ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemcalc1 GIF version

Theorem resqrexlemcalc1 10786
Description: Lemma for resqrex 10798. Some of the calculations involved in showing that the sequence converges. (Contributed by Mario Carneiro and Jim Kingdon, 29-Jul-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))
resqrexlemex.a (𝜑𝐴 ∈ ℝ)
resqrexlemex.agt0 (𝜑 → 0 ≤ 𝐴)
Assertion
Ref Expression
resqrexlemcalc1 ((𝜑𝑁 ∈ ℕ) → (((𝐹‘(𝑁 + 1))↑2) − 𝐴) = (((((𝐹𝑁)↑2) − 𝐴)↑2) / (4 · ((𝐹𝑁)↑2))))
Distinct variable groups:   𝑦,𝐴,𝑧   𝜑,𝑦,𝑧
Allowed substitution hints:   𝐹(𝑦,𝑧)   𝑁(𝑦,𝑧)

Proof of Theorem resqrexlemcalc1
StepHypRef Expression
1 resqrexlemex.seq . . . . . . . 8 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))
2 resqrexlemex.a . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
3 resqrexlemex.agt0 . . . . . . . 8 (𝜑 → 0 ≤ 𝐴)
41, 2, 3resqrexlemfp1 10781 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → (𝐹‘(𝑁 + 1)) = (((𝐹𝑁) + (𝐴 / (𝐹𝑁))) / 2))
54oveq1d 5789 . . . . . 6 ((𝜑𝑁 ∈ ℕ) → ((𝐹‘(𝑁 + 1))↑2) = ((((𝐹𝑁) + (𝐴 / (𝐹𝑁))) / 2)↑2))
61, 2, 3resqrexlemf 10779 . . . . . . . . . . 11 (𝜑𝐹:ℕ⟶ℝ+)
76ffvelrnda 5555 . . . . . . . . . 10 ((𝜑𝑁 ∈ ℕ) → (𝐹𝑁) ∈ ℝ+)
87rpred 9483 . . . . . . . . 9 ((𝜑𝑁 ∈ ℕ) → (𝐹𝑁) ∈ ℝ)
92adantr 274 . . . . . . . . . 10 ((𝜑𝑁 ∈ ℕ) → 𝐴 ∈ ℝ)
109, 7rerpdivcld 9515 . . . . . . . . 9 ((𝜑𝑁 ∈ ℕ) → (𝐴 / (𝐹𝑁)) ∈ ℝ)
118, 10readdcld 7795 . . . . . . . 8 ((𝜑𝑁 ∈ ℕ) → ((𝐹𝑁) + (𝐴 / (𝐹𝑁))) ∈ ℝ)
1211recnd 7794 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → ((𝐹𝑁) + (𝐴 / (𝐹𝑁))) ∈ ℂ)
13 2cnd 8793 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → 2 ∈ ℂ)
14 2ap0 8813 . . . . . . . 8 2 # 0
1514a1i 9 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → 2 # 0)
1612, 13, 15sqdivapd 10437 . . . . . 6 ((𝜑𝑁 ∈ ℕ) → ((((𝐹𝑁) + (𝐴 / (𝐹𝑁))) / 2)↑2) = ((((𝐹𝑁) + (𝐴 / (𝐹𝑁)))↑2) / (2↑2)))
