ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemcalc1 GIF version

Theorem resqrexlemcalc1 11158
Description: Lemma for resqrex 11170. Some of the calculations involved in showing that the sequence converges. (Contributed by Mario Carneiro and Jim Kingdon, 29-Jul-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))
resqrexlemex.a (𝜑𝐴 ∈ ℝ)
resqrexlemex.agt0 (𝜑 → 0 ≤ 𝐴)
Assertion
Ref Expression
resqrexlemcalc1 ((𝜑𝑁 ∈ ℕ) → (((𝐹‘(𝑁 + 1))↑2) − 𝐴) = (((((𝐹𝑁)↑2) − 𝐴)↑2) / (4 · ((𝐹𝑁)↑2))))
Distinct variable groups:   𝑦,𝐴,𝑧   𝜑,𝑦,𝑧
Allowed substitution hints:   𝐹(𝑦,𝑧)   𝑁(𝑦,𝑧)

Proof of Theorem resqrexlemcalc1
StepHypRef Expression
1 resqrexlemex.seq . . . . . . . 8 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))
2 resqrexlemex.a . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
3 resqrexlemex.agt0 . . . . . . . 8 (𝜑 → 0 ≤ 𝐴)
41, 2, 3resqrexlemfp1 11153 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → (𝐹‘(𝑁 + 1)) = (((𝐹𝑁) + (𝐴 / (𝐹𝑁))) / 2))
54oveq1d 5933 . . . . . 6 ((𝜑𝑁 ∈ ℕ) → ((𝐹‘(𝑁 + 1))↑2) = ((((𝐹𝑁) + (𝐴 / (𝐹𝑁))) / 2)↑2))
61, 2, 3resqrexlemf 11151 . . . . . . . . . . 11 (𝜑𝐹:ℕ⟶ℝ+)
76ffvelcdmda 5693 . . . . . . . . . 10 ((𝜑𝑁 ∈ ℕ) → (𝐹𝑁) ∈ ℝ+)
87rpred 9762 . . . . . . . . 9 ((𝜑𝑁 ∈ ℕ) → (𝐹𝑁) ∈ ℝ)
92adantr 276 . . . . . . . . . 10 ((𝜑𝑁 ∈ ℕ) → 𝐴 ∈ ℝ)
109, 7rerpdivcld 9794 . . . . . . . . 9 ((𝜑𝑁 ∈ ℕ) → (𝐴 / (𝐹𝑁)) ∈ ℝ)
118, 10readdcld 8049 . . . . . . . 8 ((𝜑𝑁 ∈ ℕ) → ((𝐹𝑁) + (𝐴 / (𝐹𝑁))) ∈ ℝ)
1211recnd 8048 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → ((𝐹𝑁) + (𝐴 / (𝐹𝑁))) ∈ ℂ)
13 2cnd 9055 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → 2 ∈ ℂ)
14 2ap0 9075 . . . . . . . 8 2 # 0
1514a1i 9 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → 2 # 0)
1612, 13, 15sqdivapd 10757 . . . . . 6 ((𝜑𝑁 ∈ ℕ) → ((((𝐹𝑁) + (𝐴 / (𝐹𝑁))) / 2)↑2) = ((((𝐹𝑁) + (𝐴 / (𝐹𝑁)))↑2) / (2↑2)))
