ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rnglidlmsgrp GIF version

Theorem rnglidlmsgrp 13996
Description: The multiplicative group of a (left) ideal of a non-unital ring is a semigroup. (Contributed by AV, 17-Feb-2020.) Generalization for non-unital rings. The assumption 0𝑈 is required because a left ideal of a non-unital ring does not have to be a subgroup. (Revised by AV, 11-Mar-2025.)
Hypotheses
Ref Expression
rnglidlabl.l 𝐿 = (LIdeal‘𝑅)
rnglidlabl.i 𝐼 = (𝑅s 𝑈)
rnglidlabl.z 0 = (0g𝑅)
Assertion
Ref Expression
rnglidlmsgrp ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → (mulGrp‘𝐼) ∈ Smgrp)

Proof of Theorem rnglidlmsgrp
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rnglidlabl.l . . 3 𝐿 = (LIdeal‘𝑅)
2 rnglidlabl.i . . 3 𝐼 = (𝑅s 𝑈)
3 rnglidlabl.z . . 3 0 = (0g𝑅)
41, 2, 3rnglidlmmgm 13995 . 2 ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → (mulGrp‘𝐼) ∈ Mgm)
5 eqid 2193 . . . . . . . . . 10 (mulGrp‘𝑅) = (mulGrp‘𝑅)
65rngmgp 13435 . . . . . . . . 9 (𝑅 ∈ Rng → (mulGrp‘𝑅) ∈ Smgrp)
763ad2ant1 1020 . . . . . . . 8 ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → (mulGrp‘𝑅) ∈ Smgrp)
87adantr 276 . . . . . . 7 (((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼))) → (mulGrp‘𝑅) ∈ Smgrp)
91, 2lidlssbas 13976 . . . . . . . . . . . . 13 (𝑈𝐿 → (Base‘𝐼) ⊆ (Base‘𝑅))
109sseld 3179 . . . . . . . . . . . 12 (𝑈𝐿 → (𝑎 ∈ (Base‘𝐼) → 𝑎 ∈ (Base‘𝑅)))
119sseld 3179 . . . . . . . . . . . 12 (𝑈𝐿 → (𝑏 ∈ (Base‘𝐼) → 𝑏 ∈ (Base‘𝑅)))
129sseld 3179 . . . . . . . . . . . 12 (𝑈𝐿 → (𝑐 ∈ (Base‘𝐼) → 𝑐 ∈ (Base‘𝑅)))
1310, 11, 123anim123d 1330 . . . . . . . . . . 11 (𝑈𝐿 → ((𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼)) → (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅) ∧ 𝑐 ∈ (Base‘𝑅))))
14133ad2ant2 1021 . . . . . . . . . 10 ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → ((𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼)) → (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅) ∧ 𝑐 ∈ (Base‘𝑅))))
1514imp 124 . . . . . . . . 9 (((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼))) → (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅) ∧ 𝑐 ∈ (Base‘𝑅)))
1615simp1d 1011 . . . . . . . 8 (((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼))) → 𝑎 ∈ (Base‘𝑅))
17 eqid 2193 . . . . . . . . . . 11 (Base‘𝑅) = (Base‘𝑅)
185, 17mgpbasg 13425 . . . . . . . . . 10 (𝑅 ∈ Rng → (Base‘𝑅) = (Base‘(mulGrp‘𝑅)))
19183ad2ant1 1020 . . . . . . . . 9 ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → (Base‘𝑅) = (Base‘(mulGrp‘𝑅)))
2019adantr 276 . . . . . . . 8 (((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼))) → (Base‘𝑅) = (Base‘(mulGrp‘𝑅)))
