Proof of Theorem halfnqq
| Step | Hyp | Ref
| Expression |
| 1 | | 1nq 7433 |
. . . . . . . . 9
⊢
1Q ∈ Q |
| 2 | | addclnq 7442 |
. . . . . . . . 9
⊢
((1Q ∈ Q ∧
1Q ∈ Q) →
(1Q +Q
1Q) ∈ Q) |
| 3 | 1, 1, 2 | mp2an 426 |
. . . . . . . 8
⊢
(1Q +Q
1Q) ∈ Q |
| 4 | | recclnq 7459 |
. . . . . . . . 9
⊢
((1Q +Q
1Q) ∈ Q →
(*Q‘(1Q
+Q 1Q)) ∈
Q) |
| 5 | 3, 4 | ax-mp 5 |
. . . . . . . 8
⊢
(*Q‘(1Q
+Q 1Q)) ∈
Q |
| 6 | | distrnqg 7454 |
. . . . . . . 8
⊢
(((1Q +Q
1Q) ∈ Q ∧
(*Q‘(1Q
+Q 1Q)) ∈
Q ∧
(*Q‘(1Q
+Q 1Q)) ∈
Q) → ((1Q
+Q 1Q)
·Q
((*Q‘(1Q
+Q 1Q))
+Q
(*Q‘(1Q
+Q 1Q)))) =
(((1Q +Q
1Q) ·Q
(*Q‘(1Q
+Q 1Q)))
+Q ((1Q
+Q 1Q)
·Q
(*Q‘(1Q
+Q 1Q))))) |
| 7 | 3, 5, 5, 6 | mp3an 1348 |
. . . . . . 7
⊢
((1Q +Q
1Q) ·Q
((*Q‘(1Q
+Q 1Q))
+Q
(*Q‘(1Q
+Q 1Q)))) =
(((1Q +Q
1Q) ·Q
(*Q‘(1Q
+Q 1Q)))
+Q ((1Q
+Q 1Q)
·Q
(*Q‘(1Q
+Q 1Q)))) |
| 8 | | recidnq 7460 |
. . . . . . . . 9
⊢
((1Q +Q
1Q) ∈ Q →
((1Q +Q
1Q) ·Q
(*Q‘(1Q
+Q 1Q))) =
1Q) |
| 9 | 3, 8 | ax-mp 5 |
. . . . . . . 8
⊢
((1Q +Q
1Q) ·Q
(*Q‘(1Q
+Q 1Q))) =
1Q |
| 10 | 9, 9 | oveq12i 5934 |
. . . . . . 7
⊢
(((1Q +Q
1Q) ·Q
(*Q‘(1Q
+Q 1Q)))
+Q ((1Q
+Q 1Q)
·Q
(*Q‘(1Q
+Q 1Q)))) =
(1Q +Q
1Q) |
| 11 | 7, 10 | eqtri 2217 |
. . . . . 6
⊢
((1Q +Q
1Q) ·Q
((*Q‘(1Q
+Q 1Q))
+Q
(*Q‘(1Q
+Q 1Q)))) =
(1Q +Q
1Q) |
| 12 | 11 | oveq1i 5932 |
. . . . 5
⊢
(((1Q +Q
1Q) ·Q
((*Q‘(1Q
+Q 1Q))
+Q
(*Q‘(1Q
+Q 1Q))))
·Q
(*Q‘(1Q
+Q 1Q))) =
((1Q +Q
1Q) ·Q
(*Q‘(1Q
+Q 1Q))) |
| 13 | 9 | oveq2i 5933 |
. . . . . 6
⊢
(((*Q‘(1Q
+Q 1Q))
+Q
(*Q‘(1Q
+Q 1Q)))
·Q ((1Q
+Q 1Q)
·Q
(*Q‘(1Q
+Q 1Q)))) =
(((*Q‘(1Q
+Q 1Q))
+Q
(*Q‘(1Q
+Q 1Q)))
·Q
1Q) |
| 14 | | addclnq 7442 |
. . . . . . . . 9
⊢
(((*Q‘(1Q
+Q 1Q)) ∈
Q ∧
(*Q‘(1Q
+Q 1Q)) ∈
Q) →
((*Q‘(1Q
+Q 1Q))
+Q
(*Q‘(1Q
+Q 1Q))) ∈
Q) |
| 15 | 5, 5, 14 | mp2an 426 |
. . . . . . . 8
