![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > foima | GIF version |
Description: The image of the domain of an onto function. (Contributed by NM, 29-Nov-2002.) |
Ref | Expression |
---|---|
foima | ⊢ (𝐹:𝐴–onto→𝐵 → (𝐹 “ 𝐴) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imadmrn 5009 | . 2 ⊢ (𝐹 “ dom 𝐹) = ran 𝐹 | |
2 | fof 5468 | . . . 4 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) | |
3 | fdm 5401 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) | |
4 | 2, 3 | syl 14 | . . 3 ⊢ (𝐹:𝐴–onto→𝐵 → dom 𝐹 = 𝐴) |
5 | 4 | imaeq2d 4999 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 → (𝐹 “ dom 𝐹) = (𝐹 “ 𝐴)) |
6 | forn 5471 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 → ran 𝐹 = 𝐵) | |
7 | 1, 5, 6 | 3eqtr3a 2250 | 1 ⊢ (𝐹:𝐴–onto→𝐵 → (𝐹 “ 𝐴) = 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 dom cdm 4655 ran crn 4656 “ cima 4658 ⟶wf 5242 –onto→wfo 5244 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-br 4030 df-opab 4091 df-xp 4661 df-cnv 4663 df-dm 4665 df-rn 4666 df-res 4667 df-ima 4668 df-fn 5249 df-f 5250 df-fo 5252 |
This theorem is referenced by: foimacnv 5510 foima2 5786 fiintim 6976 fidcenumlemr 7004 |
Copyright terms: Public domain | W3C validator |