175, 16eqtrd 2172 . . . . 5 ((𝜑𝑁 ∈ ℕ) → ((𝐹‘(𝑁 + 1))↑2) = ((((𝐹𝑁) + (𝐴 / (𝐹𝑁)))↑2) / (2↑2)))
18 sq2 10388 . . . . . 6 (2↑2) = 4
1918oveq2i 5785 . . . . 5 ((((𝐹𝑁) + (𝐴 / (𝐹𝑁)))↑2) / (2↑2)) = ((((𝐹𝑁) + (𝐴 / (𝐹𝑁)))↑2) / 4)
2017, 19syl6eq 2188 . . . 4 ((𝜑𝑁 ∈ ℕ) → ((𝐹‘(𝑁 + 1))↑2) = ((((𝐹𝑁) + (𝐴 / (𝐹𝑁)))↑2) / 4))
219recnd 7794 . . . . . 6 ((𝜑𝑁 ∈ ℕ) → 𝐴 ∈ ℂ)
22 4cn 8798 . . . . . . 7 4 ∈ ℂ
2322a1i 9 . . . . . 6 ((𝜑𝑁 ∈ ℕ) → 4 ∈ ℂ)
24 4re 8797 . . . . . . . 8 4 ∈ ℝ
2524a1i 9 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → 4 ∈ ℝ)
26 4pos 8817 . . . . . . . 8 0 < 4
2726a1i 9 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → 0 < 4)
2825, 27gt0ap0d 8391 . . . . . 6 ((𝜑𝑁 ∈ ℕ) → 4 # 0)
2921, 23, 28divcanap3d 8555 . . . . 5 ((𝜑𝑁 ∈ ℕ) → ((4 · 𝐴) / 4) = 𝐴)
3029eqcomd 2145 . . . 4 ((𝜑𝑁 ∈ ℕ) → 𝐴 = ((4 · 𝐴) / 4))
3120, 30oveq12d 5792 . . 3 ((𝜑𝑁 ∈ ℕ) → (((𝐹‘(𝑁 + 1))↑2) − 𝐴) = (((((𝐹𝑁) + (𝐴 / (𝐹𝑁)))↑2) / 4) − ((4 · 𝐴) / 4)))
3212sqcld 10422 . . . 4 ((𝜑𝑁 ∈ ℕ) → (((𝐹𝑁) + (𝐴 / (𝐹𝑁)))↑2) ∈ ℂ)
3323, 21mulcld 7786 . . . 4 ((𝜑𝑁 ∈ ℕ) → (4 · 𝐴) ∈ ℂ)
3432, 33, 23, 28divsubdirapd 8590 . . 3 ((𝜑𝑁 ∈ ℕ) → (((((𝐹𝑁) + (𝐴 / (𝐹𝑁)))↑2) − (4 · 𝐴)) / 4) = (((((𝐹𝑁) + (𝐴 / (𝐹𝑁)))↑2) / 4) − ((4 · 𝐴) / 4)))
3531, 34eqtr4d 2175 . 2 ((𝜑𝑁 ∈ ℕ) → (((𝐹‘(𝑁 + 1))↑2) − 𝐴) = (((((𝐹𝑁) + (𝐴 / (𝐹𝑁)))↑2) − (4 · 𝐴)) / 4))
368recnd 7794 . . . . . . . . 9 ((𝜑𝑁 ∈ ℕ) → (𝐹𝑁) ∈ ℂ)
3736sqcld 10422 . . . . . . . 8 ((𝜑𝑁 ∈ ℕ) → ((𝐹𝑁)↑2) ∈ ℂ)
3813, 21mulcld 7786 . . . . . . . 8 ((𝜑𝑁 ∈ ℕ) → (2 · 𝐴) ∈ ℂ)
3937, 38, 33addsubassd 8093 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → ((((𝐹𝑁)↑2) + (2 · 𝐴)) − (4 · 𝐴)) = (((𝐹𝑁)↑2) + ((2 · 𝐴) − (4 · 𝐴))))
40 2cn 8791 . . . . . . . . . . . 12 2 ∈ ℂ
4122, 40negsubdi2i 8048 . . . . . . . . . . 11 -(4 − 2) = (2 − 4)
