| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > foima | GIF version | ||
| Description: The image of the domain of an onto function. (Contributed by NM, 29-Nov-2002.) |
| Ref | Expression |
|---|---|
| foima | ⊢ (𝐹:𝐴–onto→𝐵 → (𝐹 “ 𝐴) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imadmrn 5041 | . 2 ⊢ (𝐹 “ dom 𝐹) = ran 𝐹 | |
| 2 | fof 5510 | . . . 4 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) | |
| 3 | fdm 5441 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) | |
| 4 | 2, 3 | syl 14 | . . 3 ⊢ (𝐹:𝐴–onto→𝐵 → dom 𝐹 = 𝐴) |
| 5 | 4 | imaeq2d 5031 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 → (𝐹 “ dom 𝐹) = (𝐹 “ 𝐴)) |
| 6 | forn 5513 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 → ran 𝐹 = 𝐵) | |
| 7 | 1, 5, 6 | 3eqtr3a 2263 | 1 ⊢ (𝐹:𝐴–onto→𝐵 → (𝐹 “ 𝐴) = 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 dom cdm 4683 ran crn 4684 “ cima 4686 ⟶wf 5276 –onto→wfo 5278 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-br 4052 df-opab 4114 df-xp 4689 df-cnv 4691 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-fn 5283 df-f 5284 df-fo 5286 |
| This theorem is referenced by: foimacnv 5552 foima2 5833 fiintim 7043 fidcenumlemr 7072 |
| Copyright terms: Public domain | W3C validator |