ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnsnsplitdc GIF version

Theorem fnsnsplitdc 6401
Description: Split a function into a single point and all the rest. (Contributed by Stefan O'Rear, 27-Feb-2015.) (Revised by Jim Kingdon, 29-Jan-2023.)
Assertion
Ref Expression
fnsnsplitdc ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝐹 Fn 𝐴𝑋𝐴) → 𝐹 = ((𝐹 ↾ (𝐴 ∖ {𝑋})) ∪ {⟨𝑋, (𝐹𝑋)⟩}))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem fnsnsplitdc
StepHypRef Expression
1 fnresdm 5232 . . 3 (𝐹 Fn 𝐴 → (𝐹𝐴) = 𝐹)
213ad2ant2 1003 . 2 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝐹 Fn 𝐴𝑋𝐴) → (𝐹𝐴) = 𝐹)
3 resundi 4832 . . 3 (𝐹 ↾ ((𝐴 ∖ {𝑋}) ∪ {𝑋})) = ((𝐹 ↾ (𝐴 ∖ {𝑋})) ∪ (𝐹 ↾ {𝑋}))
4 dcdifsnid 6400 . . . . 5 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑋𝐴) → ((𝐴 ∖ {𝑋}) ∪ {𝑋}) = 𝐴)
543adant2 1000 . . . 4 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝐹 Fn 𝐴𝑋𝐴) → ((𝐴 ∖ {𝑋}) ∪ {𝑋}) = 𝐴)
65reseq2d 4819 . . 3 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝐹 Fn 𝐴𝑋𝐴) → (𝐹 ↾ ((𝐴 ∖ {𝑋}) ∪ {𝑋})) = (𝐹𝐴))
7 fnressn 5606 . . . . 5 ((𝐹 Fn 𝐴𝑋𝐴) → (𝐹 ↾ {𝑋}) = {⟨𝑋, (𝐹𝑋)⟩})
87uneq2d 3230 . . . 4 ((𝐹 Fn 𝐴𝑋𝐴) → ((𝐹 ↾ (𝐴 ∖ {𝑋})) ∪ (𝐹 ↾ {𝑋})) = ((𝐹 ↾ (𝐴 ∖ {𝑋})) ∪ {⟨𝑋, (𝐹𝑋)⟩}))
983adant1 999 . . 3 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝐹 Fn 𝐴𝑋𝐴) → ((𝐹 ↾ (𝐴 ∖ {𝑋})) ∪ (𝐹 ↾ {𝑋})) = ((𝐹 ↾ (𝐴 ∖ {𝑋})) ∪ {⟨𝑋, (𝐹𝑋)⟩}))
103, 6, 93eqtr3a 2196 . 2 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝐹 Fn 𝐴𝑋𝐴) → (𝐹𝐴) = ((𝐹 ↾ (𝐴 ∖ {𝑋})) ∪ {⟨𝑋, (𝐹𝑋)⟩}))
112, 10eqtr3d 2174 1 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝐹 Fn 𝐴𝑋𝐴) → 𝐹 = ((𝐹 ↾ (𝐴 ∖ {𝑋})) ∪ {⟨𝑋, (𝐹𝑋)⟩}))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  DECID wdc 819  w3a 962   = wceq 1331  wcel 1480  wral 2416  cdif 3068  cun 3069  {csn 3527  cop 3530  cres 4541   Fn wfn 5118  cfv 5123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-reu 2423  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131
This theorem is referenced by:  funresdfunsndc  6402
  Copyright terms: Public domain W3C validator