ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  foima GIF version

Theorem foima 5273
Description: The image of the domain of an onto function. (Contributed by NM, 29-Nov-2002.)
Assertion
Ref Expression
foima (𝐹:𝐴onto𝐵 → (𝐹𝐴) = 𝐵)

Proof of Theorem foima
StepHypRef Expression
1 imadmrn 4817 . 2 (𝐹 “ dom 𝐹) = ran 𝐹
2 fof 5268 . . . 4 (𝐹:𝐴onto𝐵𝐹:𝐴𝐵)
3 fdm 5201 . . . 4 (𝐹:𝐴𝐵 → dom 𝐹 = 𝐴)
42, 3syl 14 . . 3 (𝐹:𝐴onto𝐵 → dom 𝐹 = 𝐴)
54imaeq2d 4807 . 2 (𝐹:𝐴onto𝐵 → (𝐹 “ dom 𝐹) = (𝐹𝐴))
6 forn 5271 . 2 (𝐹:𝐴onto𝐵 → ran 𝐹 = 𝐵)
71, 5, 63eqtr3a 2151 1 (𝐹:𝐴onto𝐵 → (𝐹𝐴) = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1296  dom cdm 4467  ran crn 4468  cima 4470  wf 5045  ontowfo 5047
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-sep 3978  ax-pow 4030  ax-pr 4060
This theorem depends on definitions:  df-bi 116  df-3an 929  df-tru 1299  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ral 2375  df-rex 2376  df-v 2635  df-un 3017  df-in 3019  df-ss 3026  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-br 3868  df-opab 3922  df-xp 4473  df-cnv 4475  df-dm 4477  df-rn 4478  df-res 4479  df-ima 4480  df-fn 5052  df-f 5053  df-fo 5055
This theorem is referenced by:  foimacnv  5306  foima2  5569  fiintim  6719  fidcenumlemr  6744
  Copyright terms: Public domain W3C validator