ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnsnsplitdc GIF version

Theorem fnsnsplitdc 6604
Description: Split a function into a single point and all the rest. (Contributed by Stefan O'Rear, 27-Feb-2015.) (Revised by Jim Kingdon, 29-Jan-2023.)
Assertion
Ref Expression
fnsnsplitdc ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝐹 Fn 𝐴𝑋𝐴) → 𝐹 = ((𝐹 ↾ (𝐴 ∖ {𝑋})) ∪ {⟨𝑋, (𝐹𝑋)⟩}))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem fnsnsplitdc
StepHypRef Expression
1 fnresdm 5394 . . 3 (𝐹 Fn 𝐴 → (𝐹𝐴) = 𝐹)
213ad2ant2 1022 . 2 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝐹 Fn 𝐴𝑋𝐴) → (𝐹𝐴) = 𝐹)
3 resundi 4981 . . 3 (𝐹 ↾ ((𝐴 ∖ {𝑋}) ∪ {𝑋})) = ((𝐹 ↾ (𝐴 ∖ {𝑋})) ∪ (𝐹 ↾ {𝑋}))
4 dcdifsnid 6603 . . . . 5 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑋𝐴) → ((𝐴 ∖ {𝑋}) ∪ {𝑋}) = 𝐴)
543adant2 1019 . . . 4 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝐹 Fn 𝐴𝑋𝐴) → ((𝐴 ∖ {𝑋}) ∪ {𝑋}) = 𝐴)
65reseq2d 4968 . . 3 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝐹 Fn 𝐴𝑋𝐴) → (𝐹 ↾ ((𝐴 ∖ {𝑋}) ∪ {𝑋})) = (𝐹𝐴))
7 fnressn 5783 . . . . 5 ((𝐹 Fn 𝐴𝑋𝐴) → (𝐹 ↾ {𝑋}) = {⟨𝑋, (𝐹𝑋)⟩})
87uneq2d 3331 . . . 4 ((𝐹 Fn 𝐴𝑋𝐴) → ((𝐹 ↾ (𝐴 ∖ {𝑋})) ∪ (𝐹 ↾ {𝑋})) = ((𝐹 ↾ (𝐴 ∖ {𝑋})) ∪ {⟨𝑋, (𝐹𝑋)⟩}))
983adant1 1018 . . 3 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝐹 Fn 𝐴𝑋𝐴) → ((𝐹 ↾ (𝐴 ∖ {𝑋})) ∪ (𝐹 ↾ {𝑋})) = ((𝐹 ↾ (𝐴 ∖ {𝑋})) ∪ {⟨𝑋, (𝐹𝑋)⟩}))
103, 6, 93eqtr3a 2263 . 2 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝐹 Fn 𝐴𝑋𝐴) → (𝐹𝐴) = ((𝐹 ↾ (𝐴 ∖ {𝑋})) ∪ {⟨𝑋, (𝐹𝑋)⟩}))
112, 10eqtr3d 2241 1 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝐹 Fn 𝐴𝑋𝐴) → 𝐹 = ((𝐹 ↾ (𝐴 ∖ {𝑋})) ∪ {⟨𝑋, (𝐹𝑋)⟩}))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  DECID wdc 836  w3a 981   = wceq 1373  wcel 2177  wral 2485  cdif 3167  cun 3168  {csn 3638  cop 3641  cres 4685   Fn wfn 5275  cfv 5280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-reu 2492  df-v 2775  df-sbc 3003  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-br 4052  df-opab 4114  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288
This theorem is referenced by:  funresdfunsndc  6605
  Copyright terms: Public domain W3C validator