ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  coi2 GIF version

Theorem coi2 5182
Description: Composition with the identity relation. Part of Theorem 3.7(i) of [Monk1] p. 36. (Contributed by NM, 22-Apr-2004.)
Assertion
Ref Expression
coi2 (Rel 𝐴 → ( I ∘ 𝐴) = 𝐴)

Proof of Theorem coi2
StepHypRef Expression
1 cnvco 4847 . . 3 (𝐴 ∘ I ) = ( I ∘ 𝐴)
2 relcnv 5043 . . . . 5 Rel 𝐴
3 coi1 5181 . . . . 5 (Rel 𝐴 → (𝐴 ∘ I ) = 𝐴)
42, 3ax-mp 5 . . . 4 (𝐴 ∘ I ) = 𝐴
54cnveqi 4837 . . 3 (𝐴 ∘ I ) = 𝐴
61, 5eqtr3i 2216 . 2 ( I ∘ 𝐴) = 𝐴
7 dfrel2 5116 . . 3 (Rel 𝐴𝐴 = 𝐴)
8 cnvi 5070 . . . 4 I = I
9 coeq2 4820 . . . . 5 (𝐴 = 𝐴 → ( I ∘ 𝐴) = ( I ∘ 𝐴))
10 coeq1 4819 . . . . 5 ( I = I → ( I ∘ 𝐴) = ( I ∘ 𝐴))
119, 10sylan9eq 2246 . . . 4 ((𝐴 = 𝐴 I = I ) → ( I ∘ 𝐴) = ( I ∘ 𝐴))
128, 11mpan2 425 . . 3 (𝐴 = 𝐴 → ( I ∘ 𝐴) = ( I ∘ 𝐴))
137, 12sylbi 121 . 2 (Rel 𝐴 → ( I ∘ 𝐴) = ( I ∘ 𝐴))
147biimpi 120 . 2 (Rel 𝐴𝐴 = 𝐴)
156, 13, 143eqtr3a 2250 1 (Rel 𝐴 → ( I ∘ 𝐴) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364   I cid 4319  ccnv 4658  ccom 4663  Rel wrel 4664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668
This theorem is referenced by:  relcoi2  5196  funi  5286  fcoi2  5435
  Copyright terms: Public domain W3C validator