| Step | Hyp | Ref
| Expression |
| 1 | | rnglidlabl.l |
. . 3
⊢ 𝐿 = (LIdeal‘𝑅) |
| 2 | | rnglidlabl.i |
. . 3
⊢ 𝐼 = (𝑅 ↾s 𝑈) |
| 3 | | rnglidlabl.z |
. . 3
⊢ 0 =
(0g‘𝑅) |
| 4 | 1, 2, 3 | rnglidlmmgm 14052 |
. 2
⊢ ((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈) → (mulGrp‘𝐼) ∈ Mgm) |
| 5 | | eqid 2196 |
. . . . . . . . . 10
⊢
(mulGrp‘𝑅) =
(mulGrp‘𝑅) |
| 6 | 5 | rngmgp 13492 |
. . . . . . . . 9
⊢ (𝑅 ∈ Rng →
(mulGrp‘𝑅) ∈
Smgrp) |
| 7 | 6 | 3ad2ant1 1020 |
. . . . . . . 8
⊢ ((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈) → (mulGrp‘𝑅) ∈ Smgrp) |
| 8 | 7 | adantr 276 |
. . . . . . 7
⊢ (((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼))) → (mulGrp‘𝑅) ∈ Smgrp) |
| 9 | 1, 2 | lidlssbas 14033 |
. . . . . . . . . . . . 13
⊢ (𝑈 ∈ 𝐿 → (Base‘𝐼) ⊆ (Base‘𝑅)) |
| 10 | 9 | sseld 3182 |
. . . . . . . . . . . 12
⊢ (𝑈 ∈ 𝐿 → (𝑎 ∈ (Base‘𝐼) → 𝑎 ∈ (Base‘𝑅))) |
| 11 | 9 | sseld 3182 |
. . . . . . . . . . . 12
⊢ (𝑈 ∈ 𝐿 → (𝑏 ∈ (Base‘𝐼) → 𝑏 ∈ (Base‘𝑅))) |
| 12 | 9 | sseld 3182 |
. . . . . . . . . . . 12
⊢ (𝑈 ∈ 𝐿 → (𝑐 ∈ (Base‘𝐼) → 𝑐 ∈ (Base‘𝑅))) |
| 13 | 10, 11, 12 | 3anim123d 1330 |
. . . . . . . . . . 11
⊢ (𝑈 ∈ 𝐿 → ((𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼)) → (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅) ∧ 𝑐 ∈ (Base‘𝑅)))) |
| 14 | 13 | 3ad2ant2 1021 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈) → ((𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼)) → (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅) ∧ 𝑐 ∈ (Base‘𝑅)))) |
| 15 | 14 | imp 124 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼))) → (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝑅) ∧ 𝑐 ∈ (Base‘𝑅))) |
| 16 | 15 | simp1d 1011 |
. . . . . . . 8
⊢ (((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼))) → 𝑎 ∈ (Base‘𝑅)) |
| 17 | | eqid 2196 |
. . . . . . . . . . 11
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 18 | 5, 17 | mgpbasg 13482 |
. . . . . . . . . 10
⊢ (𝑅 ∈ Rng →
(Base‘𝑅) =
(Base‘(mulGrp‘𝑅))) |
| 19 | 18 | 3ad2ant1 1020 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈) → (Base‘𝑅) = (Base‘(mulGrp‘𝑅))) |
