| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eqtr3g | GIF version | ||
| Description: A chained equality inference, useful for converting from definitions. (Contributed by NM, 15-Nov-1994.) |
| Ref | Expression |
|---|---|
| 3eqtr3g.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| 3eqtr3g.2 | ⊢ 𝐴 = 𝐶 |
| 3eqtr3g.3 | ⊢ 𝐵 = 𝐷 |
| Ref | Expression |
|---|---|
| 3eqtr3g | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr3g.2 | . . 3 ⊢ 𝐴 = 𝐶 | |
| 2 | 3eqtr3g.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 3 | 1, 2 | eqtr3id 2243 | . 2 ⊢ (𝜑 → 𝐶 = 𝐵) |
| 4 | 3eqtr3g.3 | . 2 ⊢ 𝐵 = 𝐷 | |
| 5 | 3, 4 | eqtrdi 2245 | 1 ⊢ (𝜑 → 𝐶 = 𝐷) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 |
| This theorem is referenced by: csbnest1g 3140 disjdif2 3530 dfopg 3807 xpid11 4890 sqxpeq0 5094 cores2 5183 funcoeqres 5536 dftpos2 6321 ine0 8423 fisumcom2 11606 fisum0diag2 11615 mertenslemi1 11703 fprodcom2fi 11794 fprodmodd 11809 bitsinv1 12130 4sqlem10 12567 setsslnid 12741 xpsff1o 13018 eqglact 13381 oppr1g 13664 dvmptccn 14977 dvmptc 14979 dvmptfsum 14987 fsumdvdsmul 15253 nninffeq 15693 |
| Copyright terms: Public domain | W3C validator |