⊢
((*Q‘(1Q
+Q 1Q))
+Q
(*Q‘(1Q
+Q 1Q))) ∈
Q |
| 16 | | mulassnqg 7451 |
. . . . . . . 8
⊢
((((*Q‘(1Q
+Q 1Q))
+Q
(*Q‘(1Q
+Q 1Q))) ∈
Q ∧ (1Q +Q
1Q) ∈ Q ∧
(*Q‘(1Q
+Q 1Q)) ∈
Q) →
((((*Q‘(1Q
+Q 1Q))
+Q
(*Q‘(1Q
+Q 1Q)))
·Q (1Q
+Q 1Q))
·Q
(*Q‘(1Q
+Q 1Q))) =
(((*Q‘(1Q
+Q 1Q))
+Q
(*Q‘(1Q
+Q 1Q)))
·Q ((1Q
+Q 1Q)
·Q
(*Q‘(1Q
+Q 1Q))))) |
| 17 | 15, 3, 5, 16 | mp3an 1348 |
. . . . . . 7
⊢
((((*Q‘(1Q
+Q 1Q))
+Q
(*Q‘(1Q
+Q 1Q)))
·Q (1Q
+Q 1Q))
·Q
(*Q‘(1Q
+Q 1Q))) =
(((*Q‘(1Q
+Q 1Q))
+Q
(*Q‘(1Q
+Q 1Q)))
·Q ((1Q
+Q 1Q)
·Q
(*Q‘(1Q
+Q 1Q)))) |
| 18 | | mulcomnqg 7450 |
. . . . . . . . 9
⊢
((((*Q‘(1Q
+Q 1Q))
+Q
(*Q‘(1Q
+Q 1Q))) ∈
Q ∧ (1Q +Q
1Q) ∈ Q) →
(((*Q‘(1Q
+Q 1Q))
+Q
(*Q‘(1Q
+Q 1Q)))
·Q (1Q
+Q 1Q)) =
((1Q +Q
1Q) ·Q
((*Q‘(1Q
+Q 1Q))
+Q
(*Q‘(1Q
+Q 1Q))))) |
| 19 | 15, 3, 18 | mp2an 426 |
. . . . . . . 8
⊢
(((*Q‘(1Q
+Q 1Q))
+Q
(*Q‘(1Q
+Q 1Q)))
·Q (1Q
+Q 1Q)) =
((1Q +Q
1Q) ·Q
((*Q‘(1Q
+Q 1Q))
+Q
(*Q‘(1Q
+Q 1Q)))) |
| 20 | 19 | oveq1i 5932 |
. . . . . . 7
⊢
((((*Q‘(1Q
+Q 1Q))
+Q
(*Q‘(1Q
+Q 1Q)))
·Q (1Q
+Q 1Q))
·Q
(*Q‘(1Q
+Q 1Q))) =
(((1Q +Q
1Q) ·Q
((*Q‘(1Q
+Q 1Q))
+Q
(*Q‘(1Q
+Q 1Q))))
·Q
(*Q‘(1Q
+Q 1Q))) |
| 21 | 17, 20 | eqtr3i 2219 |
. . . . . 6
⊢
(((*Q‘(1Q
+Q 1Q))
+Q
(*Q‘(1Q
+Q 1Q)))
·Q ((1Q
+Q 1Q)
·Q
(*Q‘(1Q
+Q 1Q)))) =
(((1Q +Q
1Q) ·Q
((*Q‘(1Q
+Q 1Q))
+Q
(*Q‘(1Q
+Q 1Q))))
·Q
(*Q‘(1Q
+Q 1Q))) |
| 22 | 4, 4, 14 | syl2anc 411 |
. . . . . . 7
⊢
((1Q +Q
1Q) ∈ Q →
((*Q‘(1Q
+Q 1Q))
+Q
(*Q‘(1Q
+Q 1Q))) ∈
Q) |
| 23 | | mulidnq 7456 |
. . . . . . 7
⊢
(((*Q‘(1Q
+Q 1Q))
+Q
(*Q‘(1Q
+Q 1Q))) ∈
Q →
(((*Q‘(1Q
+Q 1Q))
+Q
(*Q‘(1Q
+Q 1Q)))
·Q 1Q) =
((*Q‘(1Q
+Q 1Q))
+Q
(*Q‘(1Q
+Q 1Q)))) |
| 24 | 3, 22, 23 | mp2b 8 |
. . . . . 6
⊢
(((*Q‘(1Q
+Q 1Q))
+Q
(*Q‘(1Q
+Q 1Q)))
·Q 1Q) =
((*Q‘(1Q
+Q 1Q))
+Q
(*Q‘(1Q
+Q 1Q))) |