| 20 | 19 | adantr 276 |
. . . . . . . 8
⊢ (((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼))) → (Base‘𝑅) = (Base‘(mulGrp‘𝑅))) |
| 21 | 16, 20 | eleqtrd 2275 |
. . . . . . 7
⊢ (((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼))) → 𝑎 ∈ (Base‘(mulGrp‘𝑅))) |
| 22 | 15 | simp2d 1012 |
. . . . . . . 8
⊢ (((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼))) → 𝑏 ∈ (Base‘𝑅)) |
| 23 | 22, 20 | eleqtrd 2275 |
. . . . . . 7
⊢ (((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼))) → 𝑏 ∈ (Base‘(mulGrp‘𝑅))) |
| 24 | 15 | simp3d 1013 |
. . . . . . . 8
⊢ (((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼))) → 𝑐 ∈ (Base‘𝑅)) |
| 25 | 24, 20 | eleqtrd 2275 |
. . . . . . 7
⊢ (((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼))) → 𝑐 ∈ (Base‘(mulGrp‘𝑅))) |
| 26 | | eqid 2196 |
. . . . . . . 8
⊢
(Base‘(mulGrp‘𝑅)) = (Base‘(mulGrp‘𝑅)) |
| 27 | | eqid 2196 |
. . . . . . . 8
⊢
(+g‘(mulGrp‘𝑅)) =
(+g‘(mulGrp‘𝑅)) |
| 28 | 26, 27 | sgrpass 13051 |
. . . . . . 7
⊢
(((mulGrp‘𝑅)
∈ Smgrp ∧ (𝑎
∈ (Base‘(mulGrp‘𝑅)) ∧ 𝑏 ∈ (Base‘(mulGrp‘𝑅)) ∧ 𝑐 ∈ (Base‘(mulGrp‘𝑅)))) → ((𝑎(+g‘(mulGrp‘𝑅))𝑏)(+g‘(mulGrp‘𝑅))𝑐) = (𝑎(+g‘(mulGrp‘𝑅))(𝑏(+g‘(mulGrp‘𝑅))𝑐))) |
| 29 | 8, 21, 23, 25, 28 | syl13anc 1251 |
. . . . . 6
⊢ (((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼))) → ((𝑎(+g‘(mulGrp‘𝑅))𝑏)(+g‘(mulGrp‘𝑅))𝑐) = (𝑎(+g‘(mulGrp‘𝑅))(𝑏(+g‘(mulGrp‘𝑅))𝑐))) |
| 30 | | eqid 2196 |
. . . . . . . . . 10
⊢
(.r‘𝑅) = (.r‘𝑅) |
| 31 | 5, 30 | mgpplusgg 13480 |
. . . . . . . . 9
⊢ (𝑅 ∈ Rng →
(.r‘𝑅) =
(+g‘(mulGrp‘𝑅))) |
| 32 | 31 | 3ad2ant1 1020 |
. . . . . . . 8
⊢ ((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈) → (.r‘𝑅) =
(+g‘(mulGrp‘𝑅))) |
| 33 | 32 | adantr 276 |
. . . . . . 7
⊢ (((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼))) → (.r‘𝑅) =
(+g‘(mulGrp‘𝑅))) |
| 34 | 33 | oveqd 5939 |
. . . . . . 7
⊢ (((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼))) → (𝑎(.r‘𝑅)𝑏) = (𝑎(+g‘(mulGrp‘𝑅))𝑏)) |
| 35 | | eqidd 2197 |
. . . . . . 7
⊢ (((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼))) → 𝑐 = 𝑐) |
| 36 | 33, 34, 35 | oveq123d 5943 |