42 2p2e4 8847 . . . . . . . . . . . . . 14 (2 + 2) = 4
4342oveq1i 5784 . . . . . . . . . . . . 13 ((2 + 2) − 2) = (4 − 2)
4440, 40pncan3oi 7978 . . . . . . . . . . . . 13 ((2 + 2) − 2) = 2
4543, 44eqtr3i 2162 . . . . . . . . . . . 12 (4 − 2) = 2
4645negeqi 7956 . . . . . . . . . . 11 -(4 − 2) = -2
4741, 46eqtr3i 2162 . . . . . . . . . 10 (2 − 4) = -2
4847oveq1i 5784 . . . . . . . . 9 ((2 − 4) · 𝐴) = (-2 · 𝐴)
4913, 23, 21subdird 8177 . . . . . . . . 9 ((𝜑𝑁 ∈ ℕ) → ((2 − 4) · 𝐴) = ((2 · 𝐴) − (4 · 𝐴)))
5013, 21mulneg1d 8173 . . . . . . . . 9 ((𝜑𝑁 ∈ ℕ) → (-2 · 𝐴) = -(2 · 𝐴))
5148, 49, 503eqtr3a 2196 . . . . . . . 8 ((𝜑𝑁 ∈ ℕ) → ((2 · 𝐴) − (4 · 𝐴)) = -(2 · 𝐴))
5251oveq2d 5790 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → (((𝐹𝑁)↑2) + ((2 · 𝐴) − (4 · 𝐴))) = (((𝐹𝑁)↑2) + -(2 · 𝐴)))
5337, 38negsubd 8079 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → (((𝐹𝑁)↑2) + -(2 · 𝐴)) = (((𝐹𝑁)↑2) − (2 · 𝐴)))
5439, 52, 533eqtrd 2176 . . . . . 6 ((𝜑𝑁 ∈ ℕ) → ((((𝐹𝑁)↑2) + (2 · 𝐴)) − (4 · 𝐴)) = (((𝐹𝑁)↑2) − (2 · 𝐴)))
5554oveq1d 5789 . . . . 5 ((𝜑𝑁 ∈ ℕ) → (((((𝐹𝑁)↑2) + (2 · 𝐴)) − (4 · 𝐴)) + ((𝐴 / (𝐹𝑁))↑2)) = ((((𝐹𝑁)↑2) − (2 · 𝐴)) + ((𝐴 / (𝐹𝑁))↑2)))
5610recnd 7794 . . . . . . . . 9 ((𝜑𝑁 ∈ ℕ) → (𝐴 / (𝐹𝑁)) ∈ ℂ)
57 binom2 10403 . . . . . . . . 9 (((𝐹𝑁) ∈ ℂ ∧ (𝐴 / (𝐹𝑁)) ∈ ℂ) → (((𝐹𝑁) + (𝐴 / (𝐹𝑁)))↑2) = ((((𝐹𝑁)↑2) + (2 · ((𝐹𝑁) · (𝐴 / (𝐹𝑁))))) + ((𝐴 / (𝐹𝑁))↑2)))
5836, 56, 57syl2anc 408 . . . . . . . 8 ((𝜑𝑁 ∈ ℕ) → (((𝐹𝑁) + (𝐴 / (𝐹𝑁)))↑2) = ((((𝐹𝑁)↑2) + (2 · ((𝐹𝑁) · (𝐴 / (𝐹𝑁))))) + ((𝐴 / (𝐹𝑁))↑2)))
597rpap0d 9489 . . . . . . . . . . . 12 ((𝜑𝑁 ∈ ℕ) → (𝐹𝑁) # 0)
6021, 36, 59divcanap2d 8552 . . . . . . . . . . 11 ((𝜑𝑁 ∈ ℕ) → ((𝐹𝑁) · (𝐴 / (𝐹𝑁))) = 𝐴)
6160oveq2d 5790 . . . . . . . . . 10 ((𝜑𝑁 ∈ ℕ) → (2 · ((𝐹𝑁) · (𝐴 / (𝐹𝑁)))) = (2 · 𝐴))
