Proof of Theorem halfnqq
Step | Hyp | Ref
| Expression |
1 | | 1nq 7328 |
. . . . . . . . 9
⊢
1Q ∈ Q |
2 | | addclnq 7337 |
. . . . . . . . 9
⊢
((1Q ∈ Q ∧
1Q ∈ Q) →
(1Q +Q
1Q) ∈ Q) |
3 | 1, 1, 2 | mp2an 424 |
. . . . . . . 8
⊢
(1Q +Q
1Q) ∈ Q |
4 | | recclnq 7354 |
. . . . . . . . 9
⊢
((1Q +Q
1Q) ∈ Q →
(*Q‘(1Q
+Q 1Q)) ∈
Q) |
5 | 3, 4 | ax-mp 5 |
. . . . . . . 8
⊢
(*Q‘(1Q
+Q 1Q)) ∈
Q |
6 | | distrnqg 7349 |
. . . . . . . 8
⊢
(((1Q +Q
1Q) ∈ Q ∧
(*Q‘(1Q
+Q 1Q)) ∈
Q ∧
(*Q‘(1Q
+Q 1Q)) ∈
Q) → ((1Q
+Q 1Q)
·Q
((*Q‘(1Q
+Q 1Q))
+Q
(*Q‘(1Q
+Q 1Q)))) =
(((1Q +Q
1Q) ·Q
(*Q‘(1Q
+Q 1Q)))
+Q ((1Q
+Q 1Q)
·Q
(*Q‘(1Q
+Q 1Q))))) |
7 | 3, 5, 5, 6 | mp3an 1332 |
. . . . . . 7
⊢
((1Q +Q
1Q) ·Q
((*Q‘(1Q
+Q 1Q))
+Q
(*Q‘(1Q
+Q 1Q)))) =
(((1Q +Q
1Q) ·Q
(*Q‘(1Q
+Q 1Q)))
+Q ((1Q
+Q 1Q)
·Q
(*Q‘(1Q
+Q 1Q)))) |
8 | | recidnq 7355 |
. . . . . . . . 9
⊢
((1Q +Q
1Q) ∈ Q →
((1Q +Q
1Q) ·Q
(*Q‘(1Q
+Q 1Q))) =
1Q) |
9 | 3, 8 | ax-mp 5 |
. . . . . . . 8
⊢
((1Q +Q
1Q) ·Q
(*Q‘(1Q
+Q 1Q))) =
1Q |
10 | 9, 9 | oveq12i 5865 |
. . . . . . 7
⊢
(((1Q +Q
1Q) ·Q
(*Q‘(1Q
+Q 1Q)))
+Q ((1Q
+Q 1Q)
·Q
(*Q‘(1Q
+Q 1Q)))) =
(1Q +Q
1Q) |
11 | 7, 10 | eqtri 2191 |
. . . . . 6
⊢
((1Q +Q
1Q) ·Q
((*Q‘(1Q
+Q 1Q))
+Q
(*Q‘(1Q
+Q 1Q)))) =
(1Q +Q
1Q) |
12 | 11 | oveq1i 5863 |
. . . . 5
⊢
(((1Q +Q
1Q) ·Q
((*Q‘(1Q
+Q 1Q))
+Q
(*Q‘(1Q
+Q 1Q))))
·Q
(*Q‘(1Q
+Q 1Q))) =
((1Q +Q
1Q) ·Q
(*Q‘(1Q
+Q 1Q))) |
13 | 9 | oveq2i 5864 |
. . . . . 6
⊢
(((*Q‘(1Q
+Q 1Q))
+Q
(*Q‘(1Q
+Q 1Q)))
·Q ((1Q
+Q 1Q)
·Q
(*Q‘(1Q
+Q 1Q)))) =
(((*Q‘(1Q
+Q 1Q))
+Q
(*Q‘(1Q
+Q 1Q)))
·Q
1Q) |
14 | | addclnq 7337 |
. . . . . . . . 9
⊢
(((*Q‘(1Q
+Q 1Q)) ∈
Q ∧
(*Q‘(1Q
+Q 1Q)) ∈
Q) →
((*Q‘(1Q
+Q 1Q))
+Q
(*Q‘(1Q
+Q 1Q))) ∈
Q) |
15 | 5, 5, 14 | mp2an 424 |
. . . . . . . 8
⊢
