| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eqtr3g | GIF version | ||
| Description: A chained equality inference, useful for converting from definitions. (Contributed by NM, 15-Nov-1994.) |
| Ref | Expression |
|---|---|
| 3eqtr3g.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| 3eqtr3g.2 | ⊢ 𝐴 = 𝐶 |
| 3eqtr3g.3 | ⊢ 𝐵 = 𝐷 |
| Ref | Expression |
|---|---|
| 3eqtr3g | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr3g.2 | . . 3 ⊢ 𝐴 = 𝐶 | |
| 2 | 3eqtr3g.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 3 | 1, 2 | eqtr3id 2243 | . 2 ⊢ (𝜑 → 𝐶 = 𝐵) |
| 4 | 3eqtr3g.3 | . 2 ⊢ 𝐵 = 𝐷 | |
| 5 | 3, 4 | eqtrdi 2245 | 1 ⊢ (𝜑 → 𝐶 = 𝐷) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 |
| This theorem is referenced by: csbnest1g 3140 disjdif2 3530 dfopg 3807 xpid11 4890 sqxpeq0 5094 cores2 5183 funcoeqres 5538 dftpos2 6328 ine0 8439 fisumcom2 11622 fisum0diag2 11631 mertenslemi1 11719 fprodcom2fi 11810 fprodmodd 11825 bitsinv1 12146 4sqlem10 12583 setsslnid 12757 xpsff1o 13053 eqglact 13433 oppr1g 13716 dvmptccn 15059 dvmptc 15061 dvmptfsum 15069 fsumdvdsmul 15335 nninffeq 15775 |
| Copyright terms: Public domain | W3C validator |