6261oveq2d 5790 . . . . . . . . 9 ((𝜑𝑁 ∈ ℕ) → (((𝐹𝑁)↑2) + (2 · ((𝐹𝑁) · (𝐴 / (𝐹𝑁))))) = (((𝐹𝑁)↑2) + (2 · 𝐴)))
6362oveq1d 5789 . . . . . . . 8 ((𝜑𝑁 ∈ ℕ) → ((((𝐹𝑁)↑2) + (2 · ((𝐹𝑁) · (𝐴 / (𝐹𝑁))))) + ((𝐴 / (𝐹𝑁))↑2)) = ((((𝐹𝑁)↑2) + (2 · 𝐴)) + ((𝐴 / (𝐹𝑁))↑2)))
6458, 63eqtrd 2172 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → (((𝐹𝑁) + (𝐴 / (𝐹𝑁)))↑2) = ((((𝐹𝑁)↑2) + (2 · 𝐴)) + ((𝐴 / (𝐹𝑁))↑2)))
6564oveq1d 5789 . . . . . 6 ((𝜑𝑁 ∈ ℕ) → ((((𝐹𝑁) + (𝐴 / (𝐹𝑁)))↑2) − (4 · 𝐴)) = (((((𝐹𝑁)↑2) + (2 · 𝐴)) + ((𝐴 / (𝐹𝑁))↑2)) − (4 · 𝐴)))
6637, 38addcld 7785 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → (((𝐹𝑁)↑2) + (2 · 𝐴)) ∈ ℂ)
6756sqcld 10422 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → ((𝐴 / (𝐹𝑁))↑2) ∈ ℂ)
6866, 67, 33addsubd 8094 . . . . . 6 ((𝜑𝑁 ∈ ℕ) → (((((𝐹𝑁)↑2) + (2 · 𝐴)) + ((𝐴 / (𝐹𝑁))↑2)) − (4 · 𝐴)) = (((((𝐹𝑁)↑2) + (2 · 𝐴)) − (4 · 𝐴)) + ((𝐴 / (𝐹𝑁))↑2)))
6965, 68eqtrd 2172 . . . . 5 ((𝜑𝑁 ∈ ℕ) → ((((𝐹𝑁) + (𝐴 / (𝐹𝑁)))↑2) − (4 · 𝐴)) = (((((𝐹𝑁)↑2) + (2 · 𝐴)) − (4 · 𝐴)) + ((𝐴 / (𝐹𝑁))↑2)))
7037, 38subcld 8073 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → (((𝐹𝑁)↑2) − (2 · 𝐴)) ∈ ℂ)
7170, 67addcld 7785 . . . . . 6 ((𝜑𝑁 ∈ ℕ) → ((((𝐹𝑁)↑2) − (2 · 𝐴)) + ((𝐴 / (𝐹𝑁))↑2)) ∈ ℂ)
72 2z 9082 . . . . . . . . 9 2 ∈ ℤ
7372a1i 9 . . . . . . . 8 ((𝜑𝑁 ∈ ℕ) → 2 ∈ ℤ)
747, 73rpexpcld 10448 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → ((𝐹𝑁)↑2) ∈ ℝ+)
7574rpap0d 9489 . . . . . 6 ((𝜑𝑁 ∈ ℕ) → ((𝐹𝑁)↑2) # 0)
7671, 37, 75divcanap4d 8556 . . . . 5 ((𝜑𝑁 ∈ ℕ) → ((((((𝐹𝑁)↑2) − (2 · 𝐴)) + ((𝐴 / (𝐹𝑁))↑2)) · ((𝐹𝑁)↑2)) / ((𝐹𝑁)↑2)) = ((((𝐹𝑁)↑2) − (2 · 𝐴)) + ((𝐴 / (𝐹𝑁))↑2)))
7755, 69, 763eqtr4d 2182 . . . 4 ((𝜑𝑁 ∈ ℕ) → ((((𝐹𝑁) + (𝐴 / (𝐹𝑁)))↑2) − (4 · 𝐴)) = ((((((𝐹𝑁)↑2) − (2 · 𝐴)) + ((𝐴 / (𝐹𝑁))↑2)) · ((𝐹𝑁)↑2)) / ((𝐹𝑁)↑2)))
7837, 38, 37subdird 8177 . . . . . . . 8 ((𝜑𝑁 ∈ ℕ) → ((((𝐹𝑁)↑2) − (2 · 𝐴)) · ((𝐹𝑁)↑2)) = ((((𝐹𝑁)↑2) · ((𝐹𝑁)↑2)) − ((2 · 𝐴) · ((𝐹𝑁)↑2))))