. . . . . 6
⊢ (((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼))) → ((𝑎(.r‘𝑅)𝑏)(.r‘𝑅)𝑐) = ((𝑎(+g‘(mulGrp‘𝑅))𝑏)(+g‘(mulGrp‘𝑅))𝑐)) |
| 37 | | eqidd 2197 |
. . . . . . 7
⊢ (((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼))) → 𝑎 = 𝑎) |
| 38 | 33 | oveqd 5939 |
. . . . . . 7
⊢ (((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼))) → (𝑏(.r‘𝑅)𝑐) = (𝑏(+g‘(mulGrp‘𝑅))𝑐)) |
| 39 | 33, 37, 38 | oveq123d 5943 |
. . . . . 6
⊢ (((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼))) → (𝑎(.r‘𝑅)(𝑏(.r‘𝑅)𝑐)) = (𝑎(+g‘(mulGrp‘𝑅))(𝑏(+g‘(mulGrp‘𝑅))𝑐))) |
| 40 | 29, 36, 39 | 3eqtr4d 2239 |
. . . . 5
⊢ (((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼))) → ((𝑎(.r‘𝑅)𝑏)(.r‘𝑅)𝑐) = (𝑎(.r‘𝑅)(𝑏(.r‘𝑅)𝑐))) |
| 41 | | simp2 1000 |
. . . . . . 7
⊢ ((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈) → 𝑈 ∈ 𝐿) |
| 42 | | simp1 999 |
. . . . . . 7
⊢ ((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈) → 𝑅 ∈ Rng) |
| 43 | 2, 30 | ressmulrg 12822 |
. . . . . . . . . 10
⊢ ((𝑈 ∈ 𝐿 ∧ 𝑅 ∈ Rng) →
(.r‘𝑅) =
(.r‘𝐼)) |
| 44 | 43 | eqcomd 2202 |
. . . . . . . . 9
⊢ ((𝑈 ∈ 𝐿 ∧ 𝑅 ∈ Rng) →
(.r‘𝐼) =
(.r‘𝑅)) |
| 45 | 44 | oveqd 5939 |
. . . . . . . . 9
⊢ ((𝑈 ∈ 𝐿 ∧ 𝑅 ∈ Rng) → (𝑎(.r‘𝐼)𝑏) = (𝑎(.r‘𝑅)𝑏)) |
| 46 | | eqidd 2197 |
. . . . . . . . 9
⊢ ((𝑈 ∈ 𝐿 ∧ 𝑅 ∈ Rng) → 𝑐 = 𝑐) |
| 47 | 44, 45, 46 | oveq123d 5943 |
. . . . . . . 8
⊢ ((𝑈 ∈ 𝐿 ∧ 𝑅 ∈ Rng) → ((𝑎(.r‘𝐼)𝑏)(.r‘𝐼)𝑐) = ((𝑎(.r‘𝑅)𝑏)(.r‘𝑅)𝑐)) |
| 48 | | eqidd 2197 |
. . . . . . . . 9
⊢ ((𝑈 ∈ 𝐿 ∧ 𝑅 ∈ Rng) → 𝑎 = 𝑎) |
| 49 | 44 | oveqd 5939 |
. . . . . . . . 9
⊢ ((𝑈 ∈ 𝐿 ∧ 𝑅 ∈ Rng) → (𝑏(.r‘𝐼)𝑐) = (𝑏(.r‘𝑅)𝑐)) |
| 50 | 44, 48, 49 | oveq123d 5943 |
. . . . . . . 8
⊢ ((𝑈 ∈ 𝐿 ∧ 𝑅 ∈ Rng) → (𝑎(.r‘𝐼)(𝑏(.r‘𝐼)𝑐)) = (𝑎(.r‘𝑅)(𝑏(.r‘𝑅)𝑐))) |
| 51 | 47, 50 | eqeq12d 2211 |
. . . . . . 7
⊢ ((𝑈 ∈ 𝐿 ∧ 𝑅 ∈ Rng) → (((𝑎(.r‘𝐼)𝑏)(.r‘𝐼)𝑐) = (𝑎(.r‘𝐼)(𝑏(.r‘𝐼)𝑐)) ↔ ((𝑎(.r‘𝑅)𝑏)(.r‘𝑅)𝑐) = (𝑎(.r‘𝑅)(𝑏(.r‘𝑅)𝑐)))) |
| 52 | 41, 42, 51 | syl2anc 411 |
. . . . . 6
⊢ ((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈) → (((𝑎(.r‘𝐼)𝑏)(.r‘𝐼)𝑐) = (𝑎(.r‘𝐼)(𝑏(.r‘𝐼)𝑐)) ↔ ((𝑎(.r‘𝑅)𝑏)(.r‘𝑅)𝑐) = (𝑎(.r‘𝑅)(𝑏(.r‘𝑅)𝑐)))) |
| 53 | 52 | adantr 276 |
. . . . 5
