ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3eqtr3a GIF version

Theorem 3eqtr3a 2223
Description: A chained equality inference, useful for converting from definitions. (Contributed by Mario Carneiro, 6-Nov-2015.)
Hypotheses
Ref Expression
3eqtr3a.1 𝐴 = 𝐵
3eqtr3a.2 (𝜑𝐴 = 𝐶)
3eqtr3a.3 (𝜑𝐵 = 𝐷)
Assertion
Ref Expression
3eqtr3a (𝜑𝐶 = 𝐷)

Proof of Theorem 3eqtr3a
StepHypRef Expression
1 3eqtr3a.2 . 2 (𝜑𝐴 = 𝐶)
2 3eqtr3a.1 . . 3 𝐴 = 𝐵
3 3eqtr3a.3 . . 3 (𝜑𝐵 = 𝐷)
42, 3syl5eq 2211 . 2 (𝜑𝐴 = 𝐷)
51, 4eqtr3d 2200 1 (𝜑𝐶 = 𝐷)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-4 1498  ax-17 1514  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-cleq 2158
This theorem is referenced by:  uneqin  3373  coi2  5120  foima  5415  f1imacnv  5449  fvsnun2  5683  fnsnsplitdc  6473  phplem4  6821  phplem4on  6833  halfnqq  7351  resqrexlemcalc1  10956  absefib  11711  efieq1re  11712  restopnb  12821  cnmpt2t  12933  reeflog  13424  rpcxpsqrt  13482
  Copyright terms: Public domain W3C validator