7937sqvald 10421 . . . . . . . . 9 ((𝜑𝑁 ∈ ℕ) → (((𝐹𝑁)↑2)↑2) = (((𝐹𝑁)↑2) · ((𝐹𝑁)↑2)))
8013, 21, 37mul32d 7915 . . . . . . . . . 10 ((𝜑𝑁 ∈ ℕ) → ((2 · 𝐴) · ((𝐹𝑁)↑2)) = ((2 · ((𝐹𝑁)↑2)) · 𝐴))
8113, 37, 21mulassd 7789 . . . . . . . . . 10 ((𝜑𝑁 ∈ ℕ) → ((2 · ((𝐹𝑁)↑2)) · 𝐴) = (2 · (((𝐹𝑁)↑2) · 𝐴)))
8280, 81eqtr2d 2173 . . . . . . . . 9 ((𝜑𝑁 ∈ ℕ) → (2 · (((𝐹𝑁)↑2) · 𝐴)) = ((2 · 𝐴) · ((𝐹𝑁)↑2)))
8379, 82oveq12d 5792 . . . . . . . 8 ((𝜑𝑁 ∈ ℕ) → ((((𝐹𝑁)↑2)↑2) − (2 · (((𝐹𝑁)↑2) · 𝐴))) = ((((𝐹𝑁)↑2) · ((𝐹𝑁)↑2)) − ((2 · 𝐴) · ((𝐹𝑁)↑2))))
8478, 83eqtr4d 2175 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → ((((𝐹𝑁)↑2) − (2 · 𝐴)) · ((𝐹𝑁)↑2)) = ((((𝐹𝑁)↑2)↑2) − (2 · (((𝐹𝑁)↑2) · 𝐴))))
8521, 36, 59sqdivapd 10437 . . . . . . . . 9 ((𝜑𝑁 ∈ ℕ) → ((𝐴 / (𝐹𝑁))↑2) = ((𝐴↑2) / ((𝐹𝑁)↑2)))
8685oveq1d 5789 . . . . . . . 8 ((𝜑𝑁 ∈ ℕ) → (((𝐴 / (𝐹𝑁))↑2) · ((𝐹𝑁)↑2)) = (((𝐴↑2) / ((𝐹𝑁)↑2)) · ((𝐹𝑁)↑2)))
8721sqcld 10422 . . . . . . . . 9 ((𝜑𝑁 ∈ ℕ) → (𝐴↑2) ∈ ℂ)
8887, 37, 75divcanap1d 8551 . . . . . . . 8 ((𝜑𝑁 ∈ ℕ) → (((𝐴↑2) / ((𝐹𝑁)↑2)) · ((𝐹𝑁)↑2)) = (𝐴↑2))
8986, 88eqtrd 2172 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → (((𝐴 / (𝐹𝑁))↑2) · ((𝐹𝑁)↑2)) = (𝐴↑2))
9084, 89oveq12d 5792 . . . . . 6 ((𝜑𝑁 ∈ ℕ) → (((((𝐹𝑁)↑2) − (2 · 𝐴)) · ((𝐹𝑁)↑2)) + (((𝐴 / (𝐹𝑁))↑2) · ((𝐹𝑁)↑2))) = (((((𝐹𝑁)↑2)↑2) − (2 · (((𝐹𝑁)↑2) · 𝐴))) + (𝐴↑2)))
9170, 67, 37adddird 7791 . . . . . 6 ((𝜑𝑁 ∈ ℕ) → (((((𝐹𝑁)↑2) − (2 · 𝐴)) + ((𝐴 / (𝐹𝑁))↑2)) · ((𝐹𝑁)↑2)) = (((((𝐹𝑁)↑2) − (2 · 𝐴)) · ((𝐹𝑁)↑2)) + (((𝐴 / (𝐹𝑁))↑2) · ((𝐹𝑁)↑2))))
92 binom2sub 10405 . . . . . . 7 ((((𝐹𝑁)↑2) ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((((𝐹𝑁)↑2) − 𝐴)↑2) = (((((𝐹𝑁)↑2)↑2) − (2 · (((𝐹𝑁)↑2) · 𝐴))) + (𝐴↑2)))
9337, 21, 92syl2anc 408 . . . . . 6 ((𝜑𝑁 ∈ ℕ) → ((((𝐹𝑁)↑2) − 𝐴)↑2) = (((((𝐹𝑁)↑2)↑2) − (2 · (((𝐹𝑁)↑2) · 𝐴))) + (𝐴↑2)))