⊢ (((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼))) → (((𝑎(.r‘𝐼)𝑏)(.r‘𝐼)𝑐) = (𝑎(.r‘𝐼)(𝑏(.r‘𝐼)𝑐)) ↔ ((𝑎(.r‘𝑅)𝑏)(.r‘𝑅)𝑐) = (𝑎(.r‘𝑅)(𝑏(.r‘𝑅)𝑐)))) |
| 54 | 40, 53 | mpbird 167 |
. . . 4
⊢ (((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼) ∧ 𝑐 ∈ (Base‘𝐼))) → ((𝑎(.r‘𝐼)𝑏)(.r‘𝐼)𝑐) = (𝑎(.r‘𝐼)(𝑏(.r‘𝐼)𝑐))) |
| 55 | 54 | ralrimivvva 2580 |
. . 3
⊢ ((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈) → ∀𝑎 ∈ (Base‘𝐼)∀𝑏 ∈ (Base‘𝐼)∀𝑐 ∈ (Base‘𝐼)((𝑎(.r‘𝐼)𝑏)(.r‘𝐼)𝑐) = (𝑎(.r‘𝐼)(𝑏(.r‘𝐼)𝑐))) |
| 56 | | ressex 12743 |
. . . . . . 7
⊢ ((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿) → (𝑅 ↾s 𝑈) ∈ V) |
| 57 | 42, 41, 56 | syl2anc 411 |
. . . . . 6
⊢ ((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈) → (𝑅 ↾s 𝑈) ∈ V) |
| 58 | 2, 57 | eqeltrid 2283 |
. . . . 5
⊢ ((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈) → 𝐼 ∈ V) |
| 59 | | eqid 2196 |
. . . . . 6
⊢
(mulGrp‘𝐼) =
(mulGrp‘𝐼) |
| 60 | | eqid 2196 |
. . . . . 6
⊢
(Base‘𝐼) =
(Base‘𝐼) |
| 61 | 59, 60 | mgpbasg 13482 |
. . . . 5
⊢ (𝐼 ∈ V →
(Base‘𝐼) =
(Base‘(mulGrp‘𝐼))) |
| 62 | 58, 61 | syl 14 |
. . . 4
⊢ ((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈) → (Base‘𝐼) = (Base‘(mulGrp‘𝐼))) |
| 63 | | eqid 2196 |
. . . . . . . . . 10
⊢
(.r‘𝐼) = (.r‘𝐼) |
| 64 | 59, 63 | mgpplusgg 13480 |
. . . . . . . . 9
⊢ (𝐼 ∈ V →
(.r‘𝐼) =
(+g‘(mulGrp‘𝐼))) |
| 65 | 58, 64 | syl 14 |
. . . . . . . 8
⊢ ((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈) → (.r‘𝐼) =
(+g‘(mulGrp‘𝐼))) |
| 66 | 65 | oveqd 5939 |
. . . . . . . 8
⊢ ((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈) → (𝑎(.r‘𝐼)𝑏) = (𝑎(+g‘(mulGrp‘𝐼))𝑏)) |
| 67 | | eqidd 2197 |
. . . . . . . 8
⊢ ((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈) → 𝑐 = 𝑐) |
| 68 | 65, 66, 67 | oveq123d 5943 |
. . . . . . 7
⊢ ((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈) → ((𝑎(.r‘𝐼)𝑏)(.r‘𝐼)𝑐) = ((𝑎(+g‘(mulGrp‘𝐼))𝑏)(+g‘(mulGrp‘𝐼))𝑐)) |
| 69 | | eqidd 2197 |
. . . . . . . 8
⊢ ((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈) → 𝑎 = 𝑎) |
| 70 | 65 | oveqd 5939 |
. . . . . . . 8
