ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  foima GIF version

Theorem foima 5445
Description: The image of the domain of an onto function. (Contributed by NM, 29-Nov-2002.)
Assertion
Ref Expression
foima (𝐹:𝐴onto𝐵 → (𝐹𝐴) = 𝐵)

Proof of Theorem foima
StepHypRef Expression
1 imadmrn 4982 . 2 (𝐹 “ dom 𝐹) = ran 𝐹
2 fof 5440 . . . 4 (𝐹:𝐴onto𝐵𝐹:𝐴𝐵)
3 fdm 5373 . . . 4 (𝐹:𝐴𝐵 → dom 𝐹 = 𝐴)
42, 3syl 14 . . 3 (𝐹:𝐴onto𝐵 → dom 𝐹 = 𝐴)
54imaeq2d 4972 . 2 (𝐹:𝐴onto𝐵 → (𝐹 “ dom 𝐹) = (𝐹𝐴))
6 forn 5443 . 2 (𝐹:𝐴onto𝐵 → ran 𝐹 = 𝐵)
71, 5, 63eqtr3a 2234 1 (𝐹:𝐴onto𝐵 → (𝐹𝐴) = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1353  dom cdm 4628  ran crn 4629  cima 4631  wf 5214  ontowfo 5216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006  df-opab 4067  df-xp 4634  df-cnv 4636  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-fn 5221  df-f 5222  df-fo 5224
This theorem is referenced by:  foimacnv  5481  foima2  5754  fiintim  6930  fidcenumlemr  6956
  Copyright terms: Public domain W3C validator