175, 16eqtrd 2226 . . . . 5 ((𝜑𝑁 ∈ ℕ) → ((𝐹‘(𝑁 + 1))↑2) = ((((𝐹𝑁) + (𝐴 / (𝐹𝑁)))↑2) / (2↑2)))
18 sq2 10706 . . . . . 6 (2↑2) = 4
1918oveq2i 5929 . . . . 5 ((((𝐹𝑁) + (𝐴 / (𝐹𝑁)))↑2) / (2↑2)) = ((((𝐹𝑁) + (𝐴 / (𝐹𝑁)))↑2) / 4)
2017, 19eqtrdi 2242 . . . 4 ((𝜑𝑁 ∈ ℕ) → ((𝐹‘(𝑁 + 1))↑2) = ((((𝐹𝑁) + (𝐴 / (𝐹𝑁)))↑2) / 4))
219recnd 8048 . . . . . 6 ((𝜑𝑁 ∈ ℕ) → 𝐴 ∈ ℂ)
22 4cn 9060 . . . . . . 7 4 ∈ ℂ
2322a1i 9 . . . . . 6 ((𝜑𝑁 ∈ ℕ) → 4 ∈ ℂ)
24 4re 9059 . . . . . . . 8 4 ∈ ℝ
2524a1i 9 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → 4 ∈ ℝ)
26 4pos 9079 . . . . . . . 8 0 < 4
2726a1i 9 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → 0 < 4)
2825, 27gt0ap0d 8648 . . . . . 6 ((𝜑𝑁 ∈ ℕ) → 4 # 0)
2921, 23, 28divcanap3d 8814 . . . . 5 ((𝜑𝑁 ∈ ℕ) → ((4 · 𝐴) / 4) = 𝐴)
3029eqcomd 2199 . . . 4 ((𝜑𝑁 ∈ ℕ) → 𝐴 = ((4 · 𝐴) / 4))
3120, 30oveq12d 5936 . . 3 ((𝜑𝑁 ∈ ℕ) → (((𝐹‘(𝑁 + 1))↑2) − 𝐴) = (((((𝐹𝑁) + (𝐴 / (𝐹𝑁)))↑2) / 4) − ((4 · 𝐴) / 4)))
3212sqcld 10742 . . . 4 ((𝜑𝑁 ∈ ℕ) → (((𝐹𝑁) + (𝐴 / (𝐹𝑁)))↑2) ∈ ℂ)
3323, 21mulcld 8040 . . . 4 ((𝜑𝑁 ∈ ℕ) → (4 · 𝐴) ∈ ℂ)
3432, 33, 23, 28divsubdirapd 8849 . . 3 ((𝜑𝑁 ∈ ℕ) → (((((𝐹𝑁) + (𝐴 / (𝐹𝑁)))↑2) − (4 · 𝐴)) / 4) = (((((𝐹𝑁) + (𝐴 / (𝐹𝑁)))↑2) / 4) − ((4 · 𝐴) / 4)))
3531, 34eqtr4d 2229 . 2 ((𝜑𝑁 ∈ ℕ) → (((𝐹‘(𝑁 + 1))↑2) − 𝐴) = (((((𝐹𝑁) + (𝐴 / (𝐹𝑁)))↑2) − (4 · 𝐴)) / 4))
368recnd 8048 . . . . . . . . 9 ((𝜑𝑁 ∈ ℕ) → (𝐹𝑁) ∈ ℂ)
3736sqcld 10742 . . . . . . . 8 ((𝜑𝑁 ∈ ℕ) → ((𝐹𝑁)↑2) ∈ ℂ)
3813, 21mulcld 8040 . . . . . . . 8 ((𝜑𝑁 ∈ ℕ) → (2 · 𝐴) ∈ ℂ)
3937, 38, 33addsubassd 8350 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → ((((𝐹𝑁)↑2) + (2 · 𝐴)) − (4 · 𝐴)) = (((𝐹𝑁)↑2) + ((2 · 𝐴) − (4 · 𝐴))))
40 2cn 9053 . . . . . . . . . . . 12 2 ∈ ℂ
4122, 40negsubdi2i 8305 . . . . . . . . . . 11 -(4 − 2) = (2 − 4)