⊢ ((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈) → (𝑏(.r‘𝐼)𝑐) = (𝑏(+g‘(mulGrp‘𝐼))𝑐)) |
| 71 | 65, 69, 70 | oveq123d 5943 |
. . . . . . 7
⊢ ((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈) → (𝑎(.r‘𝐼)(𝑏(.r‘𝐼)𝑐)) = (𝑎(+g‘(mulGrp‘𝐼))(𝑏(+g‘(mulGrp‘𝐼))𝑐))) |
| 72 | 68, 71 | eqeq12d 2211 |
. . . . . 6
⊢ ((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈) → (((𝑎(.r‘𝐼)𝑏)(.r‘𝐼)𝑐) = (𝑎(.r‘𝐼)(𝑏(.r‘𝐼)𝑐)) ↔ ((𝑎(+g‘(mulGrp‘𝐼))𝑏)(+g‘(mulGrp‘𝐼))𝑐) = (𝑎(+g‘(mulGrp‘𝐼))(𝑏(+g‘(mulGrp‘𝐼))𝑐)))) |
| 73 | 62, 72 | raleqbidv 2709 |
. . . . 5
⊢ ((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈) → (∀𝑐 ∈ (Base‘𝐼)((𝑎(.r‘𝐼)𝑏)(.r‘𝐼)𝑐) = (𝑎(.r‘𝐼)(𝑏(.r‘𝐼)𝑐)) ↔ ∀𝑐 ∈ (Base‘(mulGrp‘𝐼))((𝑎(+g‘(mulGrp‘𝐼))𝑏)(+g‘(mulGrp‘𝐼))𝑐) = (𝑎(+g‘(mulGrp‘𝐼))(𝑏(+g‘(mulGrp‘𝐼))𝑐)))) |
| 74 | 62, 73 | raleqbidv 2709 |
. . . 4
⊢ ((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈) → (∀𝑏 ∈ (Base‘𝐼)∀𝑐 ∈ (Base‘𝐼)((𝑎(.r‘𝐼)𝑏)(.r‘𝐼)𝑐) = (𝑎(.r‘𝐼)(𝑏(.r‘𝐼)𝑐)) ↔ ∀𝑏 ∈ (Base‘(mulGrp‘𝐼))∀𝑐 ∈ (Base‘(mulGrp‘𝐼))((𝑎(+g‘(mulGrp‘𝐼))𝑏)(+g‘(mulGrp‘𝐼))𝑐) = (𝑎(+g‘(mulGrp‘𝐼))(𝑏(+g‘(mulGrp‘𝐼))𝑐)))) |
| 75 | 62, 74 | raleqbidv 2709 |
. . 3
⊢ ((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈) → (∀𝑎 ∈ (Base‘𝐼)∀𝑏 ∈ (Base‘𝐼)∀𝑐 ∈ (Base‘𝐼)((𝑎(.r‘𝐼)𝑏)(.r‘𝐼)𝑐) = (𝑎(.r‘𝐼)(𝑏(.r‘𝐼)𝑐)) ↔ ∀𝑎 ∈ (Base‘(mulGrp‘𝐼))∀𝑏 ∈ (Base‘(mulGrp‘𝐼))∀𝑐 ∈ (Base‘(mulGrp‘𝐼))((𝑎(+g‘(mulGrp‘𝐼))𝑏)(+g‘(mulGrp‘𝐼))𝑐) = (𝑎(+g‘(mulGrp‘𝐼))(𝑏(+g‘(mulGrp‘𝐼))𝑐)))) |
| 76 | 55, 75 | mpbid 147 |
. 2
⊢ ((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈) → ∀𝑎 ∈ (Base‘(mulGrp‘𝐼))∀𝑏 ∈ (Base‘(mulGrp‘𝐼))∀𝑐 ∈ (Base‘(mulGrp‘𝐼))((𝑎(+g‘(mulGrp‘𝐼))𝑏)(+g‘(mulGrp‘𝐼))𝑐) = (𝑎(+g‘(mulGrp‘𝐼))(𝑏(+g‘(mulGrp‘𝐼))𝑐))) |
| 77 | | eqid 2196 |
. . 3
⊢
(Base‘(mulGrp‘𝐼)) = (Base‘(mulGrp‘𝐼)) |
| 78 | | eqid 2196 |
. . 3
⊢
(+g‘(mulGrp‘𝐼)) =
(+g‘(mulGrp‘𝐼)) |
| 79 | 77, 78 | issgrp 13046 |
. 2
⊢
((mulGrp‘𝐼)
∈ Smgrp ↔ ((mulGrp‘𝐼) ∈ Mgm ∧ ∀𝑎 ∈
(Base‘(mulGrp‘𝐼))∀𝑏 ∈ (Base‘(mulGrp‘𝐼))∀𝑐 ∈ (Base‘(mulGrp‘𝐼))((𝑎(+g‘(mulGrp‘𝐼))𝑏)(+g‘(mulGrp‘𝐼))𝑐) = (𝑎(+g‘(mulGrp‘𝐼))(𝑏(+g‘(mulGrp‘𝐼))𝑐)))) |
| 80 | 4, 76, 79 | sylanbrc 417 |
1
⊢ ((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈) → (mulGrp‘𝐼) ∈ Smgrp) |