ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  absefib GIF version

Theorem absefib 11466
Description: A complex number is real iff the exponential of its product with i has absolute value one. (Contributed by NM, 21-Aug-2008.)
Assertion
Ref Expression
absefib (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (abs‘(exp‘(i · 𝐴))) = 1))

Proof of Theorem absefib
StepHypRef Expression
1 ef0 11367 . . . . 5 (exp‘0) = 1
21eqeq2i 2148 . . . 4 ((exp‘-(ℑ‘𝐴)) = (exp‘0) ↔ (exp‘-(ℑ‘𝐴)) = 1)
3 imcl 10619 . . . . . 6 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ)
43renegcld 8135 . . . . 5 (𝐴 ∈ ℂ → -(ℑ‘𝐴) ∈ ℝ)
5 0re 7759 . . . . 5 0 ∈ ℝ
6 reef11 11395 . . . . 5 ((-(ℑ‘𝐴) ∈ ℝ ∧ 0 ∈ ℝ) → ((exp‘-(ℑ‘𝐴)) = (exp‘0) ↔ -(ℑ‘𝐴) = 0))
74, 5, 6sylancl 409 . . . 4 (𝐴 ∈ ℂ → ((exp‘-(ℑ‘𝐴)) = (exp‘0) ↔ -(ℑ‘𝐴) = 0))
82, 7syl5bbr 193 . . 3 (𝐴 ∈ ℂ → ((exp‘-(ℑ‘𝐴)) = 1 ↔ -(ℑ‘𝐴) = 0))
93recnd 7787 . . . 4 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℂ)
109negeq0d 8058 . . 3 (𝐴 ∈ ℂ → ((ℑ‘𝐴) = 0 ↔ -(ℑ‘𝐴) = 0))
118, 10bitr4d 190 . 2 (𝐴 ∈ ℂ → ((exp‘-(ℑ‘𝐴)) = 1 ↔ (ℑ‘𝐴) = 0))
12 ax-icn 7708 . . . . . 6 i ∈ ℂ
13 mulcl 7740 . . . . . 6 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
1412, 13mpan 420 . . . . 5 (𝐴 ∈ ℂ → (i · 𝐴) ∈ ℂ)
15 absef 11465 . . . . 5 ((i · 𝐴) ∈ ℂ → (abs‘(exp‘(i · 𝐴))) = (exp‘(ℜ‘(i · 𝐴))))
1614, 15syl 14 . . . 4 (𝐴 ∈ ℂ → (abs‘(exp‘(i · 𝐴))) = (exp‘(ℜ‘(i · 𝐴))))
17 replim 10624 . . . . . . . . . 10 (𝐴 ∈ ℂ → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))))
18 recl 10618 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
1918recnd 7787 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℂ)
20 mulcl 7740 . . . . . . . . . . . 12 ((i ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → (i · (ℑ‘𝐴)) ∈ ℂ)
2112, 9, 20sylancr 410 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (i · (ℑ‘𝐴)) ∈ ℂ)
2219, 21addcomd 7906 . . . . . . . . . 10 (𝐴 ∈ ℂ → ((ℜ‘𝐴) + (i · (ℑ‘𝐴))) = ((i · (ℑ‘𝐴)) + (ℜ‘𝐴)))
2317, 22eqtrd 2170 . . . . . . . . 9 (𝐴 ∈ ℂ → 𝐴 = ((i · (ℑ‘𝐴)) + (ℜ‘𝐴)))
2423oveq2d 5783 . . . . . . . 8 (𝐴 ∈ ℂ → (i · 𝐴) = (i · ((i · (ℑ‘𝐴)) + (ℜ‘𝐴))))
25 adddi 7745 . . . . . . . . . . 11 ((i ∈ ℂ ∧ (i · (ℑ‘𝐴)) ∈ ℂ ∧ (ℜ‘𝐴) ∈ ℂ) → (i · ((i · (ℑ‘𝐴)) + (ℜ‘𝐴))) = ((i · (i · (ℑ‘𝐴))) + (i · (ℜ‘𝐴))))
2612, 25mp3an1 1302 . . . . . . . . . 10 (((i · (ℑ‘𝐴)) ∈ ℂ ∧ (ℜ‘𝐴) ∈ ℂ) → (i · ((i · (ℑ‘𝐴)) + (ℜ‘𝐴))) = ((i · (i · (ℑ‘𝐴))) + (i · (ℜ‘𝐴))))
2721, 19, 26syl2anc 408 . . . . . . . . 9 (𝐴 ∈ ℂ → (i · ((i · (ℑ‘𝐴)) + (ℜ‘𝐴))) = ((i · (i · (ℑ‘𝐴))) + (i · (ℜ‘𝐴))))
28 ixi 8338 . . . . . . . . . . . 12 (i · i) = -1
2928oveq1i 5777 . . . . . . . . . . 11 ((i · i) · (ℑ‘𝐴)) = (-1 · (ℑ‘𝐴))
30 mulass 7744 . . . . . . . . . . . . 13 ((i ∈ ℂ ∧ i ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → ((i · i) · (ℑ‘𝐴)) = (i · (i · (ℑ‘𝐴))))
3112, 12, 30mp3an12 1305 . . . . . . . . . . . 12 ((ℑ‘𝐴) ∈ ℂ → ((i · i) · (ℑ‘𝐴)) = (i · (i · (ℑ‘𝐴))))
