ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  absefib GIF version

Theorem absefib 11805
Description: A complex number is real iff the exponential of its product with i has absolute value one. (Contributed by NM, 21-Aug-2008.)
Assertion
Ref Expression
absefib (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (abs‘(exp‘(i · 𝐴))) = 1))

Proof of Theorem absefib
StepHypRef Expression
1 ef0 11707 . . . . 5 (exp‘0) = 1
21eqeq2i 2200 . . . 4 ((exp‘-(ℑ‘𝐴)) = (exp‘0) ↔ (exp‘-(ℑ‘𝐴)) = 1)
3 imcl 10890 . . . . . 6 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ)
43renegcld 8362 . . . . 5 (𝐴 ∈ ℂ → -(ℑ‘𝐴) ∈ ℝ)
5 0re 7982 . . . . 5 0 ∈ ℝ
6 reef11 11734 . . . . 5 ((-(ℑ‘𝐴) ∈ ℝ ∧ 0 ∈ ℝ) → ((exp‘-(ℑ‘𝐴)) = (exp‘0) ↔ -(ℑ‘𝐴) = 0))
74, 5, 6sylancl 413 . . . 4 (𝐴 ∈ ℂ → ((exp‘-(ℑ‘𝐴)) = (exp‘0) ↔ -(ℑ‘𝐴) = 0))
82, 7bitr3id 194 . . 3 (𝐴 ∈ ℂ → ((exp‘-(ℑ‘𝐴)) = 1 ↔ -(ℑ‘𝐴) = 0))
93recnd 8011 . . . 4 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℂ)
109negeq0d 8285 . . 3 (𝐴 ∈ ℂ → ((ℑ‘𝐴) = 0 ↔ -(ℑ‘𝐴) = 0))
118, 10bitr4d 191 . 2 (𝐴 ∈ ℂ → ((exp‘-(ℑ‘𝐴)) = 1 ↔ (ℑ‘𝐴) = 0))
12 ax-icn 7931 . . . . . 6 i ∈ ℂ
13 mulcl 7963 . . . . . 6 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
1412, 13mpan 424 . . . . 5 (𝐴 ∈ ℂ → (i · 𝐴) ∈ ℂ)
15 absef 11804 . . . . 5 ((i · 𝐴) ∈ ℂ → (abs‘(exp‘(i · 𝐴))) = (exp‘(ℜ‘(i · 𝐴))))
1614, 15syl 14 . . . 4 (𝐴 ∈ ℂ → (abs‘(exp‘(i · 𝐴))) = (exp‘(ℜ‘(i · 𝐴))))
17 replim 10895 . . . . . . . . . 10 (𝐴 ∈ ℂ → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))))
18 recl 10889 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
1918recnd 8011 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℂ)
20 mulcl 7963 . . . . . . . . . . . 12 ((i ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → (i · (ℑ‘𝐴)) ∈ ℂ)
2112, 9, 20sylancr 414 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (i · (ℑ‘𝐴)) ∈ ℂ)
2219, 21addcomd 8133 . . . . . . . . . 10 (𝐴 ∈ ℂ → ((ℜ‘𝐴) + (i · (ℑ‘𝐴))) = ((i · (ℑ‘𝐴)) + (ℜ‘𝐴)))
2317, 22eqtrd 2222 . . . . . . . . 9 (𝐴 ∈ ℂ → 𝐴 = ((i · (ℑ‘𝐴)) + (ℜ‘𝐴)))
2423oveq2d 5908 . . . . . . . 8 (𝐴 ∈ ℂ → (i · 𝐴) = (i · ((i · (ℑ‘𝐴)) + (ℜ‘𝐴))))
25 adddi 7968 . . . . . . . . . . 11 ((i ∈ ℂ ∧ (i · (ℑ‘𝐴)) ∈ ℂ ∧ (ℜ‘𝐴) ∈ ℂ) → (i · ((i · (ℑ‘𝐴)) + (ℜ‘𝐴))) = ((i · (i · (ℑ‘𝐴))) + (i · (ℜ‘𝐴))))
2612, 25mp3an1 1335 . . . . . . . . . 10 (((i · (ℑ‘𝐴)) ∈ ℂ ∧ (ℜ‘𝐴) ∈ ℂ) → (i · ((i · (ℑ‘𝐴)) + (ℜ‘𝐴))) = ((i · (i · (ℑ‘𝐴))) + (i · (ℜ‘𝐴))))
2721, 19, 26syl2anc 411 . . . . . . . . 9 (𝐴 ∈ ℂ → (i · ((i · (ℑ‘𝐴)) + (ℜ‘𝐴))) = ((i · (i · (ℑ‘𝐴))) + (i · (ℜ‘𝐴))))
28 ixi 8565 . . . . . . . . . . . 12 (i · i) = -1
2928oveq1i 5902 . . . . . . . . . . 11 ((i · i) · (ℑ‘𝐴)) = (-1 · (ℑ‘𝐴))
30 mulass 7967 . . . . . . . . . . . . 13 ((i ∈ ℂ ∧ i ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → ((i · i) · (ℑ‘𝐴)) = (i · (i · (ℑ‘𝐴))))
3112, 12, 30mp3an12 1338 . . . . . . . . . . . 12 ((ℑ‘𝐴) ∈ ℂ → ((i · i) · (ℑ‘𝐴)) = (i · (i · (ℑ‘𝐴))))
329, 31syl 14 . . . . . . . . . . 11 (𝐴 ∈ ℂ → ((i · i) · (ℑ‘𝐴)) = (i · (i · (ℑ‘𝐴))))