2116, 20eleqtrd 2272 . . . . . . 7 (((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼))) → 𝑎 ∈ (Base‘(mulGrp‘𝑅)))
2215simp2d 1012 . . . . . . . 8 (((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼))) → 𝑏 ∈ (Base‘𝑅))
2322, 20eleqtrd 2272 . . . . . . 7 (((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼))) → 𝑏 ∈ (Base‘(mulGrp‘𝑅)))
2415simp3d 1013 . . . . . . . 8 (((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼))) → 𝑐 ∈ (Base‘𝑅))
2524, 20eleqtrd 2272 . . . . . . 7 (((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼))) → 𝑐 ∈ (Base‘(mulGrp‘𝑅)))
26 eqid 2193 . . . . . . . 8 (Base‘(mulGrp‘𝑅)) = (Base‘(mulGrp‘𝑅))
27 eqid 2193 . . . . . . . 8 (+g‘(mulGrp‘𝑅)) = (+g‘(mulGrp‘𝑅))
2826, 27sgrpass 12994 . . . . . . 7 (((mulGrp‘𝑅) ∈ Smgrp ∧ (𝑎 ∈ (Base‘(mulGrp‘𝑅)) ∧ 𝑏 ∈ (Base‘(mulGrp‘𝑅)) ∧ 𝑐 ∈ (Base‘(mulGrp‘𝑅)))) → ((𝑎(+g‘(mulGrp‘𝑅))𝑏)(+g‘(mulGrp‘𝑅))𝑐) = (𝑎(+g‘(mulGrp‘𝑅))(𝑏(+g‘(mulGrp‘𝑅))𝑐)))
298, 21, 23, 25, 28syl13anc 1251 . . . . . 6 (((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼))) → ((𝑎(+g‘(mulGrp‘𝑅))𝑏)(+g‘(mulGrp‘𝑅))𝑐) = (𝑎(+g‘(mulGrp‘𝑅))(𝑏(+g‘(mulGrp‘𝑅))𝑐)))
30 eqid 2193 . . . . . . . . . 10 (.r𝑅) = (.r𝑅)
315, 30mgpplusgg 13423 . . . . . . . . 9 (𝑅 ∈ Rng → (.r𝑅) = (+g‘(mulGrp‘𝑅)))
32313ad2ant1 1020 . . . . . . . 8 ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → (.r𝑅) = (+g‘(mulGrp‘𝑅)))
3332adantr 276 . . . . . . 7 (((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼))) → (.r𝑅) = (+g‘(mulGrp‘𝑅)))
3433oveqd 5936 . . . . . . 7 (((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼))) → (𝑎(.r𝑅)𝑏) = (𝑎(+g‘(mulGrp‘𝑅))𝑏))
35 eqidd 2194 . . . . . . 7 (((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼))) → 𝑐 = 𝑐)
3633, 34, 35oveq123d 5940 . . . . . 6 (((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼))) → ((𝑎(.r𝑅)𝑏)(.r𝑅)𝑐) = ((𝑎(+g‘(mulGrp‘𝑅))𝑏)(+g‘(mulGrp‘𝑅))𝑐))
37 eqidd 2194 . . . . . . 7 (((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼))) → 𝑎 = 𝑎)
3833oveqd 5936 . . . . . . 7 (((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼))) → (𝑏(.r𝑅)𝑐) = (𝑏(+g‘(mulGrp‘𝑅))𝑐))
3933, 37, 38oveq123d 5940 . . . . . 6 (((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼))) → (𝑎(.r𝑅)(𝑏(.r𝑅)𝑐)) = (𝑎(+g‘(mulGrp‘𝑅))(𝑏(+g‘(mulGrp‘𝑅))𝑐)))
4029, 36, 393eqtr4d 2236 . . . . 5 (((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼))) → ((𝑎(.r𝑅)𝑏)(.r𝑅)𝑐) = (𝑎(.r𝑅)(𝑏(.r𝑅)𝑐)))
41 simp2 1000 . . . . . . 7 ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → 𝑈𝐿)
42 simp1 999 . . . . . . 7 ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → 𝑅 ∈ Rng)
432, 30ressmulrg 12765 . . . . . . . . . 10 ((𝑈𝐿𝑅 ∈ Rng) → (.r𝑅) = (.r𝐼))
4443eqcomd 2199 . . . . . . . . 9 ((𝑈𝐿𝑅 ∈ Rng) → (.r𝐼) = (.r𝑅))
