ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemcalc1 GIF version

Theorem resqrexlemcalc1 10991
Description: Lemma for resqrex 11003. Some of the calculations involved in showing that the sequence converges. (Contributed by Mario Carneiro and Jim Kingdon, 29-Jul-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))
resqrexlemex.a (𝜑𝐴 ∈ ℝ)
resqrexlemex.agt0 (𝜑 → 0 ≤ 𝐴)
Assertion
Ref Expression
resqrexlemcalc1 ((𝜑𝑁 ∈ ℕ) → (((𝐹‘(𝑁 + 1))↑2) − 𝐴) = (((((𝐹𝑁)↑2) − 𝐴)↑2) / (4 · ((𝐹𝑁)↑2))))
Distinct variable groups:   𝑦,𝐴,𝑧   𝜑,𝑦,𝑧
Allowed substitution hints:   𝐹(𝑦,𝑧)   𝑁(𝑦,𝑧)

Proof of Theorem resqrexlemcalc1
StepHypRef Expression
1 resqrexlemex.seq . . . . . . . 8 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}))
2 resqrexlemex.a . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
3 resqrexlemex.agt0 . . . . . . . 8 (𝜑 → 0 ≤ 𝐴)
41, 2, 3resqrexlemfp1 10986 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → (𝐹‘(𝑁 + 1)) = (((𝐹𝑁) + (𝐴 / (𝐹𝑁))) / 2))
54oveq1d 5880 . . . . . 6 ((𝜑𝑁 ∈ ℕ) → ((𝐹‘(𝑁 + 1))↑2) = ((((𝐹𝑁) + (𝐴 / (𝐹𝑁))) / 2)↑2))
61, 2, 3resqrexlemf 10984 . . . . . . . . . . 11 (𝜑𝐹:ℕ⟶ℝ+)
76ffvelcdmda 5643 . . . . . . . . . 10 ((𝜑𝑁 ∈ ℕ) → (𝐹𝑁) ∈ ℝ+)
87rpred 9667 . . . . . . . . 9 ((𝜑𝑁 ∈ ℕ) → (𝐹𝑁) ∈ ℝ)
92adantr 276 . . . . . . . . . 10 ((𝜑𝑁 ∈ ℕ) → 𝐴 ∈ ℝ)
109, 7rerpdivcld 9699 . . . . . . . . 9 ((𝜑𝑁 ∈ ℕ) → (𝐴 / (𝐹𝑁)) ∈ ℝ)
118, 10readdcld 7961 . . . . . . . 8 ((𝜑𝑁 ∈ ℕ) → ((𝐹𝑁) + (𝐴 / (𝐹𝑁))) ∈ ℝ)
1211recnd 7960 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → ((𝐹𝑁) + (𝐴 / (𝐹𝑁))) ∈ ℂ)
13 2cnd 8965 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → 2 ∈ ℂ)
14 2ap0 8985 . . . . . . . 8 2 # 0
1514a1i 9 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → 2 # 0)
1612, 13, 15sqdivapd 10636 . . . . . 6 ((𝜑𝑁 ∈ ℕ) → ((((𝐹𝑁) + (𝐴 / (𝐹𝑁))) / 2)↑2) = ((((𝐹𝑁) + (𝐴 / (𝐹𝑁)))↑2) / (2↑2)))
175, 16eqtrd 2208 . . . . 5 ((𝜑𝑁 ∈ ℕ) → ((𝐹‘(𝑁 + 1))↑2) = ((((𝐹𝑁) + (𝐴 / (𝐹𝑁)))↑2) / (2↑2)))
18 sq2 10585 . . . . . 6 (2↑2) = 4