42 2p2e4 9109 . . . . . . . . . . . . . 14 (2 + 2) = 4
4342oveq1i 5928 . . . . . . . . . . . . 13 ((2 + 2) − 2) = (4 − 2)
4440, 40pncan3oi 8235 . . . . . . . . . . . . 13 ((2 + 2) − 2) = 2
4543, 44eqtr3i 2216 . . . . . . . . . . . 12 (4 − 2) = 2
4645negeqi 8213 . . . . . . . . . . 11 -(4 − 2) = -2
4741, 46eqtr3i 2216 . . . . . . . . . 10 (2 − 4) = -2
4847oveq1i 5928 . . . . . . . . 9 ((2 − 4) · 𝐴) = (-2 · 𝐴)
4913, 23, 21subdird 8434 . . . . . . . . 9 ((𝜑𝑁 ∈ ℕ) → ((2 − 4) · 𝐴) = ((2 · 𝐴) − (4 · 𝐴)))
5013, 21mulneg1d 8430 . . . . . . . . 9 ((𝜑𝑁 ∈ ℕ) → (-2 · 𝐴) = -(2 · 𝐴))
5148, 49, 503eqtr3a 2250 . . . . . . . 8 ((𝜑𝑁 ∈ ℕ) → ((2 · 𝐴) − (4 · 𝐴)) = -(2 · 𝐴))
5251oveq2d 5934 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → (((𝐹𝑁)↑2) + ((2 · 𝐴) − (4 · 𝐴))) = (((𝐹𝑁)↑2) + -(2 · 𝐴)))
5337, 38negsubd 8336 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → (((𝐹𝑁)↑2) + -(2 · 𝐴)) = (((𝐹𝑁)↑2) − (2 · 𝐴)))
5439, 52, 533eqtrd 2230 . . . . . 6 ((𝜑𝑁 ∈ ℕ) → ((((𝐹𝑁)↑2) + (2 · 𝐴)) − (4 · 𝐴)) = (((𝐹𝑁)↑2) − (2 · 𝐴)))
5554oveq1d 5933 . . . . 5 ((𝜑𝑁 ∈ ℕ) → (((((𝐹𝑁)↑2) + (2 · 𝐴)) − (4 · 𝐴)) + ((𝐴 / (𝐹𝑁))↑2)) = ((((𝐹𝑁)↑2) − (2 · 𝐴)) + ((𝐴 / (𝐹𝑁))↑2)))
5610recnd 8048 . . . . . . . . 9 ((𝜑𝑁 ∈ ℕ) → (𝐴 / (𝐹𝑁)) ∈ ℂ)
57 binom2 10722 . . . . . . . . 9 (((𝐹𝑁) ∈ ℂ ∧ (𝐴 / (𝐹𝑁)) ∈ ℂ) → (((𝐹𝑁) + (𝐴 / (𝐹𝑁)))↑2) = ((((𝐹𝑁)↑2) + (2 · ((𝐹𝑁) · (𝐴 / (𝐹𝑁))))) + ((𝐴 / (𝐹𝑁))↑2)))
5836, 56, 57syl2anc 411 . . . . . . . 8 ((𝜑𝑁 ∈ ℕ) → (((𝐹𝑁) + (𝐴 / (𝐹𝑁)))↑2) = ((((𝐹𝑁)↑2) + (2 · ((𝐹𝑁) · (𝐴 / (𝐹𝑁))))) + ((𝐴 / (𝐹𝑁))↑2)))
597rpap0d 9768 . . . . . . . . . . . 12 ((𝜑𝑁 ∈ ℕ) → (𝐹𝑁) # 0)
6021, 36, 59divcanap2d 8811 . . . . . . . . . . 11 ((𝜑𝑁 ∈ ℕ) → ((𝐹𝑁) · (𝐴 / (𝐹𝑁))) = 𝐴)
6160oveq2d 5934 . . . . . . . . . 10 ((𝜑𝑁 ∈ ℕ) → (2 · ((𝐹𝑁) · (𝐴 / (𝐹𝑁)))) = (2 · 𝐴))