| 25 | 13, 21, 24 | 3eqtr3i 2225 |
. . . . 5
⊢
(((1Q +Q
1Q) ·Q
((*Q‘(1Q
+Q 1Q))
+Q
(*Q‘(1Q
+Q 1Q))))
·Q
(*Q‘(1Q
+Q 1Q))) =
((*Q‘(1Q
+Q 1Q))
+Q
(*Q‘(1Q
+Q 1Q))) |
| 26 | 12, 25, 9 | 3eqtr3i 2225 |
. . . 4
⊢
((*Q‘(1Q
+Q 1Q))
+Q
(*Q‘(1Q
+Q 1Q))) =
1Q |
| 27 | 26 | oveq2i 5933 |
. . 3
⊢ (𝐴
·Q
((*Q‘(1Q
+Q 1Q))
+Q
(*Q‘(1Q
+Q 1Q)))) = (𝐴
·Q
1Q) |
| 28 | | distrnqg 7454 |
. . . 4
⊢ ((𝐴 ∈ Q ∧
(*Q‘(1Q
+Q 1Q)) ∈
Q ∧
(*Q‘(1Q
+Q 1Q)) ∈
Q) → (𝐴
·Q
((*Q‘(1Q
+Q 1Q))
+Q
(*Q‘(1Q
+Q 1Q)))) = ((𝐴
·Q
(*Q‘(1Q
+Q 1Q)))
+Q (𝐴 ·Q
(*Q‘(1Q
+Q 1Q))))) |
| 29 | 5, 5, 28 | mp3an23 1340 |
. . 3
⊢ (𝐴 ∈ Q →
(𝐴
·Q
((*Q‘(1Q
+Q 1Q))
+Q
(*Q‘(1Q
+Q 1Q)))) = ((𝐴
·Q
(*Q‘(1Q
+Q 1Q)))
+Q (𝐴 ·Q
(*Q‘(1Q
+Q 1Q))))) |
| 30 | | mulidnq 7456 |
. . 3
⊢ (𝐴 ∈ Q →
(𝐴
·Q 1Q) = 𝐴) |
| 31 | 27, 29, 30 | 3eqtr3a 2253 |
. 2
⊢ (𝐴 ∈ Q →
((𝐴
·Q
(*Q‘(1Q
+Q 1Q)))
+Q (𝐴 ·Q
(*Q‘(1Q
+Q 1Q)))) = 𝐴) |
| 32 | | mulclnq 7443 |
. . . 4
⊢ ((𝐴 ∈ Q ∧
(*Q‘(1Q
+Q 1Q)) ∈
Q) → (𝐴
·Q
(*Q‘(1Q
+Q 1Q))) ∈
Q) |
| 33 | 5, 32 | mpan2 425 |
. . 3
⊢ (𝐴 ∈ Q →
(𝐴
·Q
(*Q‘(1Q
+Q 1Q))) ∈
Q) |
| 34 | | id 19 |
. . . . . 6
⊢ (𝑥 = (𝐴 ·Q
(*Q‘(1Q
+Q 1Q))) → 𝑥 = (𝐴 ·Q
(*Q‘(1Q
+Q 1Q)))) |
| 35 | 34, 34 | oveq12d 5940 |
. . . . 5
⊢ (𝑥 = (𝐴 ·Q
(*Q‘(1Q
+Q 1Q))) → (𝑥 +Q
𝑥) = ((𝐴 ·Q
(*Q‘(1Q
+Q 1Q)))
+Q (𝐴 ·Q
(*Q‘(1Q
+Q 1Q))))) |
| 36 | 35 | eqeq1d 2205 |
. . . 4
⊢ (𝑥 = (𝐴 ·Q
(*Q‘(1Q
+Q 1Q))) → ((𝑥 +Q
𝑥) = 𝐴 ↔ ((𝐴 ·Q
(*Q‘(1Q
+Q 1Q)))
+Q (𝐴 ·Q
(*Q‘(1Q
+Q 1Q)))) = 𝐴)) |
| 37 | 36 | adantl 277 |
. . 3
⊢ ((𝐴 ∈ Q ∧
𝑥 = (𝐴 ·Q
(*Q‘(1Q
+Q 1Q)))) → ((𝑥 +Q
𝑥) = 𝐴 ↔ ((𝐴 ·Q
(*Q‘(1Q
+Q 1Q)))
+Q (𝐴 ·Q
(*Q‘(1Q
+Q 1Q)))) = 𝐴)) |
| 38 | 33, 37 | rspcedv 2872 |
. 2
⊢ (𝐴 ∈ Q →
(((𝐴
·Q
(*Q‘(1Q
+Q 1Q)))
+Q (𝐴 ·Q
(*Q‘(1Q
+Q 1Q)))) = 𝐴 → ∃𝑥 ∈ Q (𝑥 +Q 𝑥) = 𝐴)) |
| 39 | 31, 38 | mpd 13 |
1
⊢ (𝐴 ∈ Q →
∃𝑥 ∈
Q (𝑥
+Q 𝑥) = 𝐴) |