1918oveq2i 5876 . . . . 5 ((((𝐹𝑁) + (𝐴 / (𝐹𝑁)))↑2) / (2↑2)) = ((((𝐹𝑁) + (𝐴 / (𝐹𝑁)))↑2) / 4)
2017, 19eqtrdi 2224 . . . 4 ((𝜑𝑁 ∈ ℕ) → ((𝐹‘(𝑁 + 1))↑2) = ((((𝐹𝑁) + (𝐴 / (𝐹𝑁)))↑2) / 4))
219recnd 7960 . . . . . 6 ((𝜑𝑁 ∈ ℕ) → 𝐴 ∈ ℂ)
22 4cn 8970 . . . . . . 7 4 ∈ ℂ
2322a1i 9 . . . . . 6 ((𝜑𝑁 ∈ ℕ) → 4 ∈ ℂ)
24 4re 8969 . . . . . . . 8 4 ∈ ℝ
2524a1i 9 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → 4 ∈ ℝ)
26 4pos 8989 . . . . . . . 8 0 < 4
2726a1i 9 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → 0 < 4)
2825, 27gt0ap0d 8560 . . . . . 6 ((𝜑𝑁 ∈ ℕ) → 4 # 0)
2921, 23, 28divcanap3d 8725 . . . . 5 ((𝜑𝑁 ∈ ℕ) → ((4 · 𝐴) / 4) = 𝐴)
3029eqcomd 2181 . . . 4 ((𝜑𝑁 ∈ ℕ) → 𝐴 = ((4 · 𝐴) / 4))
3120, 30oveq12d 5883 . . 3 ((𝜑𝑁 ∈ ℕ) → (((𝐹‘(𝑁 + 1))↑2) − 𝐴) = (((((𝐹𝑁) + (𝐴 / (𝐹𝑁)))↑2) / 4) − ((4 · 𝐴) / 4)))
3212sqcld 10621 . . . 4 ((𝜑𝑁 ∈ ℕ) → (((𝐹𝑁) + (𝐴 / (𝐹𝑁)))↑2) ∈ ℂ)
3323, 21mulcld 7952 . . . 4 ((𝜑𝑁 ∈ ℕ) → (4 · 𝐴) ∈ ℂ)
3432, 33, 23, 28divsubdirapd 8760 . . 3 ((𝜑𝑁 ∈ ℕ) → (((((𝐹𝑁) + (𝐴 / (𝐹𝑁)))↑2) − (4 · 𝐴)) / 4) = (((((𝐹𝑁) + (𝐴 / (𝐹𝑁)))↑2) / 4) − ((4 · 𝐴) / 4)))
3531, 34eqtr4d 2211 . 2 ((𝜑𝑁 ∈ ℕ) → (((𝐹‘(𝑁 + 1))↑2) − 𝐴) = (((((𝐹𝑁) + (𝐴 / (𝐹𝑁)))↑2) − (4 · 𝐴)) / 4))
368recnd 7960 . . . . . . . . 9 ((𝜑𝑁 ∈ ℕ) → (𝐹𝑁) ∈ ℂ)
3736sqcld 10621 . . . . . . . 8 ((𝜑𝑁 ∈ ℕ) → ((𝐹𝑁)↑2) ∈ ℂ)
3813, 21mulcld 7952 . . . . . . . 8 ((𝜑𝑁 ∈ ℕ) → (2 · 𝐴) ∈ ℂ)
3937, 38, 33addsubassd 8262 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → ((((𝐹𝑁)↑2) + (2 · 𝐴)) − (4 · 𝐴)) = (((𝐹𝑁)↑2) + ((2 · 𝐴) − (4 · 𝐴))))
40 2cn 8963 . . . . . . . . . . . 12 2 ∈ ℂ
4122, 40negsubdi2i 8217 . . . . . . . . . . 11 -(4 − 2) = (2 − 4)
42 2p2e4 9019 . . . . . . . . . . . . . 14 (2 + 2) = 4
4342oveq1i 5875 . . . . . . . . . . . . 13 ((2 + 2) − 2) = (4 − 2)
4440, 40pncan3oi 8147 . . . . . . . . . . . . 13 ((2 + 2) − 2) = 2
4543, 44eqtr3i 2198 . . . . . . . . . . . 12 (4 − 2) = 2
4645negeqi 8125 . . . . . . . . . . 11 -(4 − 2) = -2
4741, 46eqtr3i 2198 . . . . . . . . . 10 (2 − 4) = -2
4847oveq1i 5875 . . . . . . . . 9 ((2 − 4) · 𝐴) = (-2 · 𝐴)
