ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  halfnqq GIF version

Theorem halfnqq 7351
Description: One-half of any positive fraction is a fraction. (Contributed by Jim Kingdon, 23-Sep-2019.)
Assertion
Ref Expression
halfnqq (𝐴Q → ∃𝑥Q (𝑥 +Q 𝑥) = 𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem halfnqq
StepHypRef Expression
1 1nq 7307 . . . . . . . . 9 1QQ
2 addclnq 7316 . . . . . . . . 9 ((1QQ ∧ 1QQ) → (1Q +Q 1Q) ∈ Q)
31, 1, 2mp2an 423 . . . . . . . 8 (1Q +Q 1Q) ∈ Q
4 recclnq 7333 . . . . . . . . 9 ((1Q +Q 1Q) ∈ Q → (*Q‘(1Q +Q 1Q)) ∈ Q)
53, 4ax-mp 5 . . . . . . . 8 (*Q‘(1Q +Q 1Q)) ∈ Q
6 distrnqg 7328 . . . . . . . 8 (((1Q +Q 1Q) ∈ Q ∧ (*Q‘(1Q +Q 1Q)) ∈ Q ∧ (*Q‘(1Q +Q 1Q)) ∈ Q) → ((1Q +Q 1Q) ·Q ((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q)))) = (((1Q +Q 1Q) ·Q (*Q‘(1Q +Q 1Q))) +Q ((1Q +Q 1Q) ·Q (*Q‘(1Q +Q 1Q)))))
73, 5, 5, 6mp3an 1327 . . . . . . 7 ((1Q +Q 1Q) ·Q ((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q)))) = (((1Q +Q 1Q) ·Q (*Q‘(1Q +Q 1Q))) +Q ((1Q +Q 1Q) ·Q (*Q‘(1Q +Q 1Q))))
8 recidnq 7334 . . . . . . . . 9 ((1Q +Q 1Q) ∈ Q → ((1Q +Q 1Q) ·Q (*Q‘(1Q +Q 1Q))) = 1Q)
93, 8ax-mp 5 . . . . . . . 8 ((1Q +Q 1Q) ·Q (*Q‘(1Q +Q 1Q))) = 1Q
109, 9oveq12i 5854 . . . . . . 7 (((1Q +Q 1Q) ·Q (*Q‘(1Q +Q 1Q))) +Q ((1Q +Q 1Q) ·Q (*Q‘(1Q +Q 1Q)))) = (1Q +Q 1Q)
117, 10eqtri 2186 . . . . . 6 ((1Q +Q 1Q) ·Q ((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q)))) = (1Q +Q 1Q)
1211oveq1i 5852 . . . . 5 (((1Q +Q 1Q) ·Q ((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q)))) ·Q (*Q‘(1Q +Q 1Q))) = ((1Q +Q 1Q) ·Q (*Q‘(1Q +Q 1Q)))
139oveq2i 5853 . . . . . 6 (((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q))) ·Q ((1Q +Q 1Q) ·Q (*Q‘(1Q +Q 1Q)))) = (((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q))) ·Q 1Q)
14 addclnq 7316 . . . . . . . . 9 (((*Q‘(1Q +Q 1Q)) ∈ Q ∧ (*Q‘(1Q +Q 1Q)) ∈ Q) → ((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q))) ∈ Q)
155, 5, 14mp2an 423 . . . . . . . 8 ((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q))) ∈ Q
16 mulassnqg 7325 . . . . . . . 8 ((((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q))) ∈ Q ∧ (1Q +Q 1Q) ∈ Q ∧ (*Q‘(1Q +Q 1Q)) ∈ Q) → ((((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q))) ·Q (1Q +Q 1Q)) ·Q (*Q‘(1Q +Q 1Q))) = (((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q))) ·Q ((1Q +Q 1Q) ·Q (*Q‘(1Q +Q 1Q)))))
1715, 3, 5, 16mp3an 1327 . . . . . . 7 ((((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q))) ·Q (1Q +Q 1Q)) ·Q (*Q‘(1Q +Q 1Q))) = (((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q))) ·Q ((1Q +Q 1Q) ·Q (*Q‘(1Q +Q 1Q))))
18 mulcomnqg 7324 . . . . . . . . 9 ((((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q))) ∈ Q ∧ (1Q +Q 1Q) ∈ Q) → (((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q))) ·Q (1Q +Q 1Q)) = ((1Q +Q 1Q) ·Q ((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q)))))
1915, 3, 18mp2an 423 . . . . . . . 8 (((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q))) ·Q (1Q +Q 1Q)) = ((1Q +Q 1Q) ·Q ((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q))))
2019oveq1i 5852 . . . . . . 7 ((((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q))) ·Q (1Q +Q 1Q)) ·Q (*Q‘(1Q +Q 1Q))) = (((1Q +Q 1Q) ·Q ((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q)))) ·Q (*Q‘(1Q +Q 1Q)))