329, 31syl 14 . . . . . . . . . . 11 (𝐴 ∈ ℂ → ((i · i) · (ℑ‘𝐴)) = (i · (i · (ℑ‘𝐴))))
339mulm1d 8165 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (-1 · (ℑ‘𝐴)) = -(ℑ‘𝐴))
3429, 32, 333eqtr3a 2194 . . . . . . . . . 10 (𝐴 ∈ ℂ → (i · (i · (ℑ‘𝐴))) = -(ℑ‘𝐴))
3534oveq1d 5782 . . . . . . . . 9 (𝐴 ∈ ℂ → ((i · (i · (ℑ‘𝐴))) + (i · (ℜ‘𝐴))) = (-(ℑ‘𝐴) + (i · (ℜ‘𝐴))))
3627, 35eqtrd 2170 . . . . . . . 8 (𝐴 ∈ ℂ → (i · ((i · (ℑ‘𝐴)) + (ℜ‘𝐴))) = (-(ℑ‘𝐴) + (i · (ℜ‘𝐴))))
3724, 36eqtrd 2170 . . . . . . 7 (𝐴 ∈ ℂ → (i · 𝐴) = (-(ℑ‘𝐴) + (i · (ℜ‘𝐴))))
3837fveq2d 5418 . . . . . 6 (𝐴 ∈ ℂ → (ℜ‘(i · 𝐴)) = (ℜ‘(-(ℑ‘𝐴) + (i · (ℜ‘𝐴)))))
394, 18crred 10741 . . . . . 6 (𝐴 ∈ ℂ → (ℜ‘(-(ℑ‘𝐴) + (i · (ℜ‘𝐴)))) = -(ℑ‘𝐴))
4038, 39eqtrd 2170 . . . . 5 (𝐴 ∈ ℂ → (ℜ‘(i · 𝐴)) = -(ℑ‘𝐴))
4140fveq2d 5418 . . . 4 (𝐴 ∈ ℂ → (exp‘(ℜ‘(i · 𝐴))) = (exp‘-(ℑ‘𝐴)))
4216, 41eqtrd 2170 . . 3 (𝐴 ∈ ℂ → (abs‘(exp‘(i · 𝐴))) = (exp‘-(ℑ‘𝐴)))
4342eqeq1d 2146 . 2 (𝐴 ∈ ℂ → ((abs‘(exp‘(i · 𝐴))) = 1 ↔ (exp‘-(ℑ‘𝐴)) = 1))
44 reim0b 10627 . 2 (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (ℑ‘𝐴) = 0))
4511, 43, 443bitr4rd 220 1 (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (abs‘(exp‘(i · 𝐴))) = 1))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104   = wceq 1331  wcel 1480  cfv 5118  (class class class)co 5767  cc 7611  cr 7612  0cc0 7613  1c1 7614  ici 7615   + caddc 7616   · cmul 7618  -cneg 7927  cre 10605  cim 10606  abscabs 10762  expce 11337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-mulrcl 7712  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-mulass 7716  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-1rid 7720  ax-0id 7721  ax-rnegex 7722  ax-precex 7723  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729  ax-pre-mulgt0 7730  ax-pre-mulext 7731  ax-arch 7732  ax-caucvg 7733
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rmo 2422  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-if 3470  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-disj 3902  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-id 4210  df-po 4213  df-iso 4214  df-iord 4283  df-on 4285  df-ilim 4286  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-isom 5127  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-irdg 6260  df-frec 6281  df-1o 6306  df-oadd 6310  df-er 6422  df-en 6628  df-dom 6629  df-fin 6630  df-sup 6864  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-reap 8330  df-ap 8337  df-div 8426  df-inn 8714  df-2 8772  df-3 8773  df-4 8774  df-n0 8971  df-z 9048  df-uz 9320  df-q 9405  df-rp 9435  df-ico 9670  df-fz 9784  df-fzo 9913  df-seqfrec 10212  df-exp 10286  df-fac 10465  df-bc 10487  df-ihash 10515  df-cj 10607  df-re 10608  df-im 10609  df-rsqrt 10763  df-abs 10764  df-clim 11041  df-sumdc 11116  df-ef 11343  df-sin 11345  df-cos 11346
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator