| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eqtr3g | GIF version | ||
| Description: A chained equality inference, useful for converting from definitions. (Contributed by NM, 15-Nov-1994.) |
| Ref | Expression |
|---|---|
| 3eqtr3g.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| 3eqtr3g.2 | ⊢ 𝐴 = 𝐶 |
| 3eqtr3g.3 | ⊢ 𝐵 = 𝐷 |
| Ref | Expression |
|---|---|
| 3eqtr3g | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr3g.2 | . . 3 ⊢ 𝐴 = 𝐶 | |
| 2 | 3eqtr3g.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 3 | 1, 2 | eqtr3id 2243 | . 2 ⊢ (𝜑 → 𝐶 = 𝐵) |
| 4 | 3eqtr3g.3 | . 2 ⊢ 𝐵 = 𝐷 | |
| 5 | 3, 4 | eqtrdi 2245 | 1 ⊢ (𝜑 → 𝐶 = 𝐷) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 |
| This theorem is referenced by: csbnest1g 3140 disjdif2 3529 dfopg 3806 xpid11 4889 sqxpeq0 5093 cores2 5182 funcoeqres 5535 dftpos2 6319 ine0 8420 fisumcom2 11603 fisum0diag2 11612 mertenslemi1 11700 fprodcom2fi 11791 fprodmodd 11806 4sqlem10 12556 setsslnid 12730 xpsff1o 12992 eqglact 13355 oppr1g 13638 dvmptccn 14951 dvmptc 14953 dvmptfsum 14961 fsumdvdsmul 15227 nninffeq 15664 |
| Copyright terms: Public domain | W3C validator |