Step | Hyp | Ref
| Expression |
1 | | resqrexlemex.seq |
. . . . . . . 8
β’ πΉ = seq1((π¦ β β+, π§ β β+
β¦ ((π¦ + (π΄ / π¦)) / 2)), (β Γ {(1 + π΄)})) |
2 | | resqrexlemex.a |
. . . . . . . 8
β’ (π β π΄ β β) |
3 | | resqrexlemex.agt0 |
. . . . . . . 8
β’ (π β 0 β€ π΄) |
4 | 1, 2, 3 | resqrexlemfp1 11020 |
. . . . . . 7
β’ ((π β§ π β β) β (πΉβ(π + 1)) = (((πΉβπ) + (π΄ / (πΉβπ))) / 2)) |
5 | 4 | oveq1d 5892 |
. . . . . 6
β’ ((π β§ π β β) β ((πΉβ(π + 1))β2) = ((((πΉβπ) + (π΄ / (πΉβπ))) / 2)β2)) |
6 | 1, 2, 3 | resqrexlemf 11018 |
. . . . . . . . . . 11
β’ (π β πΉ:ββΆβ+) |
7 | 6 | ffvelcdmda 5653 |
. . . . . . . . . 10
β’ ((π β§ π β β) β (πΉβπ) β
β+) |
8 | 7 | rpred 9698 |
. . . . . . . . 9
β’ ((π β§ π β β) β (πΉβπ) β β) |
9 | 2 | adantr 276 |
. . . . . . . . . 10
β’ ((π β§ π β β) β π΄ β β) |
10 | 9, 7 | rerpdivcld 9730 |
. . . . . . . . 9
β’ ((π β§ π β β) β (π΄ / (πΉβπ)) β β) |
11 | 8, 10 | readdcld 7989 |
. . . . . . . 8
β’ ((π β§ π β β) β ((πΉβπ) + (π΄ / (πΉβπ))) β β) |
12 | 11 | recnd 7988 |
. . . . . . 7
β’ ((π β§ π β β) β ((πΉβπ) + (π΄ / (πΉβπ))) β β) |
13 | | 2cnd 8994 |
. . . . . . 7
β’ ((π β§ π β β) β 2 β
β) |
14 | | 2ap0 9014 |
. . . . . . . 8
β’ 2 #
0 |
15 | 14 | a1i 9 |
. . . . . . 7
β’ ((π β§ π β β) β 2 #
0) |
16 | 12, 13, 15 | sqdivapd 10669 |
. . . . . 6
β’ ((π β§ π β β) β ((((πΉβπ) + (π΄ / (πΉβπ))) / 2)β2) = ((((πΉβπ) + (π΄ / (πΉβπ)))β2) / (2β2))) |
17 | 5, 16 | eqtrd 2210 |
. . . . 5
β’ ((π β§ π β β) β ((πΉβ(π + 1))β2) = ((((πΉβπ) + (π΄ / (πΉβπ)))β2) / (2β2))) |
18 | | sq2 10618 |
. . . . . 6
β’
(2β2) = 4 |
19 | 18 | oveq2i 5888 |
. . . . 5
β’ ((((πΉβπ) + (π΄ / (πΉβπ)))β2) / (2β2)) = ((((πΉβπ) + (π΄ / (πΉβπ)))β2) / 4) |
20 | 17, 19 | eqtrdi 2226 |
. . . 4
β’ ((π β§ π β β) β ((πΉβ(π + 1))β2) = ((((πΉβπ) + (π΄ / (πΉβπ)))β2) / 4)) |
21 | 9 | recnd 7988 |
. . . . . 6
β’ ((π β§ π β β) β π΄ β β) |
22 | | 4cn 8999 |
. . . . . . 7
β’ 4 β
β |
