ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnsnsplitdc GIF version

Theorem fnsnsplitdc 6558
Description: Split a function into a single point and all the rest. (Contributed by Stefan O'Rear, 27-Feb-2015.) (Revised by Jim Kingdon, 29-Jan-2023.)
Assertion
Ref Expression
fnsnsplitdc ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝐹 Fn 𝐴𝑋𝐴) → 𝐹 = ((𝐹 ↾ (𝐴 ∖ {𝑋})) ∪ {⟨𝑋, (𝐹𝑋)⟩}))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem fnsnsplitdc
StepHypRef Expression
1 fnresdm 5363 . . 3 (𝐹 Fn 𝐴 → (𝐹𝐴) = 𝐹)
213ad2ant2 1021 . 2 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝐹 Fn 𝐴𝑋𝐴) → (𝐹𝐴) = 𝐹)
3 resundi 4955 . . 3 (𝐹 ↾ ((𝐴 ∖ {𝑋}) ∪ {𝑋})) = ((𝐹 ↾ (𝐴 ∖ {𝑋})) ∪ (𝐹 ↾ {𝑋}))
4 dcdifsnid 6557 . . . . 5 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝑋𝐴) → ((𝐴 ∖ {𝑋}) ∪ {𝑋}) = 𝐴)
543adant2 1018 . . . 4 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝐹 Fn 𝐴𝑋𝐴) → ((𝐴 ∖ {𝑋}) ∪ {𝑋}) = 𝐴)
65reseq2d 4942 . . 3 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝐹 Fn 𝐴𝑋𝐴) → (𝐹 ↾ ((𝐴 ∖ {𝑋}) ∪ {𝑋})) = (𝐹𝐴))
7 fnressn 5744 . . . . 5 ((𝐹 Fn 𝐴𝑋𝐴) → (𝐹 ↾ {𝑋}) = {⟨𝑋, (𝐹𝑋)⟩})
87uneq2d 3313 . . . 4 ((𝐹 Fn 𝐴𝑋𝐴) → ((𝐹 ↾ (𝐴 ∖ {𝑋})) ∪ (𝐹 ↾ {𝑋})) = ((𝐹 ↾ (𝐴 ∖ {𝑋})) ∪ {⟨𝑋, (𝐹𝑋)⟩}))
983adant1 1017 . . 3 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝐹 Fn 𝐴𝑋𝐴) → ((𝐹 ↾ (𝐴 ∖ {𝑋})) ∪ (𝐹 ↾ {𝑋})) = ((𝐹 ↾ (𝐴 ∖ {𝑋})) ∪ {⟨𝑋, (𝐹𝑋)⟩}))
103, 6, 93eqtr3a 2250 . 2 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝐹 Fn 𝐴𝑋𝐴) → (𝐹𝐴) = ((𝐹 ↾ (𝐴 ∖ {𝑋})) ∪ {⟨𝑋, (𝐹𝑋)⟩}))
112, 10eqtr3d 2228 1 ((∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦𝐹 Fn 𝐴𝑋𝐴) → 𝐹 = ((𝐹 ↾ (𝐴 ∖ {𝑋})) ∪ {⟨𝑋, (𝐹𝑋)⟩}))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  DECID wdc 835  w3a 980   = wceq 1364  wcel 2164  wral 2472  cdif 3150  cun 3151  {csn 3618  cop 3621  cres 4661   Fn wfn 5249  cfv 5254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262
This theorem is referenced by:  funresdfunsndc  6559
  Copyright terms: Public domain W3C validator