Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3eqtr3g | GIF version |
Description: A chained equality inference, useful for converting from definitions. (Contributed by NM, 15-Nov-1994.) |
Ref | Expression |
---|---|
3eqtr3g.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
3eqtr3g.2 | ⊢ 𝐴 = 𝐶 |
3eqtr3g.3 | ⊢ 𝐵 = 𝐷 |
Ref | Expression |
---|---|
3eqtr3g | ⊢ (𝜑 → 𝐶 = 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtr3g.2 | . . 3 ⊢ 𝐴 = 𝐶 | |
2 | 3eqtr3g.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
3 | 1, 2 | eqtr3id 2217 | . 2 ⊢ (𝜑 → 𝐶 = 𝐵) |
4 | 3eqtr3g.3 | . 2 ⊢ 𝐵 = 𝐷 | |
5 | 3, 4 | eqtrdi 2219 | 1 ⊢ (𝜑 → 𝐶 = 𝐷) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-4 1503 ax-17 1519 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-cleq 2163 |
This theorem is referenced by: csbnest1g 3104 disjdif2 3493 dfopg 3763 xpid11 4834 sqxpeq0 5034 cores2 5123 funcoeqres 5473 dftpos2 6240 ine0 8313 fisumcom2 11401 fisum0diag2 11410 mertenslemi1 11498 fprodcom2fi 11589 fprodmodd 11604 4sqlem10 12339 setsslnid 12467 dvmptccn 13473 nninffeq 14053 |
Copyright terms: Public domain | W3C validator |