4913, 23, 21subdird 8346 . . . . . . . . 9 ((𝜑𝑁 ∈ ℕ) → ((2 − 4) · 𝐴) = ((2 · 𝐴) − (4 · 𝐴)))
5013, 21mulneg1d 8342 . . . . . . . . 9 ((𝜑𝑁 ∈ ℕ) → (-2 · 𝐴) = -(2 · 𝐴))
5148, 49, 503eqtr3a 2232 . . . . . . . 8 ((𝜑𝑁 ∈ ℕ) → ((2 · 𝐴) − (4 · 𝐴)) = -(2 · 𝐴))
5251oveq2d 5881 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → (((𝐹𝑁)↑2) + ((2 · 𝐴) − (4 · 𝐴))) = (((𝐹𝑁)↑2) + -(2 · 𝐴)))
5337, 38negsubd 8248 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → (((𝐹𝑁)↑2) + -(2 · 𝐴)) = (((𝐹𝑁)↑2) − (2 · 𝐴)))
5439, 52, 533eqtrd 2212 . . . . . 6 ((𝜑𝑁 ∈ ℕ) → ((((𝐹𝑁)↑2) + (2 · 𝐴)) − (4 · 𝐴)) = (((𝐹𝑁)↑2) − (2 · 𝐴)))
5554oveq1d 5880 . . . . 5 ((𝜑𝑁 ∈ ℕ) → (((((𝐹𝑁)↑2) + (2 · 𝐴)) − (4 · 𝐴)) + ((𝐴 / (𝐹𝑁))↑2)) = ((((𝐹𝑁)↑2) − (2 · 𝐴)) + ((𝐴 / (𝐹𝑁))↑2)))
5610recnd 7960 . . . . . . . . 9 ((𝜑𝑁 ∈ ℕ) → (𝐴 / (𝐹𝑁)) ∈ ℂ)
57 binom2 10601 . . . . . . . . 9 (((𝐹𝑁) ∈ ℂ ∧ (𝐴 / (𝐹𝑁)) ∈ ℂ) → (((𝐹𝑁) + (𝐴 / (𝐹𝑁)))↑2) = ((((𝐹𝑁)↑2) + (2 · ((𝐹𝑁) · (𝐴 / (𝐹𝑁))))) + ((𝐴 / (𝐹𝑁))↑2)))
5836, 56, 57syl2anc 411 . . . . . . . 8 ((𝜑𝑁 ∈ ℕ) → (((𝐹𝑁) + (𝐴 / (𝐹𝑁)))↑2) = ((((𝐹𝑁)↑2) + (2 · ((𝐹𝑁) · (𝐴 / (𝐹𝑁))))) + ((𝐴 / (𝐹𝑁))↑2)))
597rpap0d 9673 . . . . . . . . . . . 12 ((𝜑𝑁 ∈ ℕ) → (𝐹𝑁) # 0)
6021, 36, 59divcanap2d 8722 . . . . . . . . . . 11 ((𝜑𝑁 ∈ ℕ) → ((𝐹𝑁) · (𝐴 / (𝐹𝑁))) = 𝐴)
6160oveq2d 5881 . . . . . . . . . 10 ((𝜑𝑁 ∈ ℕ) → (2 · ((𝐹𝑁) · (𝐴 / (𝐹𝑁)))) = (2 · 𝐴))
6261oveq2d 5881 . . . . . . . . 9 ((𝜑𝑁 ∈ ℕ) → (((𝐹𝑁)↑2) + (2 · ((𝐹𝑁) · (𝐴 / (𝐹𝑁))))) = (((𝐹𝑁)↑2) + (2 · 𝐴)))
6362oveq1d 5880 . . . . . . . 8 ((𝜑𝑁 ∈ ℕ) → ((((𝐹𝑁)↑2) + (2 · ((𝐹𝑁) · (𝐴 / (𝐹𝑁))))) + ((𝐴 / (𝐹𝑁))↑2)) = ((((𝐹𝑁)↑2) + (2 · 𝐴)) + ((𝐴 / (𝐹𝑁))↑2)))
6458, 63eqtrd 2208 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → (((𝐹𝑁) + (𝐴 / (𝐹𝑁)))↑2) = ((((𝐹𝑁)↑2) + (2 · 𝐴)) + ((𝐴 / (𝐹𝑁))↑2)))
6564oveq1d 5880 . . . . . 6 ((𝜑𝑁 ∈ ℕ) → ((((𝐹𝑁) + (𝐴 / (𝐹𝑁)))↑2) − (4 · 𝐴)) = (((((𝐹𝑁)↑2) + (2 · 𝐴)) + ((𝐴 / (𝐹𝑁))↑2)) − (4 · 𝐴)))
6637, 38addcld 7951 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → (((𝐹𝑁)↑2) + (2 · 𝐴)) ∈ ℂ)
