ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemcalc1 GIF version

Theorem resqrexlemcalc1 10978
Description: Lemma for resqrex 10990. Some of the calculations involved in showing that the sequence converges. (Contributed by Mario Carneiro and Jim Kingdon, 29-Jul-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))
resqrexlemex.a (𝜑𝐴 ∈ ℝ)
resqrexlemex.agt0 (𝜑 → 0 ≤ 𝐴)
Assertion
Ref Expression
resqrexlemcalc1 ((𝜑𝑁 ∈ ℕ) → (((𝐹‘(𝑁 + 1))↑2) − 𝐴) = (((((𝐹𝑁)↑2) − 𝐴)↑2) / (4 · ((𝐹𝑁)↑2))))
Distinct variable groups:   𝑦,𝐴,𝑧   𝜑,𝑦,𝑧
Allowed substitution hints:   𝐹(𝑦,𝑧)   𝑁(𝑦,𝑧)

Proof of Theorem resqrexlemcalc1
StepHypRef Expression
1 resqrexlemex.seq . . . . . . . 8 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))
2 resqrexlemex.a . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
3 resqrexlemex.agt0 . . . . . . . 8 (𝜑 → 0 ≤ 𝐴)
41, 2, 3resqrexlemfp1 10973 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → (𝐹‘(𝑁 + 1)) = (((𝐹𝑁) + (𝐴 / (𝐹𝑁))) / 2))
54oveq1d 5868 . . . . . 6 ((𝜑𝑁 ∈ ℕ) → ((𝐹‘(𝑁 + 1))↑2) = ((((𝐹𝑁) + (𝐴 / (𝐹𝑁))) / 2)↑2))
61, 2, 3resqrexlemf 10971 . . . . . . . . . . 11 (𝜑𝐹:ℕ⟶ℝ+)
76ffvelrnda 5631 . . . . . . . . . 10 ((𝜑𝑁 ∈ ℕ) → (𝐹𝑁) ∈ ℝ+)
87rpred 9653 . . . . . . . . 9 ((𝜑𝑁 ∈ ℕ) → (𝐹𝑁) ∈ ℝ)
92adantr 274 . . . . . . . . . 10 ((𝜑𝑁 ∈ ℕ) → 𝐴 ∈ ℝ)
109, 7rerpdivcld 9685 . . . . . . . . 9 ((𝜑𝑁 ∈ ℕ) → (𝐴 / (𝐹𝑁)) ∈ ℝ)
118, 10readdcld 7949 . . . . . . . 8 ((𝜑𝑁 ∈ ℕ) → ((𝐹𝑁) + (𝐴 / (𝐹𝑁))) ∈ ℝ)
1211recnd 7948 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → ((𝐹𝑁) + (𝐴 / (𝐹𝑁))) ∈ ℂ)
13 2cnd 8951 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → 2 ∈ ℂ)
14 2ap0 8971 . . . . . . . 8 2 # 0
1514a1i 9 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → 2 # 0)
1612, 13, 15sqdivapd 10622 . . . . . 6 ((𝜑𝑁 ∈ ℕ) → ((((𝐹𝑁) + (𝐴 / (𝐹𝑁))) / 2)↑2) = ((((𝐹𝑁) + (𝐴 / (𝐹𝑁)))↑2) / (2↑2)))