23 | 22 | a1i 9 |
. . . . . 6
β’ ((π β§ π β β) β 4 β
β) |
24 | | 4re 8998 |
. . . . . . . 8
β’ 4 β
β |
25 | 24 | a1i 9 |
. . . . . . 7
β’ ((π β§ π β β) β 4 β
β) |
26 | | 4pos 9018 |
. . . . . . . 8
β’ 0 <
4 |
27 | 26 | a1i 9 |
. . . . . . 7
β’ ((π β§ π β β) β 0 <
4) |
28 | 25, 27 | gt0ap0d 8588 |
. . . . . 6
β’ ((π β§ π β β) β 4 #
0) |
29 | 21, 23, 28 | divcanap3d 8754 |
. . . . 5
β’ ((π β§ π β β) β ((4 Β· π΄) / 4) = π΄) |
30 | 29 | eqcomd 2183 |
. . . 4
β’ ((π β§ π β β) β π΄ = ((4 Β· π΄) / 4)) |
31 | 20, 30 | oveq12d 5895 |
. . 3
β’ ((π β§ π β β) β (((πΉβ(π + 1))β2) β π΄) = (((((πΉβπ) + (π΄ / (πΉβπ)))β2) / 4) β ((4 Β· π΄) / 4))) |
32 | 12 | sqcld 10654 |
. . . 4
β’ ((π β§ π β β) β (((πΉβπ) + (π΄ / (πΉβπ)))β2) β β) |
33 | 23, 21 | mulcld 7980 |
. . . 4
β’ ((π β§ π β β) β (4 Β· π΄) β
β) |
34 | 32, 33, 23, 28 | divsubdirapd 8789 |
. . 3
β’ ((π β§ π β β) β (((((πΉβπ) + (π΄ / (πΉβπ)))β2) β (4 Β· π΄)) / 4) = (((((πΉβπ) + (π΄ / (πΉβπ)))β2) / 4) β ((4 Β· π΄) / 4))) |
35 | 31, 34 | eqtr4d 2213 |
. 2
β’ ((π β§ π β β) β (((πΉβ(π + 1))β2) β π΄) = (((((πΉβπ) + (π΄ / (πΉβπ)))β2) β (4 Β· π΄)) / 4)) |
36 | 8 | recnd 7988 |
. . . . . . . . 9
β’ ((π β§ π β β) β (πΉβπ) β β) |
37 | 36 | sqcld 10654 |
. . . . . . . 8
β’ ((π β§ π β β) β ((πΉβπ)β2) β β) |
38 | 13, 21 | mulcld 7980 |
. . . . . . . 8
β’ ((π β§ π β β) β (2 Β· π΄) β
β) |
39 | 37, 38, 33 | addsubassd 8290 |
. . . . . . 7
β’ ((π β§ π β β) β ((((πΉβπ)β2) + (2 Β· π΄)) β (4 Β· π΄)) = (((πΉβπ)β2) + ((2 Β· π΄) β (4 Β· π΄)))) |
40 | | 2cn 8992 |
. . . . . . . . . . . 12
β’ 2 β
β |
41 | 22, 40 | negsubdi2i 8245 |
. . . . . . . . . . 11
β’ -(4
β 2) = (2 β 4) |
42 | | 2p2e4 9048 |
. . . . . . . . . . . . . 14
β’ (2 + 2) =
4 |
43 | 42 | oveq1i 5887 |
. . . . . . . . . . . . 13
β’ ((2 + 2)
β 2) = (4 β 2) |
44 | 40, 40 | pncan3oi 8175 |
. . . . . . . . . . . . 13
β’ ((2 + 2)
β 2) = 2 |
45 | 43, 44 | eqtr3i 2200 |
. . . . . . . . . . . 12
