ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  issubrng2 GIF version

Theorem issubrng2 13709
Description: Characterize the subrings of a ring by closure properties. (Contributed by AV, 15-Feb-2025.)
Hypotheses
Ref Expression
issubrng2.b 𝐵 = (Base‘𝑅)
issubrng2.t · = (.r𝑅)
Assertion
Ref Expression
issubrng2 (𝑅 ∈ Rng → (𝐴 ∈ (SubRng‘𝑅) ↔ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝑅,𝑦   𝑥, · ,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)

Proof of Theorem issubrng2
Dummy variables 𝑣 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subrngsubg 13703 . . 3 (𝐴 ∈ (SubRng‘𝑅) → 𝐴 ∈ (SubGrp‘𝑅))
2 issubrng2.t . . . . . 6 · = (.r𝑅)
32subrngmcl 13708 . . . . 5 ((𝐴 ∈ (SubRng‘𝑅) ∧ 𝑥𝐴𝑦𝐴) → (𝑥 · 𝑦) ∈ 𝐴)
433expb 1206 . . . 4 ((𝐴 ∈ (SubRng‘𝑅) ∧ (𝑥𝐴𝑦𝐴)) → (𝑥 · 𝑦) ∈ 𝐴)
54ralrimivva 2576 . . 3 (𝐴 ∈ (SubRng‘𝑅) → ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)
61, 5jca 306 . 2 (𝐴 ∈ (SubRng‘𝑅) → (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴))
7 simpl 109 . . . 4 ((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → 𝑅 ∈ Rng)
8 simprl 529 . . . . . 6 ((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → 𝐴 ∈ (SubGrp‘𝑅))
9 eqid 2193 . . . . . . 7 (𝑅s 𝐴) = (𝑅s 𝐴)
109subgbas 13251 . . . . . 6 (𝐴 ∈ (SubGrp‘𝑅) → 𝐴 = (Base‘(𝑅s 𝐴)))
118, 10syl 14 . . . . 5 ((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → 𝐴 = (Base‘(𝑅s 𝐴)))
12 eqidd 2194 . . . . . . 7 (𝐴 ∈ (SubGrp‘𝑅) → (𝑅s 𝐴) = (𝑅s 𝐴))
13 eqidd 2194 . . . . . . 7 (𝐴 ∈ (SubGrp‘𝑅) → (+g𝑅) = (+g𝑅))
14 id 19 . . . . . . 7 (𝐴 ∈ (SubGrp‘𝑅) → 𝐴 ∈ (SubGrp‘𝑅))
15 subgrcl 13252 . . . . . . 7 (𝐴 ∈ (SubGrp‘𝑅) → 𝑅 ∈ Grp)
1612, 13, 14, 15ressplusgd 12749 . . . . . 6 (𝐴 ∈ (SubGrp‘𝑅) → (+g𝑅) = (+g‘(𝑅s 𝐴)))
178, 16syl 14 . . . . 5 ((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → (+g𝑅) = (+g‘(𝑅s 𝐴)))
189, 2ressmulrg 12765 . . . . . 6 ((𝐴 ∈ (SubGrp‘𝑅) ∧ 𝑅 ∈ Grp) → · = (.r‘(𝑅s 𝐴)))
198, 15, 18syl2anc2 412 . . . . 5 ((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → · = (.r‘(𝑅s 𝐴)))
20 rngabl 13434 . . . . . 6 (𝑅 ∈ Rng → 𝑅 ∈ Abel)
219subgabl 13405 . . . . . 6 ((𝑅 ∈ Abel ∧ 𝐴 ∈ (SubGrp‘𝑅)) → (𝑅s 𝐴) ∈ Abel)
2220, 8, 21syl2an2r 595 . . . . 5 ((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → (𝑅s 𝐴) ∈ Abel)
23 simprr 531 . . . . . . 7 ((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)
24 oveq1 5926 . . . . . . . . 9 (𝑥 = 𝑢 → (𝑥 · 𝑦) = (𝑢 · 𝑦))
2524eleq1d 2262 . . . . . . . 8 (𝑥 = 𝑢 → ((𝑥 · 𝑦) ∈ 𝐴 ↔ (𝑢 · 𝑦) ∈ 𝐴))
26 oveq2 5927 . . . . . . . . 9 (𝑦 = 𝑣 → (𝑢 · 𝑦) = (𝑢 · 𝑣))
2726eleq1d 2262 . . . . . . . 8 (𝑦 = 𝑣 → ((𝑢 · 𝑦) ∈ 𝐴 ↔ (𝑢 · 𝑣) ∈ 𝐴))
2825, 27rspc2v 2878 . . . . . . 7 ((𝑢𝐴𝑣𝐴) → (∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴 → (𝑢 · 𝑣) ∈ 𝐴))
2923, 28syl5com 29 . . . . . 6 ((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → ((𝑢𝐴𝑣𝐴) → (𝑢 · 𝑣) ∈ 𝐴))
30293impib 1203 . . . . 5 (((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) ∧ 𝑢𝐴𝑣𝐴) → (𝑢 · 𝑣) ∈ 𝐴)
31 issubrng2.b . . . . . . . . . . 11 𝐵 = (Base‘𝑅)
3231subgss 13247 . . . . . . . . . 10 (𝐴 ∈ (SubGrp‘𝑅) → 𝐴𝐵)
338, 32syl 14 . . . . . . . . 9 ((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → 𝐴𝐵)
