![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > coi2 | GIF version |
Description: Composition with the identity relation. Part of Theorem 3.7(i) of [Monk1] p. 36. (Contributed by NM, 22-Apr-2004.) |
Ref | Expression |
---|---|
coi2 | ⊢ (Rel 𝐴 → ( I ∘ 𝐴) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvco 4847 | . . 3 ⊢ ◡(◡𝐴 ∘ I ) = (◡ I ∘ ◡◡𝐴) | |
2 | relcnv 5043 | . . . . 5 ⊢ Rel ◡𝐴 | |
3 | coi1 5181 | . . . . 5 ⊢ (Rel ◡𝐴 → (◡𝐴 ∘ I ) = ◡𝐴) | |
4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ (◡𝐴 ∘ I ) = ◡𝐴 |
5 | 4 | cnveqi 4837 | . . 3 ⊢ ◡(◡𝐴 ∘ I ) = ◡◡𝐴 |
6 | 1, 5 | eqtr3i 2216 | . 2 ⊢ (◡ I ∘ ◡◡𝐴) = ◡◡𝐴 |
7 | dfrel2 5116 | . . 3 ⊢ (Rel 𝐴 ↔ ◡◡𝐴 = 𝐴) | |
8 | cnvi 5070 | . . . 4 ⊢ ◡ I = I | |
9 | coeq2 4820 | . . . . 5 ⊢ (◡◡𝐴 = 𝐴 → (◡ I ∘ ◡◡𝐴) = (◡ I ∘ 𝐴)) | |
10 | coeq1 4819 | . . . . 5 ⊢ (◡ I = I → (◡ I ∘ 𝐴) = ( I ∘ 𝐴)) | |
11 | 9, 10 | sylan9eq 2246 | . . . 4 ⊢ ((◡◡𝐴 = 𝐴 ∧ ◡ I = I ) → (◡ I ∘ ◡◡𝐴) = ( I ∘ 𝐴)) |
12 | 8, 11 | mpan2 425 | . . 3 ⊢ (◡◡𝐴 = 𝐴 → (◡ I ∘ ◡◡𝐴) = ( I ∘ 𝐴)) |
13 | 7, 12 | sylbi 121 | . 2 ⊢ (Rel 𝐴 → (◡ I ∘ ◡◡𝐴) = ( I ∘ 𝐴)) |
14 | 7 | biimpi 120 | . 2 ⊢ (Rel 𝐴 → ◡◡𝐴 = 𝐴) |
15 | 6, 13, 14 | 3eqtr3a 2250 | 1 ⊢ (Rel 𝐴 → ( I ∘ 𝐴) = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 I cid 4319 ◡ccnv 4658 ∘ ccom 4663 Rel wrel 4664 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-br 4030 df-opab 4091 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 |
This theorem is referenced by: relcoi2 5196 funi 5286 fcoi2 5435 |
Copyright terms: Public domain | W3C validator |