β’ (4
β 2) = 2 |
46 | 45 | negeqi 8153 |
. . . . . . . . . . 11
β’ -(4
β 2) = -2 |
47 | 41, 46 | eqtr3i 2200 |
. . . . . . . . . 10
β’ (2
β 4) = -2 |
48 | 47 | oveq1i 5887 |
. . . . . . . . 9
β’ ((2
β 4) Β· π΄) =
(-2 Β· π΄) |
49 | 13, 23, 21 | subdird 8374 |
. . . . . . . . 9
β’ ((π β§ π β β) β ((2 β 4)
Β· π΄) = ((2 Β·
π΄) β (4 Β·
π΄))) |
50 | 13, 21 | mulneg1d 8370 |
. . . . . . . . 9
β’ ((π β§ π β β) β (-2 Β· π΄) = -(2 Β· π΄)) |
51 | 48, 49, 50 | 3eqtr3a 2234 |
. . . . . . . 8
β’ ((π β§ π β β) β ((2 Β· π΄) β (4 Β· π΄)) = -(2 Β· π΄)) |
52 | 51 | oveq2d 5893 |
. . . . . . 7
β’ ((π β§ π β β) β (((πΉβπ)β2) + ((2 Β· π΄) β (4 Β· π΄))) = (((πΉβπ)β2) + -(2 Β· π΄))) |
53 | 37, 38 | negsubd 8276 |
. . . . . . 7
β’ ((π β§ π β β) β (((πΉβπ)β2) + -(2 Β· π΄)) = (((πΉβπ)β2) β (2 Β· π΄))) |
54 | 39, 52, 53 | 3eqtrd 2214 |
. . . . . 6
β’ ((π β§ π β β) β ((((πΉβπ)β2) + (2 Β· π΄)) β (4 Β· π΄)) = (((πΉβπ)β2) β (2 Β· π΄))) |
55 | 54 | oveq1d 5892 |
. . . . 5
β’ ((π β§ π β β) β (((((πΉβπ)β2) + (2 Β· π΄)) β (4 Β· π΄)) + ((π΄ / (πΉβπ))β2)) = ((((πΉβπ)β2) β (2 Β· π΄)) + ((π΄ / (πΉβπ))β2))) |
56 | 10 | recnd 7988 |
. . . . . . . . 9
β’ ((π β§ π β β) β (π΄ / (πΉβπ)) β β) |
57 | | binom2 10634 |
. . . . . . . . 9
β’ (((πΉβπ) β β β§ (π΄ / (πΉβπ)) β β) β (((πΉβπ) + (π΄ / (πΉβπ)))β2) = ((((πΉβπ)β2) + (2 Β· ((πΉβπ) Β· (π΄ / (πΉβπ))))) + ((π΄ / (πΉβπ))β2))) |
58 | 36, 56, 57 | syl2anc 411 |
. . . . . . . 8
β’ ((π β§ π β β) β (((πΉβπ) + (π΄ / (πΉβπ)))β2) = ((((πΉβπ)β2) + (2 Β· ((πΉβπ) Β· (π΄ / (πΉβπ))))) + ((π΄ / (πΉβπ))β2))) |
59 | 7 | rpap0d 9704 |
. . . . . . . . . . . 12
β’ ((π β§ π β β) β (πΉβπ) # 0) |
60 | 21, 36, 59 | divcanap2d 8751 |
. . . . . . . . . . 11
β’ ((π β§ π β β) β ((πΉβπ) Β· (π΄ / (πΉβπ))) = π΄) |
61 | 60 | oveq2d 5893 |
. . . . . . . . . 10
β’ ((π β§ π β β) β (2 Β· ((πΉβπ) Β· (π΄ / (πΉβπ)))) = (2 Β· π΄)) |
62 | 61 | oveq2d 5893 |
. . . . . . . . 9