((*Q‘(1Q
+Q 1Q))
+Q
(*Q‘(1Q
+Q 1Q))) ∈
Q |
16 | | mulassnqg 7346 |
. . . . . . . 8
⊢
((((*Q‘(1Q
+Q 1Q))
+Q
(*Q‘(1Q
+Q 1Q))) ∈
Q ∧ (1Q +Q
1Q) ∈ Q ∧
(*Q‘(1Q
+Q 1Q)) ∈
Q) →
((((*Q‘(1Q
+Q 1Q))
+Q
(*Q‘(1Q
+Q 1Q)))
·Q (1Q
+Q 1Q))
·Q
(*Q‘(1Q
+Q 1Q))) =
(((*Q‘(1Q
+Q 1Q))
+Q
(*Q‘(1Q
+Q 1Q)))
·Q ((1Q
+Q 1Q)
·Q
(*Q‘(1Q
+Q 1Q))))) |
17 | 15, 3, 5, 16 | mp3an 1332 |
. . . . . . 7
⊢
((((*Q‘(1Q
+Q 1Q))
+Q
(*Q‘(1Q
+Q 1Q)))
·Q (1Q
+Q 1Q))
·Q
(*Q‘(1Q
+Q 1Q))) =
(((*Q‘(1Q
+Q 1Q))
+Q
(*Q‘(1Q
+Q 1Q)))
·Q ((1Q
+Q 1Q)
·Q
(*Q‘(1Q
+Q 1Q)))) |
18 | | mulcomnqg 7345 |
. . . . . . . . 9
⊢
((((*Q‘(1Q
+Q 1Q))
+Q
(*Q‘(1Q
+Q 1Q))) ∈
Q ∧ (1Q +Q
1Q) ∈ Q) →
(((*Q‘(1Q
+Q 1Q))
+Q
(*Q‘(1Q
+Q 1Q)))
·Q (1Q
+Q 1Q)) =
((1Q +Q
1Q) ·Q
((*Q‘(1Q
+Q 1Q))
+Q
(*Q‘(1Q
+Q 1Q))))) |
19 | 15, 3, 18 | mp2an 424 |
. . . . . . . 8
⊢
(((*Q‘(1Q
+Q 1Q))
+Q
(*Q‘(1Q
+Q 1Q)))
·Q (1Q
+Q 1Q)) =
((1Q +Q
1Q) ·Q
((*Q‘(1Q
+Q 1Q))
+Q
(*Q‘(1Q
+Q 1Q)))) |
20 | 19 | oveq1i 5863 |
. . . . . . 7
⊢
((((*Q‘(1Q
+Q 1Q))
+Q
(*Q‘(1Q
+Q 1Q)))
·Q (1Q
+Q 1Q))
·Q
(*Q‘(1Q
+Q 1Q))) =
(((1Q +Q
1Q) ·Q
((*Q‘(1Q
+Q 1Q))
+Q
(*Q‘(1Q
+Q 1Q))))
·Q
(*Q‘(1Q
+Q 1Q))) |
21 | 17, 20 | eqtr3i 2193 |
. . . . . 6
⊢
(((*Q‘(1Q
+Q 1Q))
+Q
(*Q‘(1Q
+Q 1Q)))
·Q ((1Q
+Q 1Q)
·Q
(*Q‘(1Q
+Q 1Q)))) =
(((1Q +Q
1Q) ·Q
((*Q‘(1Q
+Q 1Q))
+Q
(*Q‘(1Q
+Q 1Q))))
·Q
(*Q‘(1Q
+Q 1Q))) |
22 | 4, 4, 14 | syl2anc 409 |
. . . . . . 7
⊢
((1Q +Q
1Q) ∈ Q →
((*Q‘(1Q
+Q 1Q))
+Q
(*Q‘(1Q
+Q 1Q))) ∈
Q) |
23 | | mulidnq 7351 |
. . . . . . 7
⊢
(((*Q‘(1Q
+Q 1Q))
+Q
(*Q‘(1Q
+Q 1Q))) ∈
Q →
(((*Q‘(1Q
+Q 1Q))
+Q
(*Q‘(1Q
+Q 1Q)))
·Q 1Q) =
((*Q‘(1Q
+Q 1Q))
+Q
(*Q‘(1Q
+Q 1Q)))) |
24 | 3, 22, 23 | mp2b 8 |
. . . . . 6
⊢
(((*Q‘(1Q
+Q 1Q))
+Q
(*Q‘(1Q
+Q 1Q)))
·Q 1Q) =
((*Q‘(1Q
+Q 1Q))
+Q
(*Q‘(1Q
+Q 1Q))) |
