| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eqtr3g | GIF version | ||
| Description: A chained equality inference, useful for converting from definitions. (Contributed by NM, 15-Nov-1994.) |
| Ref | Expression |
|---|---|
| 3eqtr3g.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| 3eqtr3g.2 | ⊢ 𝐴 = 𝐶 |
| 3eqtr3g.3 | ⊢ 𝐵 = 𝐷 |
| Ref | Expression |
|---|---|
| 3eqtr3g | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr3g.2 | . . 3 ⊢ 𝐴 = 𝐶 | |
| 2 | 3eqtr3g.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 3 | 1, 2 | eqtr3id 2252 | . 2 ⊢ (𝜑 → 𝐶 = 𝐵) |
| 4 | 3eqtr3g.3 | . 2 ⊢ 𝐵 = 𝐷 | |
| 5 | 3, 4 | eqtrdi 2254 | 1 ⊢ (𝜑 → 𝐶 = 𝐷) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-4 1533 ax-17 1549 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-cleq 2198 |
| This theorem is referenced by: csbnest1g 3149 disjdif2 3539 dfopg 3817 xpid11 4901 sqxpeq0 5106 cores2 5195 funcoeqres 5553 dftpos2 6347 ine0 8466 fisumcom2 11749 fisum0diag2 11758 mertenslemi1 11846 fprodcom2fi 11937 fprodmodd 11952 bitsinv1 12273 4sqlem10 12710 setsslnid 12884 xpsff1o 13181 eqglact 13561 oppr1g 13844 dvmptccn 15187 dvmptc 15189 dvmptfsum 15197 fsumdvdsmul 15463 nninffeq 15957 |
| Copyright terms: Public domain | W3C validator |