β’ ((π β§ π β β) β (((πΉβπ)β2) + (2 Β· ((πΉβπ) Β· (π΄ / (πΉβπ))))) = (((πΉβπ)β2) + (2 Β· π΄))) |
63 | 62 | oveq1d 5892 |
. . . . . . . 8
β’ ((π β§ π β β) β ((((πΉβπ)β2) + (2 Β· ((πΉβπ) Β· (π΄ / (πΉβπ))))) + ((π΄ / (πΉβπ))β2)) = ((((πΉβπ)β2) + (2 Β· π΄)) + ((π΄ / (πΉβπ))β2))) |
64 | 58, 63 | eqtrd 2210 |
. . . . . . 7
β’ ((π β§ π β β) β (((πΉβπ) + (π΄ / (πΉβπ)))β2) = ((((πΉβπ)β2) + (2 Β· π΄)) + ((π΄ / (πΉβπ))β2))) |
65 | 64 | oveq1d 5892 |
. . . . . 6
β’ ((π β§ π β β) β ((((πΉβπ) + (π΄ / (πΉβπ)))β2) β (4 Β· π΄)) = (((((πΉβπ)β2) + (2 Β· π΄)) + ((π΄ / (πΉβπ))β2)) β (4 Β· π΄))) |
66 | 37, 38 | addcld 7979 |
. . . . . . 7
β’ ((π β§ π β β) β (((πΉβπ)β2) + (2 Β· π΄)) β β) |
67 | 56 | sqcld 10654 |
. . . . . . 7
β’ ((π β§ π β β) β ((π΄ / (πΉβπ))β2) β β) |
68 | 66, 67, 33 | addsubd 8291 |
. . . . . 6
β’ ((π β§ π β β) β (((((πΉβπ)β2) + (2 Β· π΄)) + ((π΄ / (πΉβπ))β2)) β (4 Β· π΄)) = (((((πΉβπ)β2) + (2 Β· π΄)) β (4 Β· π΄)) + ((π΄ / (πΉβπ))β2))) |
69 | 65, 68 | eqtrd 2210 |
. . . . 5
β’ ((π β§ π β β) β ((((πΉβπ) + (π΄ / (πΉβπ)))β2) β (4 Β· π΄)) = (((((πΉβπ)β2) + (2 Β· π΄)) β (4 Β· π΄)) + ((π΄ / (πΉβπ))β2))) |
70 | 37, 38 | subcld 8270 |
. . . . . . 7
β’ ((π β§ π β β) β (((πΉβπ)β2) β (2 Β· π΄)) β
β) |
71 | 70, 67 | addcld 7979 |
. . . . . 6
β’ ((π β§ π β β) β ((((πΉβπ)β2) β (2 Β· π΄)) + ((π΄ / (πΉβπ))β2)) β β) |
72 | | 2z 9283 |
. . . . . . . . 9
β’ 2 β
β€ |
73 | 72 | a1i 9 |
. . . . . . . 8
β’ ((π β§ π β β) β 2 β
β€) |
74 | 7, 73 | rpexpcld 10680 |
. . . . . . 7
β’ ((π β§ π β β) β ((πΉβπ)β2) β
β+) |
75 | 74 | rpap0d 9704 |
. . . . . 6
β’ ((π β§ π β β) β ((πΉβπ)β2) # 0) |
76 | 71, 37, 75 | divcanap4d 8755 |
. . . . 5
β’ ((π β§ π β β) β ((((((πΉβπ)β2) β (2 Β· π΄)) + ((π΄ / (πΉβπ))β2)) Β· ((πΉβπ)β2)) / ((πΉβπ)β2)) = ((((πΉβπ)β2) β (2 Β· π΄)) + ((π΄ / (πΉβπ))β2))) |
77 | 55, 69, 76 | 3eqtr4d 2220 |
. . . 4