4544oveqd 5936 . . . . . . . . 9 ((𝑈𝐿𝑅 ∈ Rng) → (𝑎(.r𝐼)𝑏) = (𝑎(.r𝑅)𝑏))
46 eqidd 2194 . . . . . . . . 9 ((𝑈𝐿𝑅 ∈ Rng) → 𝑐 = 𝑐)
4744, 45, 46oveq123d 5940 . . . . . . . 8 ((𝑈𝐿𝑅 ∈ Rng) → ((𝑎(.r𝐼)𝑏)(.r𝐼)𝑐) = ((𝑎(.r𝑅)𝑏)(.r𝑅)𝑐))
48 eqidd 2194 . . . . . . . . 9 ((𝑈𝐿𝑅 ∈ Rng) → 𝑎 = 𝑎)
4944oveqd 5936 . . . . . . . . 9 ((𝑈𝐿𝑅 ∈ Rng) → (𝑏(.r𝐼)𝑐) = (𝑏(.r𝑅)𝑐))
5044, 48, 49oveq123d 5940 . . . . . . . 8 ((𝑈𝐿𝑅 ∈ Rng) → (𝑎(.r𝐼)(𝑏(.r𝐼)𝑐)) = (𝑎(.r𝑅)(𝑏(.r𝑅)𝑐)))
5147, 50eqeq12d 2208 . . . . . . 7 ((𝑈𝐿𝑅 ∈ Rng) → (((𝑎(.r𝐼)𝑏)(.r𝐼)𝑐) = (𝑎(.r𝐼)(𝑏(.r𝐼)𝑐)) ↔ ((𝑎(.r𝑅)𝑏)(.r𝑅)𝑐) = (𝑎(.r𝑅)(𝑏(.r𝑅)𝑐))))
5241, 42, 51syl2anc 411 . . . . . 6 ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → (((𝑎(.r𝐼)𝑏)(.r𝐼)𝑐) = (𝑎(.r𝐼)(𝑏(.r𝐼)𝑐)) ↔ ((𝑎(.r𝑅)𝑏)(.r𝑅)𝑐) = (𝑎(.r𝑅)(𝑏(.r𝑅)𝑐))))
5352adantr 276 . . . . 5 (((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼))) → (((𝑎(.r𝐼)𝑏)(.r𝐼)𝑐) = (𝑎(.r𝐼)(𝑏(.r𝐼)𝑐)) ↔ ((𝑎(.r𝑅)𝑏)(.r𝑅)𝑐) = (𝑎(.r𝑅)(𝑏(.r𝑅)𝑐))))
5440, 53mpbird 167 . . . 4 (((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼))) → ((𝑎(.r𝐼)𝑏)(.r𝐼)𝑐) = (𝑎(.r𝐼)(𝑏(.r𝐼)𝑐)))
5554ralrimivvva 2577 . . 3 ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → ∀𝑎 ∈ (Base‘𝐼)∀𝑏 ∈ (Base‘𝐼)∀𝑐 ∈ (Base‘𝐼)((𝑎(.r𝐼)𝑏)(.r𝐼)𝑐) = (𝑎(.r𝐼)(𝑏(.r𝐼)𝑐)))
56 ressex 12686 . . . . . . 7 ((𝑅 ∈ Rng ∧ 𝑈𝐿) → (𝑅s 𝑈) ∈ V)
5742, 41, 56syl2anc 411 . . . . . 6 ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → (𝑅s 𝑈) ∈ V)
582, 57eqeltrid 2280 . . . . 5 ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → 𝐼 ∈ V)
59 eqid 2193 . . . . . 6 (mulGrp‘𝐼) = (mulGrp‘𝐼)
60 eqid 2193 . . . . . 6 (Base‘𝐼) = (Base‘𝐼)
6159, 60mgpbasg 13425 . . . . 5 (𝐼 ∈ V → (Base‘𝐼) = (Base‘(mulGrp‘𝐼)))
6258, 61syl 14 . . . 4 ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → (Base‘𝐼) = (Base‘(mulGrp‘𝐼)))
63 eqid 2193 . . . . . . . . . 10 (.r𝐼) = (.r𝐼)
6459, 63mgpplusgg 13423 . . . . . . . . 9 (𝐼 ∈ V → (.r𝐼) = (+g‘(mulGrp‘𝐼)))
6558, 64syl 14 . . . . . . . 8 ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → (.r𝐼) = (+g‘(mulGrp‘𝐼)))
6665oveqd 5936 . . . . . . . 8 ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → (𝑎(.r𝐼)𝑏) = (𝑎(+g‘(mulGrp‘𝐼))𝑏))
67 eqidd 2194 . . . . . . . 8 ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → 𝑐 = 𝑐)
6865, 66, 67oveq123d 5940 . . . . . . 7 ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → ((𝑎(.r𝐼)𝑏)(.r𝐼)𝑐) = ((𝑎(+g‘(mulGrp‘𝐼))𝑏)(+g‘(mulGrp‘𝐼))𝑐))
69 eqidd 2194 . . . . . . . 8 ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → 𝑎 = 𝑎)
7065oveqd 5936 . . . . . . . 8 ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → (𝑏(.r𝐼)𝑐) = (𝑏(+g‘(mulGrp‘𝐼))𝑐))
7165, 69, 70oveq123d 5940 . . . . . . 7 ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → (𝑎(.r𝐼)(𝑏(.r𝐼)𝑐)) = (𝑎(+g‘(mulGrp‘𝐼))(𝑏(+g‘(mulGrp‘𝐼))𝑐)))
