ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  halfnqq GIF version

Theorem halfnqq 7477
Description: One-half of any positive fraction is a fraction. (Contributed by Jim Kingdon, 23-Sep-2019.)
Assertion
Ref Expression
halfnqq (𝐴Q → ∃𝑥Q (𝑥 +Q 𝑥) = 𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem halfnqq
StepHypRef Expression
1 1nq 7433 . . . . . . . . 9 1QQ
2 addclnq 7442 . . . . . . . . 9 ((1QQ ∧ 1QQ) → (1Q +Q 1Q) ∈ Q)
31, 1, 2mp2an 426 . . . . . . . 8 (1Q +Q 1Q) ∈ Q
4 recclnq 7459 . . . . . . . . 9 ((1Q +Q 1Q) ∈ Q → (*Q‘(1Q +Q 1Q)) ∈ Q)
53, 4ax-mp 5 . . . . . . . 8 (*Q‘(1Q +Q 1Q)) ∈ Q
6 distrnqg 7454 . . . . . . . 8 (((1Q +Q 1Q) ∈ Q ∧ (*Q‘(1Q +Q 1Q)) ∈ Q ∧ (*Q‘(1Q +Q 1Q)) ∈ Q) → ((1Q +Q 1Q) ·Q ((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q)))) = (((1Q +Q 1Q) ·Q (*Q‘(1Q +Q 1Q))) +Q ((1Q +Q 1Q) ·Q (*Q‘(1Q +Q 1Q)))))
73, 5, 5, 6mp3an 1348 . . . . . . 7 ((1Q +Q 1Q) ·Q ((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q)))) = (((1Q +Q 1Q) ·Q (*Q‘(1Q +Q 1Q))) +Q ((1Q +Q 1Q) ·Q (*Q‘(1Q +Q 1Q))))
8 recidnq 7460 . . . . . . . . 9 ((1Q +Q 1Q) ∈ Q → ((1Q +Q 1Q) ·Q (*Q‘(1Q +Q 1Q))) = 1Q)
93, 8ax-mp 5 . . . . . . . 8 ((1Q +Q 1Q) ·Q (*Q‘(1Q +Q 1Q))) = 1Q
109, 9oveq12i 5934 . . . . . . 7 (((1Q +Q 1Q) ·Q (*Q‘(1Q +Q 1Q))) +Q ((1Q +Q 1Q) ·Q (*Q‘(1Q +Q 1Q)))) = (1Q +Q 1Q)
117, 10eqtri 2217 . . . . . 6 ((1Q +Q 1Q) ·Q ((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q)))) = (1Q +Q 1Q)
1211oveq1i 5932 . . . . 5 (((1Q +Q 1Q) ·Q ((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q)))) ·Q (*Q‘(1Q +Q 1Q))) = ((1Q +Q 1Q) ·Q (*Q‘(1Q +Q 1Q)))
139oveq2i 5933 . . . . . 6 (((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q))) ·Q ((1Q +Q 1Q) ·Q (*Q‘(1Q +Q 1Q)))) = (((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q))) ·Q 1Q)
14 addclnq 7442 . . . . . . . . 9 (((*Q‘(1Q +Q 1Q)) ∈ Q ∧ (*Q‘(1Q +Q 1Q)) ∈ Q) → ((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q))) ∈ Q)
155, 5, 14mp2an 426 . . . . . . . 8 ((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q))) ∈ Q
16 mulassnqg 7451 . . . . . . . 8 ((((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q))) ∈ Q ∧ (1Q +Q 1Q) ∈ Q ∧ (*Q‘(1Q +Q 1Q)) ∈ Q) → ((((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q))) ·Q (1Q +Q 1Q)) ·Q (*Q‘(1Q +Q 1Q))) = (((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q))) ·Q ((1Q +Q 1Q) ·Q (*Q‘(1Q +Q 1Q)))))
1715, 3, 5, 16mp3an 1348 . . . . . . 7 ((((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q))) ·Q (1Q +Q 1Q)) ·Q (*Q‘(1Q +Q 1Q))) = (((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q))) ·Q ((1Q +Q 1Q) ·Q (*Q‘(1Q +Q 1Q))))
18 mulcomnqg 7450 . . . . . . . . 9 ((((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q))) ∈ Q ∧ (1Q +Q 1Q) ∈ Q) → (((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q))) ·Q (1Q +Q 1Q)) = ((1Q +Q 1Q) ·Q ((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q)))))
1915, 3, 18mp2an 426 . . . . . . . 8 (((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q))) ·Q (1Q +Q 1Q)) = ((1Q +Q 1Q) ·Q ((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q))))