175, 16eqtrd 2203 . . . . 5 ((𝜑𝑁 ∈ ℕ) → ((𝐹‘(𝑁 + 1))↑2) = ((((𝐹𝑁) + (𝐴 / (𝐹𝑁)))↑2) / (2↑2)))
18 sq2 10571 . . . . . 6 (2↑2) = 4
1918oveq2i 5864 . . . . 5 ((((𝐹𝑁) + (𝐴 / (𝐹𝑁)))↑2) / (2↑2)) = ((((𝐹𝑁) + (𝐴 / (𝐹𝑁)))↑2) / 4)
2017, 19eqtrdi 2219 . . . 4 ((𝜑𝑁 ∈ ℕ) → ((𝐹‘(𝑁 + 1))↑2) = ((((𝐹𝑁) + (𝐴 / (𝐹𝑁)))↑2) / 4))
219recnd 7948 . . . . . 6 ((𝜑𝑁 ∈ ℕ) → 𝐴 ∈ ℂ)
22 4cn 8956 . . . . . . 7 4 ∈ ℂ
2322a1i 9 . . . . . 6 ((𝜑𝑁 ∈ ℕ) → 4 ∈ ℂ)
24 4re 8955 . . . . . . . 8 4 ∈ ℝ
2524a1i 9 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → 4 ∈ ℝ)
26 4pos 8975 . . . . . . . 8 0 < 4
2726a1i 9 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → 0 < 4)
2825, 27gt0ap0d 8548 . . . . . 6 ((𝜑𝑁 ∈ ℕ) → 4 # 0)
2921, 23, 28divcanap3d 8712 . . . . 5 ((𝜑𝑁 ∈ ℕ) → ((4 · 𝐴) / 4) = 𝐴)
3029eqcomd 2176 . . . 4 ((𝜑𝑁 ∈ ℕ) → 𝐴 = ((4 · 𝐴) / 4))
3120, 30oveq12d 5871 . . 3 ((𝜑𝑁 ∈ ℕ) → (((𝐹‘(𝑁 + 1))↑2) − 𝐴) = (((((𝐹𝑁) + (𝐴 / (𝐹𝑁)))↑2) / 4) − ((4 · 𝐴) / 4)))
3212sqcld 10607 . . . 4 ((𝜑𝑁 ∈ ℕ) → (((𝐹𝑁) + (𝐴 / (𝐹𝑁)))↑2) ∈ ℂ)
3323, 21mulcld 7940 . . . 4 ((𝜑𝑁 ∈ ℕ) → (4 · 𝐴) ∈ ℂ)
3432, 33, 23, 28divsubdirapd 8747 . . 3 ((𝜑𝑁 ∈ ℕ) → (((((𝐹𝑁) + (𝐴 / (𝐹𝑁)))↑2) − (4 · 𝐴)) / 4) = (((((𝐹𝑁) + (𝐴 / (𝐹𝑁)))↑2) / 4) − ((4 · 𝐴) / 4)))
3531, 34eqtr4d 2206 . 2 ((𝜑𝑁 ∈ ℕ) → (((𝐹‘(𝑁 + 1))↑2) − 𝐴) = (((((𝐹𝑁) + (𝐴 / (𝐹𝑁)))↑2) − (4 · 𝐴)) / 4))
368recnd 7948 . . . . . . . . 9 ((𝜑𝑁 ∈ ℕ) → (𝐹𝑁) ∈ ℂ)
3736sqcld 10607 . . . . . . . 8 ((𝜑𝑁 ∈ ℕ) → ((𝐹𝑁)↑2) ∈ ℂ)
3813, 21mulcld 7940 . . . . . . . 8 ((𝜑𝑁 ∈ ℕ) → (2 · 𝐴) ∈ ℂ)
3937, 38, 33addsubassd 8250 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → ((((𝐹𝑁)↑2) + (2 · 𝐴)) − (4 · 𝐴)) = (((𝐹𝑁)↑2) + ((2 · 𝐴) − (4 · 𝐴))))
40 2cn 8949 . . . . . . . . . . . 12 2 ∈ ℂ
4122, 40negsubdi2i 8205 . . . . . . . . . . 11 -(4 − 2) = (2 − 4)
