| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 3eqtr3a | GIF version | ||
| Description: A chained equality inference, useful for converting from definitions. (Contributed by Mario Carneiro, 6-Nov-2015.) | 
| Ref | Expression | 
|---|---|
| 3eqtr3a.1 | ⊢ 𝐴 = 𝐵 | 
| 3eqtr3a.2 | ⊢ (𝜑 → 𝐴 = 𝐶) | 
| 3eqtr3a.3 | ⊢ (𝜑 → 𝐵 = 𝐷) | 
| Ref | Expression | 
|---|---|
| 3eqtr3a | ⊢ (𝜑 → 𝐶 = 𝐷) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 3eqtr3a.2 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) | |
| 2 | 3eqtr3a.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 3 | 3eqtr3a.3 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐷) | |
| 4 | 2, 3 | eqtrid 2241 | . 2 ⊢ (𝜑 → 𝐴 = 𝐷) | 
| 5 | 1, 4 | eqtr3d 2231 | 1 ⊢ (𝜑 → 𝐶 = 𝐷) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 = wceq 1364 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-cleq 2189 | 
| This theorem is referenced by: uneqin 3414 coi2 5186 foima 5485 f1imacnv 5521 fvsnun2 5760 fnsnsplitdc 6563 phplem4 6916 phplem4on 6928 halfnqq 7477 resqrexlemcalc1 11179 absefib 11936 efieq1re 11937 restopnb 14417 cnmpt2t 14529 reeflog 15099 rpcxpsqrt 15158 | 
| Copyright terms: Public domain | W3C validator |