2019oveq1i 5932 . . . . . . 7 ((((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q))) ·Q (1Q +Q 1Q)) ·Q (*Q‘(1Q +Q 1Q))) = (((1Q +Q 1Q) ·Q ((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q)))) ·Q (*Q‘(1Q +Q 1Q)))
2117, 20eqtr3i 2219 . . . . . 6 (((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q))) ·Q ((1Q +Q 1Q) ·Q (*Q‘(1Q +Q 1Q)))) = (((1Q +Q 1Q) ·Q ((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q)))) ·Q (*Q‘(1Q +Q 1Q)))
224, 4, 14syl2anc 411 . . . . . . 7 ((1Q +Q 1Q) ∈ Q → ((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q))) ∈ Q)
23 mulidnq 7456 . . . . . . 7 (((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q))) ∈ Q → (((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q))) ·Q 1Q) = ((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q))))
243, 22, 23mp2b 8 . . . . . 6 (((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q))) ·Q 1Q) = ((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q)))
2513, 21, 243eqtr3i 2225 . . . . 5 (((1Q +Q 1Q) ·Q ((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q)))) ·Q (*Q‘(1Q +Q 1Q))) = ((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q)))
2612, 25, 93eqtr3i 2225 . . . 4 ((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q))) = 1Q
2726oveq2i 5933 . . 3 (𝐴 ·Q ((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q)))) = (𝐴 ·Q 1Q)
28 distrnqg 7454 . . . 4 ((𝐴Q ∧ (*Q‘(1Q +Q 1Q)) ∈ Q ∧ (*Q‘(1Q +Q 1Q)) ∈ Q) → (𝐴 ·Q ((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q)))) = ((𝐴 ·Q (*Q‘(1Q +Q 1Q))) +Q (𝐴 ·Q (*Q‘(1Q +Q 1Q)))))
295, 5, 28mp3an23 1340 . . 3 (𝐴Q → (𝐴 ·Q ((*Q‘(1Q +Q 1Q)) +Q (*Q‘(1Q +Q 1Q)))) = ((𝐴 ·Q (*Q‘(1Q +Q 1Q))) +Q (𝐴 ·Q (*Q‘(1Q +Q 1Q)))))
30 mulidnq 7456 . . 3 (𝐴Q → (𝐴 ·Q 1Q) = 𝐴)
3127, 29, 303eqtr3a 2253 . 2 (𝐴Q → ((𝐴 ·Q (*Q‘(1Q +Q 1Q))) +Q (𝐴 ·Q (*Q‘(1Q +Q 1Q)))) = 𝐴)
32 mulclnq 7443 . . . 4 ((𝐴Q ∧ (*Q‘(1Q +Q 1Q)) ∈ Q) → (𝐴 ·Q (*Q‘(1Q +Q 1Q))) ∈ Q)
335, 32mpan2 425 . . 3 (𝐴Q → (𝐴 ·Q (*Q‘(1Q +Q 1Q))) ∈ Q)
34 id 19 . . . . . 6 (𝑥 = (𝐴 ·Q (*Q‘(1Q +Q 1Q))) → 𝑥 = (𝐴 ·Q (*Q‘(1Q +Q 1Q))))
3534, 34oveq12d 5940 . . . . 5 (𝑥 = (𝐴 ·Q (*Q‘(1Q +Q 1Q))) → (𝑥 +Q 𝑥) = ((𝐴 ·Q (*Q‘(1Q +Q 1Q))) +Q (𝐴 ·Q (*Q‘(1Q +Q 1Q)))))
3635eqeq1d 2205 . . . 4 (𝑥 = (𝐴 ·Q (*Q‘(1Q +Q 1Q))) → ((𝑥 +Q 𝑥) = 𝐴 ↔ ((𝐴 ·Q (*Q‘(1Q +Q 1Q))) +Q (𝐴 ·Q (*Q‘(1Q +Q 1Q)))) = 𝐴))
3736adantl 277 . . 3 ((𝐴Q𝑥 = (𝐴 ·Q (*Q‘(1Q +Q 1Q)))) → ((𝑥 +Q 𝑥) = 𝐴 ↔ ((𝐴 ·Q (*Q‘(1Q +Q 1Q))) +Q (𝐴 ·Q (*Q‘(1Q +Q 1Q)))) = 𝐴))
3833, 37rspcedv 2872 . 2 (𝐴Q → (((𝐴 ·Q (*Q‘(1Q +Q 1Q))) +Q (𝐴 ·Q (*Q‘(1Q +Q 1Q)))) = 𝐴 → ∃𝑥Q (𝑥 +Q 𝑥) = 𝐴))
3931, 38mpd 13 1 (𝐴Q → ∃𝑥Q (𝑥 +Q 𝑥) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1364  wcel 2167  wrex 2476  cfv 5258  (class class class)co 5922  Qcnq 7347  1Qc1q 7348   +Q cplq 7349   ·Q cmq 7350  *Qcrq 7351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-1o 6474  df-oadd 6478  df-omul 6479  df-er 6592  df-ec 6594  df-qs 6598  df-ni 7371  df-pli 7372  df-mi 7373  df-plpq 7411  df-mpq 7412  df-enq 7414  df-nqqs 7415  df-plqqs 7416  df-mqqs 7417  df-1nqqs 7418  df-rq 7419
This theorem is referenced by:  halfnq  7478  nsmallnqq  7479  subhalfnqq  7481  addlocpr  7603  addcanprleml  7681  addcanprlemu  7682  cauappcvgprlemm  7712  cauappcvgprlem1  7726  caucvgprlemm  7735
  Copyright terms: Public domain W3C validator