Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > coi2 | GIF version |
Description: Composition with the identity relation. Part of Theorem 3.7(i) of [Monk1] p. 36. (Contributed by NM, 22-Apr-2004.) |
Ref | Expression |
---|---|
coi2 | ⊢ (Rel 𝐴 → ( I ∘ 𝐴) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvco 4789 | . . 3 ⊢ ◡(◡𝐴 ∘ I ) = (◡ I ∘ ◡◡𝐴) | |
2 | relcnv 4982 | . . . . 5 ⊢ Rel ◡𝐴 | |
3 | coi1 5119 | . . . . 5 ⊢ (Rel ◡𝐴 → (◡𝐴 ∘ I ) = ◡𝐴) | |
4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ (◡𝐴 ∘ I ) = ◡𝐴 |
5 | 4 | cnveqi 4779 | . . 3 ⊢ ◡(◡𝐴 ∘ I ) = ◡◡𝐴 |
6 | 1, 5 | eqtr3i 2188 | . 2 ⊢ (◡ I ∘ ◡◡𝐴) = ◡◡𝐴 |
7 | dfrel2 5054 | . . 3 ⊢ (Rel 𝐴 ↔ ◡◡𝐴 = 𝐴) | |
8 | cnvi 5008 | . . . 4 ⊢ ◡ I = I | |
9 | coeq2 4762 | . . . . 5 ⊢ (◡◡𝐴 = 𝐴 → (◡ I ∘ ◡◡𝐴) = (◡ I ∘ 𝐴)) | |
10 | coeq1 4761 | . . . . 5 ⊢ (◡ I = I → (◡ I ∘ 𝐴) = ( I ∘ 𝐴)) | |
11 | 9, 10 | sylan9eq 2219 | . . . 4 ⊢ ((◡◡𝐴 = 𝐴 ∧ ◡ I = I ) → (◡ I ∘ ◡◡𝐴) = ( I ∘ 𝐴)) |
12 | 8, 11 | mpan2 422 | . . 3 ⊢ (◡◡𝐴 = 𝐴 → (◡ I ∘ ◡◡𝐴) = ( I ∘ 𝐴)) |
13 | 7, 12 | sylbi 120 | . 2 ⊢ (Rel 𝐴 → (◡ I ∘ ◡◡𝐴) = ( I ∘ 𝐴)) |
14 | 7 | biimpi 119 | . 2 ⊢ (Rel 𝐴 → ◡◡𝐴 = 𝐴) |
15 | 6, 13, 14 | 3eqtr3a 2223 | 1 ⊢ (Rel 𝐴 → ( I ∘ 𝐴) = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 I cid 4266 ◡ccnv 4603 ∘ ccom 4608 Rel wrel 4609 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 |
This theorem is referenced by: relcoi2 5134 funi 5220 fcoi2 5369 |
Copyright terms: Public domain | W3C validator |