Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3eqtr3g | GIF version |
Description: A chained equality inference, useful for converting from definitions. (Contributed by NM, 15-Nov-1994.) |
Ref | Expression |
---|---|
3eqtr3g.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
3eqtr3g.2 | ⊢ 𝐴 = 𝐶 |
3eqtr3g.3 | ⊢ 𝐵 = 𝐷 |
Ref | Expression |
---|---|
3eqtr3g | ⊢ (𝜑 → 𝐶 = 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtr3g.2 | . . 3 ⊢ 𝐴 = 𝐶 | |
2 | 3eqtr3g.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
3 | 1, 2 | eqtr3id 2213 | . 2 ⊢ (𝜑 → 𝐶 = 𝐵) |
4 | 3eqtr3g.3 | . 2 ⊢ 𝐵 = 𝐷 | |
5 | 3, 4 | eqtrdi 2215 | 1 ⊢ (𝜑 → 𝐶 = 𝐷) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-4 1498 ax-17 1514 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-cleq 2158 |
This theorem is referenced by: csbnest1g 3100 disjdif2 3487 dfopg 3756 xpid11 4827 sqxpeq0 5027 cores2 5116 funcoeqres 5463 dftpos2 6229 ine0 8292 fisumcom2 11379 fisum0diag2 11388 mertenslemi1 11476 fprodcom2fi 11567 fprodmodd 11582 4sqlem10 12317 setsslnid 12445 dvmptccn 13319 nninffeq 13900 |
Copyright terms: Public domain | W3C validator |