6756sqcld 10621 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → ((𝐴 / (𝐹𝑁))↑2) ∈ ℂ)
6866, 67, 33addsubd 8263 . . . . . 6 ((𝜑𝑁 ∈ ℕ) → (((((𝐹𝑁)↑2) + (2 · 𝐴)) + ((𝐴 / (𝐹𝑁))↑2)) − (4 · 𝐴)) = (((((𝐹𝑁)↑2) + (2 · 𝐴)) − (4 · 𝐴)) + ((𝐴 / (𝐹𝑁))↑2)))
6965, 68eqtrd 2208 . . . . 5 ((𝜑𝑁 ∈ ℕ) → ((((𝐹𝑁) + (𝐴 / (𝐹𝑁)))↑2) − (4 · 𝐴)) = (((((𝐹𝑁)↑2) + (2 · 𝐴)) − (4 · 𝐴)) + ((𝐴 / (𝐹𝑁))↑2)))
7037, 38subcld 8242 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → (((𝐹𝑁)↑2) − (2 · 𝐴)) ∈ ℂ)
7170, 67addcld 7951 . . . . . 6 ((𝜑𝑁 ∈ ℕ) → ((((𝐹𝑁)↑2) − (2 · 𝐴)) + ((𝐴 / (𝐹𝑁))↑2)) ∈ ℂ)
72 2z 9254 . . . . . . . . 9 2 ∈ ℤ
7372a1i 9 . . . . . . . 8 ((𝜑𝑁 ∈ ℕ) → 2 ∈ ℤ)
747, 73rpexpcld 10647 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → ((𝐹𝑁)↑2) ∈ ℝ+)
7574rpap0d 9673 . . . . . 6 ((𝜑𝑁 ∈ ℕ) → ((𝐹𝑁)↑2) # 0)
7671, 37, 75divcanap4d 8726 . . . . 5 ((𝜑𝑁 ∈ ℕ) → ((((((𝐹𝑁)↑2) − (2 · 𝐴)) + ((𝐴 / (𝐹𝑁))↑2)) · ((𝐹𝑁)↑2)) / ((𝐹𝑁)↑2)) = ((((𝐹𝑁)↑2) − (2 · 𝐴)) + ((𝐴 / (𝐹𝑁))↑2)))
7755, 69, 763eqtr4d 2218 . . . 4 ((𝜑𝑁 ∈ ℕ) → ((((𝐹𝑁) + (𝐴 / (𝐹𝑁)))↑2) − (4 · 𝐴)) = ((((((𝐹𝑁)↑2) − (2 · 𝐴)) + ((𝐴 / (𝐹𝑁))↑2)) · ((𝐹𝑁)↑2)) / ((𝐹𝑁)↑2)))
7837, 38, 37subdird 8346 . . . . . . . 8 ((𝜑𝑁 ∈ ℕ) → ((((𝐹𝑁)↑2) − (2 · 𝐴)) · ((𝐹𝑁)↑2)) = ((((𝐹𝑁)↑2) · ((𝐹𝑁)↑2)) − ((2 · 𝐴) · ((𝐹𝑁)↑2))))
7937sqvald 10620 . . . . . . . . 9 ((𝜑𝑁 ∈ ℕ) → (((𝐹𝑁)↑2)↑2) = (((𝐹𝑁)↑2) · ((𝐹𝑁)↑2)))
8013, 21, 37mul32d 8084 . . . . . . . . . 10 ((𝜑𝑁 ∈ ℕ) → ((2 · 𝐴) · ((𝐹𝑁)↑2)) = ((2 · ((𝐹𝑁)↑2)) · 𝐴))
8113, 37, 21mulassd 7955 . . . . . . . . . 10 ((𝜑𝑁 ∈ ℕ) → ((2 · ((𝐹𝑁)↑2)) · 𝐴) = (2 · (((𝐹𝑁)↑2) · 𝐴)))
8280, 81eqtr2d 2209 . . . . . . . . 9 ((𝜑𝑁 ∈ ℕ) → (2 · (((𝐹𝑁)↑2) · 𝐴)) = ((2 · 𝐴) · ((𝐹𝑁)↑2)))
8379, 82oveq12d 5883 . . . . . . . 8 ((𝜑𝑁 ∈ ℕ) → ((((𝐹𝑁)↑2)↑2) − (2 · (((𝐹𝑁)↑2) · 𝐴))) = ((((𝐹𝑁)↑2) · ((𝐹𝑁)↑2)) − ((2 · 𝐴) · ((𝐹𝑁)↑2))))
8478, 83eqtr4d 2211 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → ((((𝐹𝑁)↑2) − (2 · 𝐴)) · ((𝐹𝑁)↑2)) = ((((𝐹𝑁)↑2)↑2) − (2 · (((𝐹𝑁)↑2) · 𝐴))))
8521, 36, 59sqdivapd 10636 . . . . . . . . 9 ((𝜑𝑁 ∈ ℕ) → ((𝐴 / (𝐹𝑁))↑2) = ((𝐴↑2) / ((𝐹𝑁)↑2)))