6261oveq2d 5934 . . . . . . . . 9 ((𝜑𝑁 ∈ ℕ) → (((𝐹𝑁)↑2) + (2 · ((𝐹𝑁) · (𝐴 / (𝐹𝑁))))) = (((𝐹𝑁)↑2) + (2 · 𝐴)))
6362oveq1d 5933 . . . . . . . 8 ((𝜑𝑁 ∈ ℕ) → ((((𝐹𝑁)↑2) + (2 · ((𝐹𝑁) · (𝐴 / (𝐹𝑁))))) + ((𝐴 / (𝐹𝑁))↑2)) = ((((𝐹𝑁)↑2) + (2 · 𝐴)) + ((𝐴 / (𝐹𝑁))↑2)))
6458, 63eqtrd 2226 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → (((𝐹𝑁) + (𝐴 / (𝐹𝑁)))↑2) = ((((𝐹𝑁)↑2) + (2 · 𝐴)) + ((𝐴 / (𝐹𝑁))↑2)))
6564oveq1d 5933 . . . . . 6 ((𝜑𝑁 ∈ ℕ) → ((((𝐹𝑁) + (𝐴 / (𝐹𝑁)))↑2) − (4 · 𝐴)) = (((((𝐹𝑁)↑2) + (2 · 𝐴)) + ((𝐴 / (𝐹𝑁))↑2)) − (4 · 𝐴)))
6637, 38addcld 8039 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → (((𝐹𝑁)↑2) + (2 · 𝐴)) ∈ ℂ)
6756sqcld 10742 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → ((𝐴 / (𝐹𝑁))↑2) ∈ ℂ)
6866, 67, 33addsubd 8351 . . . . . 6 ((𝜑𝑁 ∈ ℕ) → (((((𝐹𝑁)↑2) + (2 · 𝐴)) + ((𝐴 / (𝐹𝑁))↑2)) − (4 · 𝐴)) = (((((𝐹𝑁)↑2) + (2 · 𝐴)) − (4 · 𝐴)) + ((𝐴 / (𝐹𝑁))↑2)))
6965, 68eqtrd 2226 . . . . 5 ((𝜑𝑁 ∈ ℕ) → ((((𝐹𝑁) + (𝐴 / (𝐹𝑁)))↑2) − (4 · 𝐴)) = (((((𝐹𝑁)↑2) + (2 · 𝐴)) − (4 · 𝐴)) + ((𝐴 / (𝐹𝑁))↑2)))
7037, 38subcld 8330 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → (((𝐹𝑁)↑2) − (2 · 𝐴)) ∈ ℂ)
7170, 67addcld 8039 . . . . . 6 ((𝜑𝑁 ∈ ℕ) → ((((𝐹𝑁)↑2) − (2 · 𝐴)) + ((𝐴 / (𝐹𝑁))↑2)) ∈ ℂ)
72 2z 9345 . . . . . . . . 9 2 ∈ ℤ
7372a1i 9 . . . . . . . 8 ((𝜑𝑁 ∈ ℕ) → 2 ∈ ℤ)
747, 73rpexpcld 10768 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → ((𝐹𝑁)↑2) ∈ ℝ+)
7574rpap0d 9768 . . . . . 6 ((𝜑𝑁 ∈ ℕ) → ((𝐹𝑁)↑2) # 0)
7671, 37, 75divcanap4d 8815 . . . . 5 ((𝜑𝑁 ∈ ℕ) → ((((((𝐹𝑁)↑2) − (2 · 𝐴)) + ((𝐴 / (𝐹𝑁))↑2)) · ((𝐹𝑁)↑2)) / ((𝐹𝑁)↑2)) = ((((𝐹𝑁)↑2) − (2 · 𝐴)) + ((𝐴 / (𝐹𝑁))↑2)))
7755, 69, 763eqtr4d 2236 . . . 4 ((𝜑𝑁 ∈ ℕ) → ((((𝐹𝑁) + (𝐴 / (𝐹𝑁)))↑2) − (4 · 𝐴)) = ((((((𝐹𝑁)↑2) − (2 · 𝐴)) + ((𝐴 / (𝐹𝑁))↑2)) · ((𝐹𝑁)↑2)) / ((𝐹𝑁)↑2)))
7837, 38, 37subdird 8434 . . . . . . . 8 ((𝜑𝑁 ∈ ℕ) → ((((𝐹𝑁)↑2) − (2 · 𝐴)) · ((𝐹𝑁)↑2)) = ((((𝐹𝑁)↑2) · ((𝐹𝑁)↑2)) − ((2 · 𝐴) · ((𝐹𝑁)↑2))))
