ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  coi2 GIF version

Theorem coi2 5011
Description: Composition with the identity relation. Part of Theorem 3.7(i) of [Monk1] p. 36. (Contributed by NM, 22-Apr-2004.)
Assertion
Ref Expression
coi2 (Rel 𝐴 → ( I ∘ 𝐴) = 𝐴)

Proof of Theorem coi2
StepHypRef Expression
1 cnvco 4682 . . 3 (𝐴 ∘ I ) = ( I ∘ 𝐴)
2 relcnv 4873 . . . . 5 Rel 𝐴
3 coi1 5010 . . . . 5 (Rel 𝐴 → (𝐴 ∘ I ) = 𝐴)
42, 3ax-mp 7 . . . 4 (𝐴 ∘ I ) = 𝐴
54cnveqi 4672 . . 3 (𝐴 ∘ I ) = 𝐴
61, 5eqtr3i 2135 . 2 ( I ∘ 𝐴) = 𝐴
7 dfrel2 4945 . . 3 (Rel 𝐴𝐴 = 𝐴)
8 cnvi 4899 . . . 4 I = I
9 coeq2 4655 . . . . 5 (𝐴 = 𝐴 → ( I ∘ 𝐴) = ( I ∘ 𝐴))
10 coeq1 4654 . . . . 5 ( I = I → ( I ∘ 𝐴) = ( I ∘ 𝐴))
119, 10sylan9eq 2165 . . . 4 ((𝐴 = 𝐴 I = I ) → ( I ∘ 𝐴) = ( I ∘ 𝐴))
128, 11mpan2 419 . . 3 (𝐴 = 𝐴 → ( I ∘ 𝐴) = ( I ∘ 𝐴))
137, 12sylbi 120 . 2 (Rel 𝐴 → ( I ∘ 𝐴) = ( I ∘ 𝐴))
147biimpi 119 . 2 (Rel 𝐴𝐴 = 𝐴)
156, 13, 143eqtr3a 2169 1 (Rel 𝐴 → ( I ∘ 𝐴) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1312   I cid 4168  ccnv 4496  ccom 4501  Rel wrel 4502
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-14 1473  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-sep 4004  ax-pow 4056  ax-pr 4089
This theorem depends on definitions:  df-bi 116  df-3an 945  df-tru 1315  df-nf 1418  df-sb 1717  df-eu 1976  df-mo 1977  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ral 2393  df-rex 2394  df-v 2657  df-un 3039  df-in 3041  df-ss 3048  df-pw 3476  df-sn 3497  df-pr 3498  df-op 3500  df-br 3894  df-opab 3948  df-id 4173  df-xp 4503  df-rel 4504  df-cnv 4505  df-co 4506
This theorem is referenced by:  relcoi2  5025  funi  5111  fcoi2  5260
  Copyright terms: Public domain W3C validator