42 2p2e4 9005 . . . . . . . . . . . . . 14 (2 + 2) = 4
4342oveq1i 5863 . . . . . . . . . . . . 13 ((2 + 2) − 2) = (4 − 2)
4440, 40pncan3oi 8135 . . . . . . . . . . . . 13 ((2 + 2) − 2) = 2
4543, 44eqtr3i 2193 . . . . . . . . . . . 12 (4 − 2) = 2
4645negeqi 8113 . . . . . . . . . . 11 -(4 − 2) = -2
4741, 46eqtr3i 2193 . . . . . . . . . 10 (2 − 4) = -2
4847oveq1i 5863 . . . . . . . . 9 ((2 − 4) · 𝐴) = (-2 · 𝐴)
4913, 23, 21subdird 8334 . . . . . . . . 9 ((𝜑𝑁 ∈ ℕ) → ((2 − 4) · 𝐴) = ((2 · 𝐴) − (4 · 𝐴)))
5013, 21mulneg1d 8330 . . . . . . . . 9 ((𝜑𝑁 ∈ ℕ) → (-2 · 𝐴) = -(2 · 𝐴))
5148, 49, 503eqtr3a 2227 . . . . . . . 8 ((𝜑𝑁 ∈ ℕ) → ((2 · 𝐴) − (4 · 𝐴)) = -(2 · 𝐴))
5251oveq2d 5869 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → (((𝐹𝑁)↑2) + ((2 · 𝐴) − (4 · 𝐴))) = (((𝐹𝑁)↑2) + -(2 · 𝐴)))
5337, 38negsubd 8236 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → (((𝐹𝑁)↑2) + -(2 · 𝐴)) = (((𝐹𝑁)↑2) − (2 · 𝐴)))
5439, 52, 533eqtrd 2207 . . . . . 6 ((𝜑𝑁 ∈ ℕ) → ((((𝐹𝑁)↑2) + (2 · 𝐴)) − (4 · 𝐴)) = (((𝐹𝑁)↑2) − (2 · 𝐴)))
5554oveq1d 5868 . . . . 5 ((𝜑𝑁 ∈ ℕ) → (((((𝐹𝑁)↑2) + (2 · 𝐴)) − (4 · 𝐴)) + ((𝐴 / (𝐹𝑁))↑2)) = ((((𝐹𝑁)↑2) − (2 · 𝐴)) + ((𝐴 / (𝐹𝑁))↑2)))
5610recnd 7948 . . . . . . . . 9 ((𝜑𝑁 ∈ ℕ) → (𝐴 / (𝐹𝑁)) ∈ ℂ)
57 binom2 10587 . . . . . . . . 9 (((𝐹𝑁) ∈ ℂ ∧ (𝐴 / (𝐹𝑁)) ∈ ℂ) → (((𝐹𝑁) + (𝐴 / (𝐹𝑁)))↑2) = ((((𝐹𝑁)↑2) + (2 · ((𝐹𝑁) · (𝐴 / (𝐹𝑁))))) + ((𝐴 / (𝐹𝑁))↑2)))
5836, 56, 57syl2anc 409 . . . . . . . 8 ((𝜑𝑁 ∈ ℕ) → (((𝐹𝑁) + (𝐴 / (𝐹𝑁)))↑2) = ((((𝐹𝑁)↑2) + (2 · ((𝐹𝑁) · (𝐴 / (𝐹𝑁))))) + ((𝐴 / (𝐹𝑁))↑2)))
597rpap0d 9659 . . . . . . . . . . . 12 ((𝜑𝑁 ∈ ℕ) → (𝐹𝑁) # 0)
6021, 36, 59divcanap2d 8709 . . . . . . . . . . 11 ((𝜑𝑁 ∈ ℕ) → ((𝐹𝑁) · (𝐴 / (𝐹𝑁))) = 𝐴)
6160oveq2d 5869 . . . . . . . . . 10 ((𝜑𝑁 ∈ ℕ) → (2 · ((𝐹𝑁) · (𝐴 / (𝐹𝑁)))) = (2 · 𝐴))