25 | 13, 21, 24 | 3eqtr3i 2199 |
. . . . 5
⊢
(((1Q +Q
1Q) ·Q
((*Q‘(1Q
+Q 1Q))
+Q
(*Q‘(1Q
+Q 1Q))))
·Q
(*Q‘(1Q
+Q 1Q))) =
((*Q‘(1Q
+Q 1Q))
+Q
(*Q‘(1Q
+Q 1Q))) |
26 | 12, 25, 9 | 3eqtr3i 2199 |
. . . 4
⊢
((*Q‘(1Q
+Q 1Q))
+Q
(*Q‘(1Q
+Q 1Q))) =
1Q |
27 | 26 | oveq2i 5864 |
. . 3
⊢ (𝐴
·Q
((*Q‘(1Q
+Q 1Q))
+Q
(*Q‘(1Q
+Q 1Q)))) = (𝐴
·Q
1Q) |
28 | | distrnqg 7349 |
. . . 4
⊢ ((𝐴 ∈ Q ∧
(*Q‘(1Q
+Q 1Q)) ∈
Q ∧
(*Q‘(1Q
+Q 1Q)) ∈
Q) → (𝐴
·Q
((*Q‘(1Q
+Q 1Q))
+Q
(*Q‘(1Q
+Q 1Q)))) = ((𝐴
·Q
(*Q‘(1Q
+Q 1Q)))
+Q (𝐴 ·Q
(*Q‘(1Q
+Q 1Q))))) |
29 | 5, 5, 28 | mp3an23 1324 |
. . 3
⊢ (𝐴 ∈ Q →
(𝐴
·Q
((*Q‘(1Q
+Q 1Q))
+Q
(*Q‘(1Q
+Q 1Q)))) = ((𝐴
·Q
(*Q‘(1Q
+Q 1Q)))
+Q (𝐴 ·Q
(*Q‘(1Q
+Q 1Q))))) |
30 | | mulidnq 7351 |
. . 3
⊢ (𝐴 ∈ Q →
(𝐴
·Q 1Q) = 𝐴) |
31 | 27, 29, 30 | 3eqtr3a 2227 |
. 2
⊢ (𝐴 ∈ Q →
((𝐴
·Q
(*Q‘(1Q
+Q 1Q)))
+Q (𝐴 ·Q
(*Q‘(1Q
+Q 1Q)))) = 𝐴) |
32 | | mulclnq 7338 |
. . . 4
⊢ ((𝐴 ∈ Q ∧
(*Q‘(1Q
+Q 1Q)) ∈
Q) → (𝐴
·Q
(*Q‘(1Q
+Q 1Q))) ∈
Q) |
33 | 5, 32 | mpan2 423 |
. . 3
⊢ (𝐴 ∈ Q →
(𝐴
·Q
(*Q‘(1Q
+Q 1Q))) ∈
Q) |
34 | | id 19 |
. . . . . 6
⊢ (𝑥 = (𝐴 ·Q
(*Q‘(1Q
+Q 1Q))) → 𝑥 = (𝐴 ·Q
(*Q‘(1Q
+Q 1Q)))) |
35 | 34, 34 | oveq12d 5871 |
. . . . 5
⊢ (𝑥 = (𝐴 ·Q
(*Q‘(1Q
+Q 1Q))) → (𝑥 +Q
𝑥) = ((𝐴 ·Q
(*Q‘(1Q
+Q 1Q)))
+Q (𝐴 ·Q
(*Q‘(1Q
+Q 1Q))))) |
36 | 35 | eqeq1d 2179 |
. . . 4
⊢ (𝑥 = (𝐴 ·Q
(*Q‘(1Q
+Q 1Q))) → ((𝑥 +Q
𝑥) = 𝐴 ↔ ((𝐴 ·Q
(*Q‘(1Q
+Q 1Q)))
+Q (𝐴 ·Q
(*Q‘(1Q
+Q 1Q)))) = 𝐴)) |
37 | 36 | adantl 275 |
. . 3
⊢ ((𝐴 ∈ Q ∧
𝑥 = (𝐴 ·Q
(*Q‘(1Q
+Q 1Q)))) → ((𝑥 +Q
𝑥) = 𝐴 ↔ ((𝐴 ·Q
(*Q‘(1Q
+Q 1Q)))
+Q (𝐴 ·Q
(*Q‘(1Q
+Q 1Q)))) = 𝐴)) |
38 | 33, 37 | rspcedv 2838 |
. 2
⊢ (𝐴 ∈ Q →
(((𝐴
·Q
(*Q‘(1Q
+Q 1Q)))
+Q (𝐴 ·Q
(*Q‘(1Q
+Q 1Q)))) = 𝐴 → ∃𝑥 ∈ Q (𝑥 +Q 𝑥) = 𝐴)) |
39 | 31, 38 | mpd 13 |
1
⊢ (𝐴 ∈ Q →
∃𝑥 ∈
Q (𝑥
+Q 𝑥) = 𝐴) |