β’ ((π β§ π β β) β ((((πΉβπ) + (π΄ / (πΉβπ)))β2) β (4 Β· π΄)) = ((((((πΉβπ)β2) β (2 Β· π΄)) + ((π΄ / (πΉβπ))β2)) Β· ((πΉβπ)β2)) / ((πΉβπ)β2))) |
78 | 37, 38, 37 | subdird 8374 |
. . . . . . . 8
β’ ((π β§ π β β) β ((((πΉβπ)β2) β (2 Β· π΄)) Β· ((πΉβπ)β2)) = ((((πΉβπ)β2) Β· ((πΉβπ)β2)) β ((2 Β· π΄) Β· ((πΉβπ)β2)))) |
79 | 37 | sqvald 10653 |
. . . . . . . . 9
β’ ((π β§ π β β) β (((πΉβπ)β2)β2) = (((πΉβπ)β2) Β· ((πΉβπ)β2))) |
80 | 13, 21, 37 | mul32d 8112 |
. . . . . . . . . 10
β’ ((π β§ π β β) β ((2 Β· π΄) Β· ((πΉβπ)β2)) = ((2 Β· ((πΉβπ)β2)) Β· π΄)) |
81 | 13, 37, 21 | mulassd 7983 |
. . . . . . . . . 10
β’ ((π β§ π β β) β ((2 Β· ((πΉβπ)β2)) Β· π΄) = (2 Β· (((πΉβπ)β2) Β· π΄))) |
82 | 80, 81 | eqtr2d 2211 |
. . . . . . . . 9
β’ ((π β§ π β β) β (2 Β· (((πΉβπ)β2) Β· π΄)) = ((2 Β· π΄) Β· ((πΉβπ)β2))) |
83 | 79, 82 | oveq12d 5895 |
. . . . . . . 8
β’ ((π β§ π β β) β ((((πΉβπ)β2)β2) β (2 Β·
(((πΉβπ)β2) Β· π΄))) = ((((πΉβπ)β2) Β· ((πΉβπ)β2)) β ((2 Β· π΄) Β· ((πΉβπ)β2)))) |
84 | 78, 83 | eqtr4d 2213 |
. . . . . . 7
β’ ((π β§ π β β) β ((((πΉβπ)β2) β (2 Β· π΄)) Β· ((πΉβπ)β2)) = ((((πΉβπ)β2)β2) β (2 Β·
(((πΉβπ)β2) Β· π΄)))) |
85 | 21, 36, 59 | sqdivapd 10669 |
. . . . . . . . 9
β’ ((π β§ π β β) β ((π΄ / (πΉβπ))β2) = ((π΄β2) / ((πΉβπ)β2))) |
86 | 85 | oveq1d 5892 |
. . . . . . . 8
β’ ((π β§ π β β) β (((π΄ / (πΉβπ))β2) Β· ((πΉβπ)β2)) = (((π΄β2) / ((πΉβπ)β2)) Β· ((πΉβπ)β2))) |
87 | 21 | sqcld 10654 |
. . . . . . . . 9
β’ ((π β§ π β β) β (π΄β2) β β) |
88 | 87, 37, 75 | divcanap1d 8750 |
. . . . . . . 8
β’ ((π β§ π β β) β (((π΄β2) / ((πΉβπ)β2)) Β· ((πΉβπ)β2)) = (π΄β2)) |
89 | 86, 88 | eqtrd 2210 |
. . . . . . 7
β’ ((π β§ π β β) β (((π΄ / (πΉβπ))β2) Β· ((πΉβπ)β2)) = (π΄β2)) |
90 | 84, 89 | oveq12d 5895 |
. . . . . 6
β’ ((π β§ π β β) β (((((πΉβπ)β2) β (2 Β· π΄)) Β· ((πΉβπ)β2)) + (((π΄ / (πΉβπ))β2) Β· ((πΉβπ)β2))) = (((((πΉβπ)β2)β2) β (2 Β·
(((πΉβπ)β2) Β· π΄))) + (π΄β2))) |
91 | 70, 67, 37 | adddird 7985 |
. . . . . 6