9490, 91, 933eqtr4d 2182 . . . . 5 ((𝜑𝑁 ∈ ℕ) → (((((𝐹𝑁)↑2) − (2 · 𝐴)) + ((𝐴 / (𝐹𝑁))↑2)) · ((𝐹𝑁)↑2)) = ((((𝐹𝑁)↑2) − 𝐴)↑2))
9594oveq1d 5789 . . . 4 ((𝜑𝑁 ∈ ℕ) → ((((((𝐹𝑁)↑2) − (2 · 𝐴)) + ((𝐴 / (𝐹𝑁))↑2)) · ((𝐹𝑁)↑2)) / ((𝐹𝑁)↑2)) = (((((𝐹𝑁)↑2) − 𝐴)↑2) / ((𝐹𝑁)↑2)))
9677, 95eqtrd 2172 . . 3 ((𝜑𝑁 ∈ ℕ) → ((((𝐹𝑁) + (𝐴 / (𝐹𝑁)))↑2) − (4 · 𝐴)) = (((((𝐹𝑁)↑2) − 𝐴)↑2) / ((𝐹𝑁)↑2)))
9796oveq1d 5789 . 2 ((𝜑𝑁 ∈ ℕ) → (((((𝐹𝑁) + (𝐴 / (𝐹𝑁)))↑2) − (4 · 𝐴)) / 4) = ((((((𝐹𝑁)↑2) − 𝐴)↑2) / ((𝐹𝑁)↑2)) / 4))
9837, 21subcld 8073 . . . . 5 ((𝜑𝑁 ∈ ℕ) → (((𝐹𝑁)↑2) − 𝐴) ∈ ℂ)
9998sqcld 10422 . . . 4 ((𝜑𝑁 ∈ ℕ) → ((((𝐹𝑁)↑2) − 𝐴)↑2) ∈ ℂ)
10099, 37, 23, 75, 28divdivap1d 8582 . . 3 ((𝜑𝑁 ∈ ℕ) → ((((((𝐹𝑁)↑2) − 𝐴)↑2) / ((𝐹𝑁)↑2)) / 4) = (((((𝐹𝑁)↑2) − 𝐴)↑2) / (((𝐹𝑁)↑2) · 4)))
10137, 23mulcomd 7787 . . . 4 ((𝜑𝑁 ∈ ℕ) → (((𝐹𝑁)↑2) · 4) = (4 · ((𝐹𝑁)↑2)))
102101oveq2d 5790 . . 3 ((𝜑𝑁 ∈ ℕ) → (((((𝐹𝑁)↑2) − 𝐴)↑2) / (((𝐹𝑁)↑2) · 4)) = (((((𝐹𝑁)↑2) − 𝐴)↑2) / (4 · ((𝐹𝑁)↑2))))
103100, 102eqtrd 2172 . 2 ((𝜑𝑁 ∈ ℕ) → ((((((𝐹𝑁)↑2) − 𝐴)↑2) / ((𝐹𝑁)↑2)) / 4) = (((((𝐹𝑁)↑2) − 𝐴)↑2) / (4 · ((𝐹𝑁)↑2))))
10435, 97, 1033eqtrd 2176 1 ((𝜑𝑁 ∈ ℕ) → (((𝐹‘(𝑁 + 1))↑2) − 𝐴) = (((((𝐹𝑁)↑2) − 𝐴)↑2) / (4 · ((𝐹𝑁)↑2))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1331  wcel 1480  {csn 3527   class class class wbr 3929   × cxp 4537  cfv 5123  (class class class)co 5774  cmpo 5776  cc 7618  cr 7619  0cc0 7620  1c1 7621   + caddc 7623   · cmul 7625   < clt 7800  cle 7801  cmin 7933  -cneg 7934   # cap 8343   / cdiv 8432  cn 8720  2c2 8771  4c4 8773  cz 9054  +crp 9441  seqcseq 10218  cexp 10292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-rp 9442  df-seqfrec 10219  df-exp 10293
This theorem is referenced by:  resqrexlemcalc2  10787
  Copyright terms: Public domain W3C validator