6261oveq2d 5869 . . . . . . . . 9 ((𝜑𝑁 ∈ ℕ) → (((𝐹𝑁)↑2) + (2 · ((𝐹𝑁) · (𝐴 / (𝐹𝑁))))) = (((𝐹𝑁)↑2) + (2 · 𝐴)))
6362oveq1d 5868 . . . . . . . 8 ((𝜑𝑁 ∈ ℕ) → ((((𝐹𝑁)↑2) + (2 · ((𝐹𝑁) · (𝐴 / (𝐹𝑁))))) + ((𝐴 / (𝐹𝑁))↑2)) = ((((𝐹𝑁)↑2) + (2 · 𝐴)) + ((𝐴 / (𝐹𝑁))↑2)))
6458, 63eqtrd 2203 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → (((𝐹𝑁) + (𝐴 / (𝐹𝑁)))↑2) = ((((𝐹𝑁)↑2) + (2 · 𝐴)) + ((𝐴 / (𝐹𝑁))↑2)))
6564oveq1d 5868 . . . . . 6 ((𝜑𝑁 ∈ ℕ) → ((((𝐹𝑁) + (𝐴 / (𝐹𝑁)))↑2) − (4 · 𝐴)) = (((((𝐹𝑁)↑2) + (2 · 𝐴)) + ((𝐴 / (𝐹𝑁))↑2)) − (4 · 𝐴)))
6637, 38addcld 7939 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → (((𝐹𝑁)↑2) + (2 · 𝐴)) ∈ ℂ)
6756sqcld 10607 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → ((𝐴 / (𝐹𝑁))↑2) ∈ ℂ)
6866, 67, 33addsubd 8251 . . . . . 6 ((𝜑𝑁 ∈ ℕ) → (((((𝐹𝑁)↑2) + (2 · 𝐴)) + ((𝐴 / (𝐹𝑁))↑2)) − (4 · 𝐴)) = (((((𝐹𝑁)↑2) + (2 · 𝐴)) − (4 · 𝐴)) + ((𝐴 / (𝐹𝑁))↑2)))
6965, 68eqtrd 2203 . . . . 5 ((𝜑𝑁 ∈ ℕ) → ((((𝐹𝑁) + (𝐴 / (𝐹𝑁)))↑2) − (4 · 𝐴)) = (((((𝐹𝑁)↑2) + (2 · 𝐴)) − (4 · 𝐴)) + ((𝐴 / (𝐹𝑁))↑2)))
7037, 38subcld 8230 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → (((𝐹𝑁)↑2) − (2 · 𝐴)) ∈ ℂ)
7170, 67addcld 7939 . . . . . 6 ((𝜑𝑁 ∈ ℕ) → ((((𝐹𝑁)↑2) − (2 · 𝐴)) + ((𝐴 / (𝐹𝑁))↑2)) ∈ ℂ)
72 2z 9240 . . . . . . . . 9 2 ∈ ℤ
7372a1i 9 . . . . . . . 8 ((𝜑𝑁 ∈ ℕ) → 2 ∈ ℤ)
747, 73rpexpcld 10633 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → ((𝐹𝑁)↑2) ∈ ℝ+)
7574rpap0d 9659 . . . . . 6 ((𝜑𝑁 ∈ ℕ) → ((𝐹𝑁)↑2) # 0)
7671, 37, 75divcanap4d 8713 . . . . 5 ((𝜑𝑁 ∈ ℕ) → ((((((𝐹𝑁)↑2) − (2 · 𝐴)) + ((𝐴 / (𝐹𝑁))↑2)) · ((𝐹𝑁)↑2)) / ((𝐹𝑁)↑2)) = ((((𝐹𝑁)↑2) − (2 · 𝐴)) + ((𝐴 / (𝐹𝑁))↑2)))
7755, 69, 763eqtr4d 2213 . . . 4 ((𝜑𝑁 ∈ ℕ) → ((((𝐹𝑁) + (𝐴 / (𝐹𝑁)))↑2) − (4 · 𝐴)) = ((((((𝐹𝑁)↑2) − (2 · 𝐴)) + ((𝐴 / (𝐹𝑁))↑2)) · ((𝐹𝑁)↑2)) / ((𝐹𝑁)↑2)))
7837, 38, 37subdird 8334 . . . . . . . 8 ((𝜑𝑁 ∈ ℕ) → ((((𝐹𝑁)↑2) − (2 · 𝐴)) · ((𝐹𝑁)↑2)) = ((((𝐹𝑁)↑2) · ((𝐹𝑁)↑2)) − ((2 · 𝐴) · ((𝐹𝑁)↑2))))