7937sqvald 10741 . . . . . . . . 9 ((𝜑𝑁 ∈ ℕ) → (((𝐹𝑁)↑2)↑2) = (((𝐹𝑁)↑2) · ((𝐹𝑁)↑2)))
8013, 21, 37mul32d 8172 . . . . . . . . . 10 ((𝜑𝑁 ∈ ℕ) → ((2 · 𝐴) · ((𝐹𝑁)↑2)) = ((2 · ((𝐹𝑁)↑2)) · 𝐴))
8113, 37, 21mulassd 8043 . . . . . . . . . 10 ((𝜑𝑁 ∈ ℕ) → ((2 · ((𝐹𝑁)↑2)) · 𝐴) = (2 · (((𝐹𝑁)↑2) · 𝐴)))
8280, 81eqtr2d 2227 . . . . . . . . 9 ((𝜑𝑁 ∈ ℕ) → (2 · (((𝐹𝑁)↑2) · 𝐴)) = ((2 · 𝐴) · ((𝐹𝑁)↑2)))
8379, 82oveq12d 5936 . . . . . . . 8 ((𝜑𝑁 ∈ ℕ) → ((((𝐹𝑁)↑2)↑2) − (2 · (((𝐹𝑁)↑2) · 𝐴))) = ((((𝐹𝑁)↑2) · ((𝐹𝑁)↑2)) − ((2 · 𝐴) · ((𝐹𝑁)↑2))))
8478, 83eqtr4d 2229 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → ((((𝐹𝑁)↑2) − (2 · 𝐴)) · ((𝐹𝑁)↑2)) = ((((𝐹𝑁)↑2)↑2) − (2 · (((𝐹𝑁)↑2) · 𝐴))))
8521, 36, 59sqdivapd 10757 . . . . . . . . 9 ((𝜑𝑁 ∈ ℕ) → ((𝐴 / (𝐹𝑁))↑2) = ((𝐴↑2) / ((𝐹𝑁)↑2)))
8685oveq1d 5933 . . . . . . . 8 ((𝜑𝑁 ∈ ℕ) → (((𝐴 / (𝐹𝑁))↑2) · ((𝐹𝑁)↑2)) = (((𝐴↑2) / ((𝐹𝑁)↑2)) · ((𝐹𝑁)↑2)))
8721sqcld 10742 . . . . . . . . 9 ((𝜑𝑁 ∈ ℕ) → (𝐴↑2) ∈ ℂ)
8887, 37, 75divcanap1d 8810 . . . . . . . 8 ((𝜑𝑁 ∈ ℕ) → (((𝐴↑2) / ((𝐹𝑁)↑2)) · ((𝐹𝑁)↑2)) = (𝐴↑2))
8986, 88eqtrd 2226 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → (((𝐴 / (𝐹𝑁))↑2) · ((𝐹𝑁)↑2)) = (𝐴↑2))
9084, 89oveq12d 5936 . . . . . 6 ((𝜑𝑁 ∈ ℕ) → (((((𝐹𝑁)↑2) − (2 · 𝐴)) · ((𝐹𝑁)↑2)) + (((𝐴 / (𝐹𝑁))↑2) · ((𝐹𝑁)↑2))) = (((((𝐹𝑁)↑2)↑2) − (2 · (((𝐹𝑁)↑2) · 𝐴))) + (𝐴↑2)))
9170, 67, 37adddird 8045 . . . . . 6 ((𝜑𝑁 ∈ ℕ) → (((((𝐹𝑁)↑2) − (2 · 𝐴)) + ((𝐴 / (𝐹𝑁))↑2)) · ((𝐹𝑁)↑2)) = (((((𝐹𝑁)↑2) − (2 · 𝐴)) · ((𝐹𝑁)↑2)) + (((𝐴 / (𝐹𝑁))↑2) · ((𝐹𝑁)↑2))))
92 binom2sub 10724 . . . . . . 7 ((((𝐹𝑁)↑2) ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((((𝐹𝑁)↑2) − 𝐴)↑2) = (((((𝐹𝑁)↑2)↑2) − (2 · (((𝐹𝑁)↑2) · 𝐴))) + (𝐴↑2)))
9337, 21, 92syl2anc 411 . . . . . 6 ((𝜑𝑁 ∈ ℕ) → ((((𝐹𝑁)↑2) − 𝐴)↑2) = (((((𝐹𝑁)↑2)↑2) − (2 · (((𝐹𝑁)↑2) · 𝐴))) + (𝐴↑2)))