8685oveq1d 5880 . . . . . . . 8 ((𝜑𝑁 ∈ ℕ) → (((𝐴 / (𝐹𝑁))↑2) · ((𝐹𝑁)↑2)) = (((𝐴↑2) / ((𝐹𝑁)↑2)) · ((𝐹𝑁)↑2)))
8721sqcld 10621 . . . . . . . . 9 ((𝜑𝑁 ∈ ℕ) → (𝐴↑2) ∈ ℂ)
8887, 37, 75divcanap1d 8721 . . . . . . . 8 ((𝜑𝑁 ∈ ℕ) → (((𝐴↑2) / ((𝐹𝑁)↑2)) · ((𝐹𝑁)↑2)) = (𝐴↑2))
8986, 88eqtrd 2208 . . . . . . 7 ((𝜑𝑁 ∈ ℕ) → (((𝐴 / (𝐹𝑁))↑2) · ((𝐹𝑁)↑2)) = (𝐴↑2))
9084, 89oveq12d 5883 . . . . . 6 ((𝜑𝑁 ∈ ℕ) → (((((𝐹𝑁)↑2) − (2 · 𝐴)) · ((𝐹𝑁)↑2)) + (((𝐴 / (𝐹𝑁))↑2) · ((𝐹𝑁)↑2))) = (((((𝐹𝑁)↑2)↑2) − (2 · (((𝐹𝑁)↑2) · 𝐴))) + (𝐴↑2)))
9170, 67, 37adddird 7957 . . . . . 6 ((𝜑𝑁 ∈ ℕ) → (((((𝐹𝑁)↑2) − (2 · 𝐴)) + ((𝐴 / (𝐹𝑁))↑2)) · ((𝐹𝑁)↑2)) = (((((𝐹𝑁)↑2) − (2 · 𝐴)) · ((𝐹𝑁)↑2)) + (((𝐴 / (𝐹𝑁))↑2) · ((𝐹𝑁)↑2))))
92 binom2sub 10603 . . . . . . 7 ((((𝐹𝑁)↑2) ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((((𝐹𝑁)↑2) − 𝐴)↑2) = (((((𝐹𝑁)↑2)↑2) − (2 · (((𝐹𝑁)↑2) · 𝐴))) + (𝐴↑2)))
9337, 21, 92syl2anc 411 . . . . . 6 ((𝜑𝑁 ∈ ℕ) → ((((𝐹𝑁)↑2) − 𝐴)↑2) = (((((𝐹𝑁)↑2)↑2) − (2 · (((𝐹𝑁)↑2) · 𝐴))) + (𝐴↑2)))
9490, 91, 933eqtr4d 2218 . . . . 5 ((𝜑𝑁 ∈ ℕ) → (((((𝐹𝑁)↑2) − (2 · 𝐴)) + ((𝐴 / (𝐹𝑁))↑2)) · ((𝐹𝑁)↑2)) = ((((𝐹𝑁)↑2) − 𝐴)↑2))
9594oveq1d 5880 . . . 4 ((𝜑𝑁 ∈ ℕ) → ((((((𝐹𝑁)↑2) − (2 · 𝐴)) + ((𝐴 / (𝐹𝑁))↑2)) · ((𝐹𝑁)↑2)) / ((𝐹𝑁)↑2)) = (((((𝐹𝑁)↑2) − 𝐴)↑2) / ((𝐹𝑁)↑2)))
9677, 95eqtrd 2208 . . 3 ((𝜑𝑁 ∈ ℕ) → ((((𝐹𝑁) + (𝐴 / (𝐹𝑁)))↑2) − (4 · 𝐴)) = (((((𝐹𝑁)↑2) − 𝐴)↑2) / ((𝐹𝑁)↑2)))
9796oveq1d 5880 . 2 ((𝜑𝑁 ∈ ℕ) → (((((𝐹𝑁) + (𝐴 / (𝐹𝑁)))↑2) − (4 · 𝐴)) / 4) = ((((((𝐹𝑁)↑2) − 𝐴)↑2) / ((𝐹𝑁)↑2)) / 4))
9837, 21subcld 8242 . . . . 5 ((𝜑𝑁 ∈ ℕ) → (((𝐹𝑁)↑2) − 𝐴) ∈ ℂ)
9998sqcld 10621 . . . 4 ((𝜑𝑁 ∈ ℕ) → ((((𝐹𝑁)↑2) − 𝐴)↑2) ∈ ℂ)
10099, 37, 23, 75, 28divdivap1d 8752 . . 3 ((𝜑𝑁 ∈ ℕ) → ((((((𝐹𝑁)↑2) − 𝐴)↑2) / ((𝐹𝑁)↑2)) / 4) = (((((𝐹𝑁)↑2) − 𝐴)↑2) / (((𝐹𝑁)↑2) · 4)))
10137, 23mulcomd 7953 . . . 4 ((𝜑𝑁 ∈ ℕ) → (((𝐹𝑁)↑2) · 4) = (4 · ((𝐹𝑁)↑2)))
102101oveq2d 5881 . . 3 ((𝜑𝑁 ∈ ℕ) → (((((𝐹𝑁)↑2) − 𝐴)↑2) / (((𝐹𝑁)↑2) · 4)) = (((((𝐹𝑁)↑2) − 𝐴)↑2) / (4 · ((𝐹𝑁)↑2))))