7268, 71eqeq12d 2208 . . . . . 6 ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → (((𝑎(.r𝐼)𝑏)(.r𝐼)𝑐) = (𝑎(.r𝐼)(𝑏(.r𝐼)𝑐)) ↔ ((𝑎(+g‘(mulGrp‘𝐼))𝑏)(+g‘(mulGrp‘𝐼))𝑐) = (𝑎(+g‘(mulGrp‘𝐼))(𝑏(+g‘(mulGrp‘𝐼))𝑐))))
7362, 72raleqbidv 2706 . . . . 5 ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → (∀𝑐 ∈ (Base‘𝐼)((𝑎(.r𝐼)𝑏)(.r𝐼)𝑐) = (𝑎(.r𝐼)(𝑏(.r𝐼)𝑐)) ↔ ∀𝑐 ∈ (Base‘(mulGrp‘𝐼))((𝑎(+g‘(mulGrp‘𝐼))𝑏)(+g‘(mulGrp‘𝐼))𝑐) = (𝑎(+g‘(mulGrp‘𝐼))(𝑏(+g‘(mulGrp‘𝐼))𝑐))))
7462, 73raleqbidv 2706 . . . 4 ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → (∀𝑏 ∈ (Base‘𝐼)∀𝑐 ∈ (Base‘𝐼)((𝑎(.r𝐼)𝑏)(.r𝐼)𝑐) = (𝑎(.r𝐼)(𝑏(.r𝐼)𝑐)) ↔ ∀𝑏 ∈ (Base‘(mulGrp‘𝐼))∀𝑐 ∈ (Base‘(mulGrp‘𝐼))((𝑎(+g‘(mulGrp‘𝐼))𝑏)(+g‘(mulGrp‘𝐼))𝑐) = (𝑎(+g‘(mulGrp‘𝐼))(𝑏(+g‘(mulGrp‘𝐼))𝑐))))
7562, 74raleqbidv 2706 . . 3 ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → (∀𝑎 ∈ (Base‘𝐼)∀𝑏 ∈ (Base‘𝐼)∀𝑐 ∈ (Base‘𝐼)((𝑎(.r𝐼)𝑏)(.r𝐼)𝑐) = (𝑎(.r𝐼)(𝑏(.r𝐼)𝑐)) ↔ ∀𝑎 ∈ (Base‘(mulGrp‘𝐼))∀𝑏 ∈ (Base‘(mulGrp‘𝐼))∀𝑐 ∈ (Base‘(mulGrp‘𝐼))((𝑎(+g‘(mulGrp‘𝐼))𝑏)(+g‘(mulGrp‘𝐼))𝑐) = (𝑎(+g‘(mulGrp‘𝐼))(𝑏(+g‘(mulGrp‘𝐼))𝑐))))
7655, 75mpbid 147 . 2 ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → ∀𝑎 ∈ (Base‘(mulGrp‘𝐼))∀𝑏 ∈ (Base‘(mulGrp‘𝐼))∀𝑐 ∈ (Base‘(mulGrp‘𝐼))((𝑎(+g‘(mulGrp‘𝐼))𝑏)(+g‘(mulGrp‘𝐼))𝑐) = (𝑎(+g‘(mulGrp‘𝐼))(𝑏(+g‘(mulGrp‘𝐼))𝑐)))
77 eqid 2193 . . 3 (Base‘(mulGrp‘𝐼)) = (Base‘(mulGrp‘𝐼))
78 eqid 2193 . . 3 (+g‘(mulGrp‘𝐼)) = (+g‘(mulGrp‘𝐼))
7977, 78issgrp 12989 . 2 ((mulGrp‘𝐼) ∈ Smgrp ↔ ((mulGrp‘𝐼) ∈ Mgm ∧ ∀𝑎 ∈ (Base‘(mulGrp‘𝐼))∀𝑏 ∈ (Base‘(mulGrp‘𝐼))∀𝑐 ∈ (Base‘(mulGrp‘𝐼))((𝑎(+g‘(mulGrp‘𝐼))𝑏)(+g‘(mulGrp‘𝐼))𝑐) = (𝑎(+g‘(mulGrp‘𝐼))(𝑏(+g‘(mulGrp‘𝐼))𝑐))))
804, 76, 79sylanbrc 417 1 ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → (mulGrp‘𝐼) ∈ Smgrp)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2164  wral 2472  Vcvv 2760  cfv 5255  (class class class)co 5919  Basecbs 12621  s cress 12622  +gcplusg 12698  .rcmulr 12699  0gc0g 12870  Mgmcmgm 12940  Smgrpcsgrp 12987  mulGrpcmgp 13419  Rngcrng 13431  LIdealclidl 13966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-pre-ltirr 7986  ax-pre-lttrn 7988  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-pnf 8058  df-mnf 8059  df-ltxr 8061  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-5 9046  df-6 9047  df-7 9048  df-8 9049  df-ndx 12624  df-slot 12625  df-base 12627  df-sets 12628  df-iress 12629  df-plusg 12711  df-mulr 12712  df-sca 12714  df-vsca 12715  df-ip 12716  df-0g 12872  df-mgm 12942  df-sgrp 12988  df-mnd 13001  df-grp 13078  df-abl 13360  df-mgp 13420  df-rng 13432  df-lssm 13852  df-sra 13934  df-rgmod 13935  df-lidl 13968
This theorem is referenced by:  rnglidlrng  13997
  Copyright terms: Public domain W3C validator