ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3eqtr3a Unicode version

Theorem 3eqtr3a 2151
Description: A chained equality inference, useful for converting from definitions. (Contributed by Mario Carneiro, 6-Nov-2015.)
Hypotheses
Ref Expression
3eqtr3a.1  |-  A  =  B
3eqtr3a.2  |-  ( ph  ->  A  =  C )
3eqtr3a.3  |-  ( ph  ->  B  =  D )
Assertion
Ref Expression
3eqtr3a  |-  ( ph  ->  C  =  D )

Proof of Theorem 3eqtr3a
StepHypRef Expression
1 3eqtr3a.2 . 2  |-  ( ph  ->  A  =  C )
2 3eqtr3a.1 . . 3  |-  A  =  B
3 3eqtr3a.3 . . 3  |-  ( ph  ->  B  =  D )
42, 3syl5eq 2139 . 2  |-  ( ph  ->  A  =  D )
51, 4eqtr3d 2129 1  |-  ( ph  ->  C  =  D )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1296
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1388  ax-gen 1390  ax-4 1452  ax-17 1471  ax-ext 2077
This theorem depends on definitions:  df-bi 116  df-cleq 2088
This theorem is referenced by:  uneqin  3266  coi2  4981  foima  5273  f1imacnv  5305  fvsnun2  5534  fnsnsplitdc  6304  phplem4  6651  phplem4on  6663  halfnqq  7066  resqrexlemcalc1  10578  absefib  11224  efieq1re  11225  restopnb  12048
  Copyright terms: Public domain W3C validator