103100, 102eqtrd 2208 . 2 ((𝜑𝑁 ∈ ℕ) → ((((((𝐹𝑁)↑2) − 𝐴)↑2) / ((𝐹𝑁)↑2)) / 4) = (((((𝐹𝑁)↑2) − 𝐴)↑2) / (4 · ((𝐹𝑁)↑2))))
10435, 97, 1033eqtrd 2212 1 ((𝜑𝑁 ∈ ℕ) → (((𝐹‘(𝑁 + 1))↑2) − 𝐴) = (((((𝐹𝑁)↑2) − 𝐴)↑2) / (4 · ((𝐹𝑁)↑2))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2146  {csn 3589   class class class wbr 3998   × cxp 4618  cfv 5208  (class class class)co 5865  cmpo 5867  cc 7784  cr 7785  0cc0 7786  1c1 7787   + caddc 7789   · cmul 7791   < clt 7966  cle 7967  cmin 8102  -cneg 8103   # cap 8512   / cdiv 8602  cn 8892  2c2 8943  4c4 8945  cz 9226  +crp 9624  seqcseq 10415  cexp 10489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-coll 4113  ax-sep 4116  ax-nul 4124  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-iinf 4581  ax-cnex 7877  ax-resscn 7878  ax-1cn 7879  ax-1re 7880  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-mulrcl 7885  ax-addcom 7886  ax-mulcom 7887  ax-addass 7888  ax-mulass 7889  ax-distr 7890  ax-i2m1 7891  ax-0lt1 7892  ax-1rid 7893  ax-0id 7894  ax-rnegex 7895  ax-precex 7896  ax-cnre 7897  ax-pre-ltirr 7898  ax-pre-ltwlin 7899  ax-pre-lttrn 7900  ax-pre-apti 7901  ax-pre-ltadd 7902  ax-pre-mulgt0 7903  ax-pre-mulext 7904
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-reu 2460  df-rmo 2461  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-if 3533  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-tr 4097  df-id 4287  df-po 4290  df-iso 4291  df-iord 4360  df-on 4362  df-ilim 4363  df-suc 4365  df-iom 4584  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-riota 5821  df-ov 5868  df-oprab 5869  df-mpo 5870  df-1st 6131  df-2nd 6132  df-recs 6296  df-frec 6382  df-pnf 7968  df-mnf 7969  df-xr 7970  df-ltxr 7971  df-le 7972  df-sub 8104  df-neg 8105  df-reap 8506  df-ap 8513  df-div 8603  df-inn 8893  df-2 8951  df-3 8952  df-4 8953  df-n0 9150  df-z 9227  df-uz 9502  df-rp 9625  df-seqfrec 10416  df-exp 10490
This theorem is referenced by:  resqrexlemcalc2  10992
  Copyright terms: Public domain W3C validator