β’ ((π β§ π β β) β (((((πΉβπ)β2) β (2 Β· π΄)) + ((π΄ / (πΉβπ))β2)) Β· ((πΉβπ)β2)) = (((((πΉβπ)β2) β (2 Β· π΄)) Β· ((πΉβπ)β2)) + (((π΄ / (πΉβπ))β2) Β· ((πΉβπ)β2)))) |
92 | | binom2sub 10636 |
. . . . . . 7
β’ ((((πΉβπ)β2) β β β§ π΄ β β) β
((((πΉβπ)β2) β π΄)β2) = (((((πΉβπ)β2)β2) β (2 Β·
(((πΉβπ)β2) Β· π΄))) + (π΄β2))) |
93 | 37, 21, 92 | syl2anc 411 |
. . . . . 6
β’ ((π β§ π β β) β ((((πΉβπ)β2) β π΄)β2) = (((((πΉβπ)β2)β2) β (2 Β·
(((πΉβπ)β2) Β· π΄))) + (π΄β2))) |
94 | 90, 91, 93 | 3eqtr4d 2220 |
. . . . 5
β’ ((π β§ π β β) β (((((πΉβπ)β2) β (2 Β· π΄)) + ((π΄ / (πΉβπ))β2)) Β· ((πΉβπ)β2)) = ((((πΉβπ)β2) β π΄)β2)) |
95 | 94 | oveq1d 5892 |
. . . 4
β’ ((π β§ π β β) β ((((((πΉβπ)β2) β (2 Β· π΄)) + ((π΄ / (πΉβπ))β2)) Β· ((πΉβπ)β2)) / ((πΉβπ)β2)) = (((((πΉβπ)β2) β π΄)β2) / ((πΉβπ)β2))) |
96 | 77, 95 | eqtrd 2210 |
. . 3
β’ ((π β§ π β β) β ((((πΉβπ) + (π΄ / (πΉβπ)))β2) β (4 Β· π΄)) = (((((πΉβπ)β2) β π΄)β2) / ((πΉβπ)β2))) |
97 | 96 | oveq1d 5892 |
. 2
β’ ((π β§ π β β) β (((((πΉβπ) + (π΄ / (πΉβπ)))β2) β (4 Β· π΄)) / 4) = ((((((πΉβπ)β2) β π΄)β2) / ((πΉβπ)β2)) / 4)) |
98 | 37, 21 | subcld 8270 |
. . . . 5
β’ ((π β§ π β β) β (((πΉβπ)β2) β π΄) β β) |
99 | 98 | sqcld 10654 |
. . . 4
β’ ((π β§ π β β) β ((((πΉβπ)β2) β π΄)β2) β β) |
100 | 99, 37, 23, 75, 28 | divdivap1d 8781 |
. . 3
β’ ((π β§ π β β) β ((((((πΉβπ)β2) β π΄)β2) / ((πΉβπ)β2)) / 4) = (((((πΉβπ)β2) β π΄)β2) / (((πΉβπ)β2) Β· 4))) |
101 | 37, 23 | mulcomd 7981 |
. . . 4
β’ ((π β§ π β β) β (((πΉβπ)β2) Β· 4) = (4 Β· ((πΉβπ)β2))) |
102 | 101 | oveq2d 5893 |
. . 3
β’ ((π β§ π β β) β (((((πΉβπ)β2) β π΄)β2) / (((πΉβπ)β2) Β· 4)) = (((((πΉβπ)β2) β π΄)β2) / (4 Β· ((πΉβπ)β2)))) |
103 | 100, 102 | eqtrd 2210 |
. 2
β’ ((π β§ π β β) β ((((((πΉβπ)β2) β π΄)β2) / ((πΉβπ)β2)) / 4) = (((((πΉβπ)β2) β π΄)β2) / (4 Β· ((πΉβπ)β2)))) |
104 | 35, 97, 103 | 3eqtrd 2214 |
1
β’ ((π β§ π β β) β (((πΉβ(π + 1))β2) β π΄) = (((((πΉβπ)β2) β π΄)β2) / (4 Β· ((πΉβπ)β2)))) |