9490, 91, 933eqtr4d 2236 . . . . 5 ((𝜑𝑁 ∈ ℕ) → (((((𝐹𝑁)↑2) − (2 · 𝐴)) + ((𝐴 / (𝐹𝑁))↑2)) · ((𝐹𝑁)↑2)) = ((((𝐹𝑁)↑2) − 𝐴)↑2))
9594oveq1d 5933 . . . 4 ((𝜑𝑁 ∈ ℕ) → ((((((𝐹𝑁)↑2) − (2 · 𝐴)) + ((𝐴 / (𝐹𝑁))↑2)) · ((𝐹𝑁)↑2)) / ((𝐹𝑁)↑2)) = (((((𝐹𝑁)↑2) − 𝐴)↑2) / ((𝐹𝑁)↑2)))
9677, 95eqtrd 2226 . . 3 ((𝜑𝑁 ∈ ℕ) → ((((𝐹𝑁) + (𝐴 / (𝐹𝑁)))↑2) − (4 · 𝐴)) = (((((𝐹𝑁)↑2) − 𝐴)↑2) / ((𝐹𝑁)↑2)))
9796oveq1d 5933 . 2 ((𝜑𝑁 ∈ ℕ) → (((((𝐹𝑁) + (𝐴 / (𝐹𝑁)))↑2) − (4 · 𝐴)) / 4) = ((((((𝐹𝑁)↑2) − 𝐴)↑2) / ((𝐹𝑁)↑2)) / 4))
9837, 21subcld 8330 . . . . 5 ((𝜑𝑁 ∈ ℕ) → (((𝐹𝑁)↑2) − 𝐴) ∈ ℂ)
9998sqcld 10742 . . . 4 ((𝜑𝑁 ∈ ℕ) → ((((𝐹𝑁)↑2) − 𝐴)↑2) ∈ ℂ)
10099, 37, 23, 75, 28divdivap1d 8841 . . 3 ((𝜑𝑁 ∈ ℕ) → ((((((𝐹𝑁)↑2) − 𝐴)↑2) / ((𝐹𝑁)↑2)) / 4) = (((((𝐹𝑁)↑2) − 𝐴)↑2) / (((𝐹𝑁)↑2) · 4)))
10137, 23mulcomd 8041 . . . 4 ((𝜑𝑁 ∈ ℕ) → (((𝐹𝑁)↑2) · 4) = (4 · ((𝐹𝑁)↑2)))
102101oveq2d 5934 . . 3 ((𝜑𝑁 ∈ ℕ) → (((((𝐹𝑁)↑2) − 𝐴)↑2) / (((𝐹𝑁)↑2) · 4)) = (((((𝐹𝑁)↑2) − 𝐴)↑2) / (4 · ((𝐹𝑁)↑2))))
103100, 102eqtrd 2226 . 2 ((𝜑𝑁 ∈ ℕ) → ((((((𝐹𝑁)↑2) − 𝐴)↑2) / ((𝐹𝑁)↑2)) / 4) = (((((𝐹𝑁)↑2) − 𝐴)↑2) / (4 · ((𝐹𝑁)↑2))))
10435, 97, 1033eqtrd 2230 1 ((𝜑𝑁 ∈ ℕ) → (((𝐹‘(𝑁 + 1))↑2) − 𝐴) = (((((𝐹𝑁)↑2) − 𝐴)↑2) / (4 · ((𝐹𝑁)↑2))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  {csn 3618   class class class wbr 4029   × cxp 4657  cfv 5254  (class class class)co 5918  cmpo 5920  cc 7870  cr 7871  0cc0 7872  1c1 7873   + caddc 7875   · cmul 7877   < clt 8054  cle 8055  cmin 8190  -cneg 8191   # cap 8600   / cdiv 8691  cn 8982  2c2 9033  4c4 9035  cz 9317  +crp 9719  seqcseq 10518  cexp 10609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-z 9318  df-uz 9593  df-rp 9720  df-seqfrec 10519  df-exp 10610
This theorem is referenced by:  resqrexlemcalc2  11159
  Copyright terms: Public domain W3C validator