g‘𝑅) |
| 43 | 31, 42, 2 | rngdi 13496 |
. . . . . . 7
⊢ ((𝑅 ∈ Rng ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → (𝑢 · (𝑣(+g‘𝑅)𝑤)) = ((𝑢 · 𝑣)(+g‘𝑅)(𝑢 · 𝑤))) |
| 44 | 43 | adantlr 477 |
. . . . . 6
⊢ (((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → (𝑢 · (𝑣(+g‘𝑅)𝑤)) = ((𝑢 · 𝑣)(+g‘𝑅)(𝑢 · 𝑤))) |
| 45 | 38, 44 | syldan 282 |
. . . . 5
⊢ (((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) → (𝑢 · (𝑣(+g‘𝑅)𝑤)) = ((𝑢 · 𝑣)(+g‘𝑅)(𝑢 · 𝑤))) |
| 46 | 31, 42, 2 | rngdir 13497 |
. . . . . . 7
⊢ ((𝑅 ∈ Rng ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → ((𝑢(+g‘𝑅)𝑣) · 𝑤) = ((𝑢 · 𝑤)(+g‘𝑅)(𝑣 · 𝑤))) |
| 47 | 46 | adantlr 477 |
. . . . . 6
⊢ (((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) ∧ (𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → ((𝑢(+g‘𝑅)𝑣) · 𝑤) = ((𝑢 · 𝑤)(+g‘𝑅)(𝑣 · 𝑤))) |
| 48 | 38, 47 | syldan 282 |
. . . . 5
⊢ (((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) ∧ (𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴)) → ((𝑢(+g‘𝑅)𝑣) · 𝑤) = ((𝑢 · 𝑤)(+g‘𝑅)(𝑣 · 𝑤))) |
| 49 | 11, 17, 19, 22, 30, 41, 45, 48 | isrngd 13509 |
. . . 4
⊢ ((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → (𝑅 ↾s 𝐴) ∈ Rng) |
| 50 | 31 | issubrng 13755 |
. . . 4
⊢ (𝐴 ∈ (SubRng‘𝑅) ↔ (𝑅 ∈ Rng ∧ (𝑅 ↾s 𝐴) ∈ Rng ∧ 𝐴 ⊆ 𝐵)) |
| 51 | 7, 49, 33, 50 | syl3anbrc 1183 |
. . 3
⊢ ((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → 𝐴 ∈ (SubRng‘𝑅)) |
| 52 | 51 | ex 115 |
. 2
⊢ (𝑅 ∈ Rng → ((𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴) → 𝐴 ∈ (SubRng‘𝑅))) |
| 53 | 6, 52 | impbid2 143 |
1
⊢ (𝑅 ∈ Rng → (𝐴 ∈ (SubRng‘𝑅) ↔ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴))) |