7937sqvald 10606 . . . . . . . . 9 ((𝜑𝑁 ∈ ℕ) → (((𝐹𝑁)↑2)↑2) = (((𝐹𝑁)↑2) · ((𝐹𝑁)↑2)))
8013, 21, 37mul32d 8072 . . . . . . . . . 10 ((𝜑𝑁 ∈ ℕ) → ((2 · 𝐴) · ((𝐹𝑁)↑2)) = ((2 · ((𝐹𝑁)↑2)) · 𝐴))
8113, 37, 21mulassd 7943 . . . . . . . . . 10 ((𝜑𝑁 ∈ ℕ) → ((2 · ((𝐹𝑁)↑2)) · 𝐴) = (2 · (((𝐹𝑁)↑2) · 𝐴)))
8280, 81eqtr2d 2204 . . . . . . . . 9 ((𝜑𝑁 ∈ ℕ) → (2 · (((𝐹𝑁)↑2) · 𝐴)) = ((2 · 𝐴) · ((𝐹𝑁)↑2)))
8379, 82oveq12d 5871 . . . . . . . 8 ((𝜑𝑁 ∈ ℕ) → ((((𝐹𝑁)↑2)↑2) − (2 · (((𝐹𝑁)↑2) · 𝐴))) = ((((𝐹𝑁)↑2) · ((𝐹𝑁)↑2)) − ((2 · 𝐴) · ((𝐹𝑁)↑2))))
8478, 83eqtr4d 2206 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → ((((𝐹𝑁)↑2) − (2 · 𝐴)) · ((𝐹𝑁)↑2)) = ((((𝐹𝑁)↑2)↑2) − (2 · (((𝐹𝑁)↑2) · 𝐴))))
8521, 36, 59sqdivapd 10622 . . . . . . . . 9 ((𝜑𝑁 ∈ ℕ) → ((𝐴 / (𝐹𝑁))↑2) = ((𝐴↑2) / ((𝐹𝑁)↑2)))
8685oveq1d 5868 . . . . . . . 8 ((𝜑𝑁 ∈ ℕ) → (((𝐴 / (𝐹𝑁))↑2) · ((𝐹𝑁)↑2)) = (((𝐴↑2) / ((𝐹𝑁)↑2)) · ((𝐹𝑁)↑2)))
8721sqcld 10607 . . . . . . . . 9 ((𝜑𝑁 ∈ ℕ) → (𝐴↑2) ∈ ℂ)
8887, 37, 75divcanap1d 8708 . . . . . . . 8 ((𝜑𝑁 ∈ ℕ) → (((𝐴↑2) / ((𝐹𝑁)↑2)) · ((𝐹𝑁)↑2)) = (𝐴↑2))
8986, 88eqtrd 2203 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → (((𝐴 / (𝐹𝑁))↑2) · ((𝐹𝑁)↑2)) = (𝐴↑2))
9084, 89oveq12d 5871 . . . . . 6 ((𝜑𝑁 ∈ ℕ) → (((((𝐹𝑁)↑2) − (2 · 𝐴)) · ((𝐹𝑁)↑2)) + (((𝐴 / (𝐹𝑁))↑2) · ((𝐹𝑁)↑2))) = (((((𝐹𝑁)↑2)↑2) − (2 · (((𝐹𝑁)↑2) · 𝐴))) + (𝐴↑2)))
9170, 67, 37adddird 7945 . . . . . 6 ((𝜑𝑁 ∈ ℕ) → (((((𝐹𝑁)↑2) − (2 · 𝐴)) + ((𝐴 / (𝐹𝑁))↑2)) · ((𝐹𝑁)↑2)) = (((((𝐹𝑁)↑2) − (2 · 𝐴)) · ((𝐹𝑁)↑2)) + (((𝐴 / (𝐹𝑁))↑2) · ((𝐹𝑁)↑2))))
92 binom2sub 10589 . . . . . . 7 ((((𝐹𝑁)↑2) ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((((𝐹𝑁)↑2) − 𝐴)↑2) = (((((𝐹𝑁)↑2)↑2) − (2 · (((𝐹𝑁)↑2) · 𝐴))) + (𝐴↑2)))
9337, 21, 92syl2anc 409 . . . . . 6 ((𝜑𝑁 ∈ ℕ) → ((((𝐹𝑁)↑2) − 𝐴)↑2) = (((((𝐹𝑁)↑2)↑2) − (2 · (((𝐹𝑁)↑2) · 𝐴))) + (𝐴↑2)))
