ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  coi2 GIF version

Theorem coi2 5241
Description: Composition with the identity relation. Part of Theorem 3.7(i) of [Monk1] p. 36. (Contributed by NM, 22-Apr-2004.)
Assertion
Ref Expression
coi2 (Rel 𝐴 → ( I ∘ 𝐴) = 𝐴)

Proof of Theorem coi2
StepHypRef Expression
1 cnvco 4904 . . 3 (𝐴 ∘ I ) = ( I ∘ 𝐴)
2 relcnv 5102 . . . . 5 Rel 𝐴
3 coi1 5240 . . . . 5 (Rel 𝐴 → (𝐴 ∘ I ) = 𝐴)
42, 3ax-mp 5 . . . 4 (𝐴 ∘ I ) = 𝐴
54cnveqi 4894 . . 3 (𝐴 ∘ I ) = 𝐴
61, 5eqtr3i 2252 . 2 ( I ∘ 𝐴) = 𝐴
7 dfrel2 5175 . . 3 (Rel 𝐴𝐴 = 𝐴)
8 cnvi 5129 . . . 4 I = I
9 coeq2 4877 . . . . 5 (𝐴 = 𝐴 → ( I ∘ 𝐴) = ( I ∘ 𝐴))
10 coeq1 4876 . . . . 5 ( I = I → ( I ∘ 𝐴) = ( I ∘ 𝐴))
119, 10sylan9eq 2282 . . . 4 ((𝐴 = 𝐴 I = I ) → ( I ∘ 𝐴) = ( I ∘ 𝐴))
128, 11mpan2 425 . . 3 (𝐴 = 𝐴 → ( I ∘ 𝐴) = ( I ∘ 𝐴))
137, 12sylbi 121 . 2 (Rel 𝐴 → ( I ∘ 𝐴) = ( I ∘ 𝐴))
147biimpi 120 . 2 (Rel 𝐴𝐴 = 𝐴)
156, 13, 143eqtr3a 2286 1 (Rel 𝐴 → ( I ∘ 𝐴) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395   I cid 4376  ccnv 4715  ccom 4720  Rel wrel 4721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725
This theorem is referenced by:  relcoi2  5255  funi  5346  fcoi2  5503
  Copyright terms: Public domain W3C validator