| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eqtr3a | GIF version | ||
| Description: A chained equality inference, useful for converting from definitions. (Contributed by Mario Carneiro, 6-Nov-2015.) |
| Ref | Expression |
|---|---|
| 3eqtr3a.1 | ⊢ 𝐴 = 𝐵 |
| 3eqtr3a.2 | ⊢ (𝜑 → 𝐴 = 𝐶) |
| 3eqtr3a.3 | ⊢ (𝜑 → 𝐵 = 𝐷) |
| Ref | Expression |
|---|---|
| 3eqtr3a | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr3a.2 | . 2 ⊢ (𝜑 → 𝐴 = 𝐶) | |
| 2 | 3eqtr3a.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 3 | 3eqtr3a.3 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐷) | |
| 4 | 2, 3 | eqtrid 2274 | . 2 ⊢ (𝜑 → 𝐴 = 𝐷) |
| 5 | 1, 4 | eqtr3d 2264 | 1 ⊢ (𝜑 → 𝐶 = 𝐷) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-4 1556 ax-17 1572 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 |
| This theorem is referenced by: uneqin 3455 coi2 5244 foima 5552 f1imacnv 5588 fvsnun2 5836 fnsnsplitdc 6649 phplem4 7012 phplem4on 7025 halfnqq 7593 resqrexlemcalc1 11520 absefib 12277 efieq1re 12278 restopnb 14849 cnmpt2t 14961 reeflog 15531 rpcxpsqrt 15590 |
| Copyright terms: Public domain | W3C validator |