ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  coi2 GIF version

Theorem coi2 5127
Description: Composition with the identity relation. Part of Theorem 3.7(i) of [Monk1] p. 36. (Contributed by NM, 22-Apr-2004.)
Assertion
Ref Expression
coi2 (Rel 𝐴 → ( I ∘ 𝐴) = 𝐴)

Proof of Theorem coi2
StepHypRef Expression
1 cnvco 4796 . . 3 (𝐴 ∘ I ) = ( I ∘ 𝐴)
2 relcnv 4989 . . . . 5 Rel 𝐴
3 coi1 5126 . . . . 5 (Rel 𝐴 → (𝐴 ∘ I ) = 𝐴)
42, 3ax-mp 5 . . . 4 (𝐴 ∘ I ) = 𝐴
54cnveqi 4786 . . 3 (𝐴 ∘ I ) = 𝐴
61, 5eqtr3i 2193 . 2 ( I ∘ 𝐴) = 𝐴
7 dfrel2 5061 . . 3 (Rel 𝐴𝐴 = 𝐴)
8 cnvi 5015 . . . 4 I = I
9 coeq2 4769 . . . . 5 (𝐴 = 𝐴 → ( I ∘ 𝐴) = ( I ∘ 𝐴))
10 coeq1 4768 . . . . 5 ( I = I → ( I ∘ 𝐴) = ( I ∘ 𝐴))
119, 10sylan9eq 2223 . . . 4 ((𝐴 = 𝐴 I = I ) → ( I ∘ 𝐴) = ( I ∘ 𝐴))
128, 11mpan2 423 . . 3 (𝐴 = 𝐴 → ( I ∘ 𝐴) = ( I ∘ 𝐴))
137, 12sylbi 120 . 2 (Rel 𝐴 → ( I ∘ 𝐴) = ( I ∘ 𝐴))
147biimpi 119 . 2 (Rel 𝐴𝐴 = 𝐴)
156, 13, 143eqtr3a 2227 1 (Rel 𝐴 → ( I ∘ 𝐴) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1348   I cid 4273  ccnv 4610  ccom 4615  Rel wrel 4616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620
This theorem is referenced by:  relcoi2  5141  funi  5230  fcoi2  5379
  Copyright terms: Public domain W3C validator