9490, 91, 933eqtr4d 2213 . . . . 5 ((𝜑𝑁 ∈ ℕ) → (((((𝐹𝑁)↑2) − (2 · 𝐴)) + ((𝐴 / (𝐹𝑁))↑2)) · ((𝐹𝑁)↑2)) = ((((𝐹𝑁)↑2) − 𝐴)↑2))
9594oveq1d 5868 . . . 4 ((𝜑𝑁 ∈ ℕ) → ((((((𝐹𝑁)↑2) − (2 · 𝐴)) + ((𝐴 / (𝐹𝑁))↑2)) · ((𝐹𝑁)↑2)) / ((𝐹𝑁)↑2)) = (((((𝐹𝑁)↑2) − 𝐴)↑2) / ((𝐹𝑁)↑2)))
9677, 95eqtrd 2203 . . 3 ((𝜑𝑁 ∈ ℕ) → ((((𝐹𝑁) + (𝐴 / (𝐹𝑁)))↑2) − (4 · 𝐴)) = (((((𝐹𝑁)↑2) − 𝐴)↑2) / ((𝐹𝑁)↑2)))
9796oveq1d 5868 . 2 ((𝜑𝑁 ∈ ℕ) → (((((𝐹𝑁) + (𝐴 / (𝐹𝑁)))↑2) − (4 · 𝐴)) / 4) = ((((((𝐹𝑁)↑2) − 𝐴)↑2) / ((𝐹𝑁)↑2)) / 4))
9837, 21subcld 8230 . . . . 5 ((𝜑𝑁 ∈ ℕ) → (((𝐹𝑁)↑2) − 𝐴) ∈ ℂ)
9998sqcld 10607 . . . 4 ((𝜑𝑁 ∈ ℕ) → ((((𝐹𝑁)↑2) − 𝐴)↑2) ∈ ℂ)
10099, 37, 23, 75, 28divdivap1d 8739 . . 3 ((𝜑𝑁 ∈ ℕ) → ((((((𝐹𝑁)↑2) − 𝐴)↑2) / ((𝐹𝑁)↑2)) / 4) = (((((𝐹𝑁)↑2) − 𝐴)↑2) / (((𝐹𝑁)↑2) · 4)))
10137, 23mulcomd 7941 . . . 4 ((𝜑𝑁 ∈ ℕ) → (((𝐹𝑁)↑2) · 4) = (4 · ((𝐹𝑁)↑2)))
102101oveq2d 5869 . . 3 ((𝜑𝑁 ∈ ℕ) → (((((𝐹𝑁)↑2) − 𝐴)↑2) / (((𝐹𝑁)↑2) · 4)) = (((((𝐹𝑁)↑2) − 𝐴)↑2) / (4 · ((𝐹𝑁)↑2))))
103100, 102eqtrd 2203 . 2 ((𝜑𝑁 ∈ ℕ) → ((((((𝐹𝑁)↑2) − 𝐴)↑2) / ((𝐹𝑁)↑2)) / 4) = (((((𝐹𝑁)↑2) − 𝐴)↑2) / (4 · ((𝐹𝑁)↑2))))
10435, 97, 1033eqtrd 2207 1 ((𝜑𝑁 ∈ ℕ) → (((𝐹‘(𝑁 + 1))↑2) − 𝐴) = (((((𝐹𝑁)↑2) − 𝐴)↑2) / (4 · ((𝐹𝑁)↑2))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1348  wcel 2141  {csn 3583   class class class wbr 3989   × cxp 4609  cfv 5198  (class class class)co 5853  cmpo 5855  cc 7772  cr 7773  0cc0 7774  1c1 7775   + caddc 7777   · cmul 7779   < clt 7954  cle 7955  cmin 8090  -cneg 8091   # cap 8500   / cdiv 8589  cn 8878  2c2 8929  4c4 8931  cz 9212  +crp 9610  seqcseq 10401  cexp 10475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-rp 9611  df-seqfrec 10402  df-exp 10476
This theorem is referenced by:  resqrexlemcalc2  10979
  Copyright terms: Public domain W3C validator