339mulm1d 8392 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (-1 · (ℑ‘𝐴)) = -(ℑ‘𝐴))
3429, 32, 333eqtr3a 2246 . . . . . . . . . 10 (𝐴 ∈ ℂ → (i · (i · (ℑ‘𝐴))) = -(ℑ‘𝐴))
3534oveq1d 5907 . . . . . . . . 9 (𝐴 ∈ ℂ → ((i · (i · (ℑ‘𝐴))) + (i · (ℜ‘𝐴))) = (-(ℑ‘𝐴) + (i · (ℜ‘𝐴))))
3627, 35eqtrd 2222 . . . . . . . 8 (𝐴 ∈ ℂ → (i · ((i · (ℑ‘𝐴)) + (ℜ‘𝐴))) = (-(ℑ‘𝐴) + (i · (ℜ‘𝐴))))
3724, 36eqtrd 2222 . . . . . . 7 (𝐴 ∈ ℂ → (i · 𝐴) = (-(ℑ‘𝐴) + (i · (ℜ‘𝐴))))
3837fveq2d 5535 . . . . . 6 (𝐴 ∈ ℂ → (ℜ‘(i · 𝐴)) = (ℜ‘(-(ℑ‘𝐴) + (i · (ℜ‘𝐴)))))
394, 18crred 11012 . . . . . 6 (𝐴 ∈ ℂ → (ℜ‘(-(ℑ‘𝐴) + (i · (ℜ‘𝐴)))) = -(ℑ‘𝐴))
4038, 39eqtrd 2222 . . . . 5 (𝐴 ∈ ℂ → (ℜ‘(i · 𝐴)) = -(ℑ‘𝐴))
4140fveq2d 5535 . . . 4 (𝐴 ∈ ℂ → (exp‘(ℜ‘(i · 𝐴))) = (exp‘-(ℑ‘𝐴)))
4216, 41eqtrd 2222 . . 3 (𝐴 ∈ ℂ → (abs‘(exp‘(i · 𝐴))) = (exp‘-(ℑ‘𝐴)))
4342eqeq1d 2198 . 2 (𝐴 ∈ ℂ → ((abs‘(exp‘(i · 𝐴))) = 1 ↔ (exp‘-(ℑ‘𝐴)) = 1))
44 reim0b 10898 . 2 (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (ℑ‘𝐴) = 0))
4511, 43, 443bitr4rd 221 1 (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (abs‘(exp‘(i · 𝐴))) = 1))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1364  wcel 2160  cfv 5232  (class class class)co 5892  cc 7834  cr 7835  0cc0 7836  1c1 7837  ici 7838   + caddc 7839   · cmul 7841  -cneg 8154  cre 10876  cim 10877  abscabs 11033  expce 11677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-setind 4551  ax-iinf 4602  ax-cnex 7927  ax-resscn 7928  ax-1cn 7929  ax-1re 7930  ax-icn 7931  ax-addcl 7932  ax-addrcl 7933  ax-mulcl 7934  ax-mulrcl 7935  ax-addcom 7936  ax-mulcom 7937  ax-addass 7938  ax-mulass 7939  ax-distr 7940  ax-i2m1 7941  ax-0lt1 7942  ax-1rid 7943  ax-0id 7944  ax-rnegex 7945  ax-precex 7946  ax-cnre 7947  ax-pre-ltirr 7948  ax-pre-ltwlin 7949  ax-pre-lttrn 7950  ax-pre-apti 7951  ax-pre-ltadd 7952  ax-pre-mulgt0 7953  ax-pre-mulext 7954  ax-arch 7955  ax-caucvg 7956
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-disj 3996  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4308  df-po 4311  df-iso 4312  df-iord 4381  df-on 4383  df-ilim 4384  df-suc 4386  df-iom 4605  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-res 4653  df-ima 4654  df-iota 5193  df-fun 5234  df-fn 5235  df-f 5236  df-f1 5237  df-fo 5238  df-f1o 5239  df-fv 5240  df-isom 5241  df-riota 5848  df-ov 5895  df-oprab 5896  df-mpo 5897  df-1st 6160  df-2nd 6161  df-recs 6325  df-irdg 6390  df-frec 6411  df-1o 6436  df-oadd 6440  df-er 6554  df-en 6762  df-dom 6763  df-fin 6764  df-sup 7008  df-pnf 8019  df-mnf 8020  df-xr 8021  df-ltxr 8022  df-le 8023  df-sub 8155  df-neg 8156  df-reap 8557  df-ap 8564  df-div 8655  df-inn 8945  df-2 9003  df-3 9004  df-4 9005  df-n0 9202  df-z 9279  df-uz 9554  df-q 9645  df-rp 9679  df-ico 9919  df-fz 10034  df-fzo 10168  df-seqfrec 10472  df-exp 10546  df-fac 10733  df-bc 10755  df-ihash 10783  df-cj 10878  df-re 10879  df-im 10880  df-rsqrt 11034  df-abs 11035  df-clim 11314  df-sumdc 11389  df-ef 11683  df-sin 11685  df-cos 11686
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator