![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > coi2 | GIF version |
Description: Composition with the identity relation. Part of Theorem 3.7(i) of [Monk1] p. 36. (Contributed by NM, 22-Apr-2004.) |
Ref | Expression |
---|---|
coi2 | ⊢ (Rel 𝐴 → ( I ∘ 𝐴) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvco 4814 | . . 3 ⊢ ◡(◡𝐴 ∘ I ) = (◡ I ∘ ◡◡𝐴) | |
2 | relcnv 5008 | . . . . 5 ⊢ Rel ◡𝐴 | |
3 | coi1 5146 | . . . . 5 ⊢ (Rel ◡𝐴 → (◡𝐴 ∘ I ) = ◡𝐴) | |
4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ (◡𝐴 ∘ I ) = ◡𝐴 |
5 | 4 | cnveqi 4804 | . . 3 ⊢ ◡(◡𝐴 ∘ I ) = ◡◡𝐴 |
6 | 1, 5 | eqtr3i 2200 | . 2 ⊢ (◡ I ∘ ◡◡𝐴) = ◡◡𝐴 |
7 | dfrel2 5081 | . . 3 ⊢ (Rel 𝐴 ↔ ◡◡𝐴 = 𝐴) | |
8 | cnvi 5035 | . . . 4 ⊢ ◡ I = I | |
9 | coeq2 4787 | . . . . 5 ⊢ (◡◡𝐴 = 𝐴 → (◡ I ∘ ◡◡𝐴) = (◡ I ∘ 𝐴)) | |
10 | coeq1 4786 | . . . . 5 ⊢ (◡ I = I → (◡ I ∘ 𝐴) = ( I ∘ 𝐴)) | |
11 | 9, 10 | sylan9eq 2230 | . . . 4 ⊢ ((◡◡𝐴 = 𝐴 ∧ ◡ I = I ) → (◡ I ∘ ◡◡𝐴) = ( I ∘ 𝐴)) |
12 | 8, 11 | mpan2 425 | . . 3 ⊢ (◡◡𝐴 = 𝐴 → (◡ I ∘ ◡◡𝐴) = ( I ∘ 𝐴)) |
13 | 7, 12 | sylbi 121 | . 2 ⊢ (Rel 𝐴 → (◡ I ∘ ◡◡𝐴) = ( I ∘ 𝐴)) |
14 | 7 | biimpi 120 | . 2 ⊢ (Rel 𝐴 → ◡◡𝐴 = 𝐴) |
15 | 6, 13, 14 | 3eqtr3a 2234 | 1 ⊢ (Rel 𝐴 → ( I ∘ 𝐴) = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 I cid 4290 ◡ccnv 4627 ∘ ccom 4632 Rel wrel 4633 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-br 4006 df-opab 4067 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 |
This theorem is referenced by: relcoi2 5161 funi 5250 fcoi2 5399 |
Copyright terms: Public domain | W3C validator |