2117, 20eqtr3i 2188 . . . . . 6 (((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q))) ·Q ((1Q +Q 1Q) ·Q (*Q‘(1Q +Q 1Q)))) = (((1Q +Q 1Q) ·Q ((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q)))) ·Q (*Q‘(1Q +Q 1Q)))
224, 4, 14syl2anc 409 . . . . . . 7 ((1Q +Q 1Q) ∈ Q → ((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q))) ∈ Q)
23 mulidnq 7330 . . . . . . 7 (((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q))) ∈ Q → (((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q))) ·Q 1Q) = ((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q))))
243, 22, 23mp2b 8 . . . . . 6 (((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q))) ·Q 1Q) = ((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q)))
2513, 21, 243eqtr3i 2194 . . . . 5 (((1Q +Q 1Q) ·Q ((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q)))) ·Q (*Q‘(1Q +Q 1Q))) = ((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q)))
2612, 25, 93eqtr3i 2194 . . . 4 ((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q))) = 1Q
2726oveq2i 5853 . . 3 (𝐴 ·Q ((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q)))) = (𝐴 ·Q 1Q)
28 distrnqg 7328 . . . 4 ((𝐴Q ∧ (*Q‘(1Q +Q 1Q)) ∈ Q ∧ (*Q‘(1Q +Q 1Q)) ∈ Q) → (𝐴 ·Q ((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q)))) = ((𝐴 ·Q (*Q‘(1Q +Q 1Q))) +Q (𝐴 ·Q (*Q‘(1Q +Q 1Q)))))
295, 5, 28mp3an23 1319 . . 3 (𝐴Q → (𝐴 ·Q ((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q)))) = ((𝐴 ·Q (*Q‘(1Q +Q 1Q))) +Q (𝐴 ·Q (*Q‘(1Q +Q 1Q)))))
30 mulidnq 7330 . . 3 (𝐴Q → (𝐴 ·Q 1Q) = 𝐴)
3127, 29, 303eqtr3a 2223 . 2 (𝐴Q → ((𝐴 ·Q (*Q‘(1Q +Q 1Q))) +Q (𝐴 ·Q (*Q‘(1Q +Q 1Q)))) = 𝐴)
32 mulclnq 7317 . . . 4 ((𝐴Q ∧ (*Q‘(1Q +Q 1Q)) ∈ Q) → (𝐴 ·Q (*Q‘(1Q +Q 1Q))) ∈ Q)
335, 32mpan2 422 . . 3 (𝐴Q → (𝐴 ·Q (*Q‘(1Q +Q 1Q))) ∈ Q)
34 id 19 . . . . . 6 (𝑥 = (𝐴 ·Q (*Q‘(1Q +Q 1Q))) → 𝑥 = (𝐴 ·Q (*Q‘(1Q +Q 1Q))))
3534, 34oveq12d 5860 . . . . 5 (𝑥 = (𝐴 ·Q (*Q‘(1Q +Q 1Q))) → (𝑥 +Q 𝑥) = ((𝐴 ·Q (*Q‘(1Q +Q 1Q))) +Q (𝐴 ·Q (*Q‘(1Q +Q 1Q)))))
3635eqeq1d 2174 . . . 4 (𝑥 = (𝐴 ·Q (*Q‘(1Q +Q 1Q))) → ((𝑥 +Q 𝑥) = 𝐴 ↔ ((𝐴 ·Q (*Q‘(1Q +Q 1Q))) +Q (𝐴 ·Q (*Q‘(1Q +Q 1Q)))) = 𝐴))
3736adantl 275 . . 3 ((𝐴Q𝑥 = (𝐴 ·Q (*Q‘(1Q +Q 1Q)))) → ((𝑥 +Q 𝑥) = 𝐴 ↔ ((𝐴 ·Q (*Q‘(1Q +Q 1Q))) +Q (𝐴 ·Q (*Q‘(1Q +Q 1Q)))) = 𝐴))
3833, 37rspcedv 2834 . 2 (𝐴Q → (((𝐴 ·Q (*Q‘(1Q +Q 1Q))) +Q (𝐴 ·Q (*Q‘(1Q +Q 1Q)))) = 𝐴 → ∃𝑥Q (𝑥 +Q 𝑥) = 𝐴))
3931, 38mpd 13 1 (𝐴Q → ∃𝑥Q (𝑥 +Q 𝑥) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104   = wceq 1343  wcel 2136  wrex 2445  cfv 5188  (class class class)co 5842  Qcnq 7221  1Qc1q 7222   +Q cplq 7223   ·Q cmq 7224  *Qcrq 7225
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-1o 6384  df-oadd 6388  df-omul 6389  df-er 6501  df-ec 6503  df-qs 6507  df-ni 7245  df-pli 7246  df-mi 7247  df-plpq 7285  df-mpq 7286  df-enq 7288  df-nqqs 7289  df-plqqs 7290  df-mqqs 7291  df-1nqqs 7292  df-rq 7293
This theorem is referenced by:  halfnq  7352  nsmallnqq  7353  subhalfnqq  7355  addlocpr  7477  addcanprleml  7555  addcanprlemu  7556  cauappcvgprlemm  7586  cauappcvgprlem1  7600  caucvgprlemm  7609
  Copyright terms: Public domain W3C validator