3433sseld 3179 . . . . . . . 8 ((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → (𝑢𝐴𝑢𝐵))
3533sseld 3179 . . . . . . . 8 ((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → (𝑣𝐴𝑣𝐵))
3633sseld 3179 . . . . . . . 8 ((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → (𝑤𝐴𝑤𝐵))
3734, 35, 363anim123d 1330 . . . . . . 7 ((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → ((𝑢𝐴𝑣𝐴𝑤𝐴) → (𝑢𝐵𝑣𝐵𝑤𝐵)))
3837imp 124 . . . . . 6 (((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴)) → (𝑢𝐵𝑣𝐵𝑤𝐵))
3931, 2rngass 13438 . . . . . . 7 ((𝑅 ∈ Rng ∧ (𝑢𝐵𝑣𝐵𝑤𝐵)) → ((𝑢 · 𝑣) · 𝑤) = (𝑢 · (𝑣 · 𝑤)))
4039adantlr 477 . . . . . 6 (((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) ∧ (𝑢𝐵𝑣𝐵𝑤𝐵)) → ((𝑢 · 𝑣) · 𝑤) = (𝑢 · (𝑣 · 𝑤)))
4138, 40syldan 282 . . . . 5 (((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴)) → ((𝑢 · 𝑣) · 𝑤) = (𝑢 · (𝑣 · 𝑤)))
42 eqid 2193 . . . . . . . 8 (+g𝑅) = (+g𝑅)
4331, 42, 2rngdi 13439 . . . . . . 7 ((𝑅 ∈ Rng ∧ (𝑢𝐵𝑣𝐵𝑤𝐵)) → (𝑢 · (𝑣(+g𝑅)𝑤)) = ((𝑢 · 𝑣)(+g𝑅)(𝑢 · 𝑤)))
4443adantlr 477 . . . . . 6 (((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) ∧ (𝑢𝐵𝑣𝐵𝑤𝐵)) → (𝑢 · (𝑣(+g𝑅)𝑤)) = ((𝑢 · 𝑣)(+g𝑅)(𝑢 · 𝑤)))
4538, 44syldan 282 . . . . 5 (((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴)) → (𝑢 · (𝑣(+g𝑅)𝑤)) = ((𝑢 · 𝑣)(+g𝑅)(𝑢 · 𝑤)))
4631, 42, 2rngdir 13440 . . . . . . 7 ((𝑅 ∈ Rng ∧ (𝑢𝐵𝑣𝐵𝑤𝐵)) → ((𝑢(+g𝑅)𝑣) · 𝑤) = ((𝑢 · 𝑤)(+g𝑅)(𝑣 · 𝑤)))
4746adantlr 477 . . . . . 6 (((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) ∧ (𝑢𝐵𝑣𝐵𝑤𝐵)) → ((𝑢(+g𝑅)𝑣) · 𝑤) = ((𝑢 · 𝑤)(+g𝑅)(𝑣 · 𝑤)))
4838, 47syldan 282 . . . . 5 (((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) ∧ (𝑢𝐴𝑣𝐴𝑤𝐴)) → ((𝑢(+g𝑅)𝑣) · 𝑤) = ((𝑢 · 𝑤)(+g𝑅)(𝑣 · 𝑤)))
4911, 17, 19, 22, 30, 41, 45, 48isrngd 13452 . . . 4 ((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → (𝑅s 𝐴) ∈ Rng)
5031issubrng 13698 . . . 4 (𝐴 ∈ (SubRng‘𝑅) ↔ (𝑅 ∈ Rng ∧ (𝑅s 𝐴) ∈ Rng ∧ 𝐴𝐵))
517, 49, 33, 50syl3anbrc 1183 . . 3 ((𝑅 ∈ Rng ∧ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)) → 𝐴 ∈ (SubRng‘𝑅))
5251ex 115 . 2 (𝑅 ∈ Rng → ((𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴) → 𝐴 ∈ (SubRng‘𝑅)))
536, 52impbid2 143 1 (𝑅 ∈ Rng → (𝐴 ∈ (SubRng‘𝑅) ↔ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 · 𝑦) ∈ 𝐴)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2164  wral 2472  wss 3154  cfv 5255  (class class class)co 5919  Basecbs 12621  s cress 12622  +gcplusg 12698  .rcmulr 12699  Grpcgrp 13075  SubGrpcsubg 13240  Abelcabl 13358  Rngcrng 13431  SubRngcsubrng 13696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-pre-ltirr 7986  ax-pre-lttrn 7988  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-pnf 8058  df-mnf 8059  df-ltxr 8061  df-inn 8985  df-2 9043  df-3 9044  df-ndx 12624  df-slot 12625  df-base 12627  df-sets 12628  df-iress 12629  df-plusg 12711  df-mulr 12712  df-mgm 12942  df-sgrp 12988  df-grp 13078  df-subg 13243  df-cmn 13359  df-abl 13360  df-mgp 13420  df-rng 13432  df-subrng 13697
This theorem is referenced by:  opprsubrngg  13710  subrngintm  13711
  Copyright terms: Public domain W3C validator