ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  coi2 GIF version

Theorem coi2 5187
Description: Composition with the identity relation. Part of Theorem 3.7(i) of [Monk1] p. 36. (Contributed by NM, 22-Apr-2004.)
Assertion
Ref Expression
coi2 (Rel 𝐴 → ( I ∘ 𝐴) = 𝐴)

Proof of Theorem coi2
StepHypRef Expression
1 cnvco 4852 . . 3 (𝐴 ∘ I ) = ( I ∘ 𝐴)
2 relcnv 5048 . . . . 5 Rel 𝐴
3 coi1 5186 . . . . 5 (Rel 𝐴 → (𝐴 ∘ I ) = 𝐴)
42, 3ax-mp 5 . . . 4 (𝐴 ∘ I ) = 𝐴
54cnveqi 4842 . . 3 (𝐴 ∘ I ) = 𝐴
61, 5eqtr3i 2219 . 2 ( I ∘ 𝐴) = 𝐴
7 dfrel2 5121 . . 3 (Rel 𝐴𝐴 = 𝐴)
8 cnvi 5075 . . . 4 I = I
9 coeq2 4825 . . . . 5 (𝐴 = 𝐴 → ( I ∘ 𝐴) = ( I ∘ 𝐴))
10 coeq1 4824 . . . . 5 ( I = I → ( I ∘ 𝐴) = ( I ∘ 𝐴))
119, 10sylan9eq 2249 . . . 4 ((𝐴 = 𝐴 I = I ) → ( I ∘ 𝐴) = ( I ∘ 𝐴))
128, 11mpan2 425 . . 3 (𝐴 = 𝐴 → ( I ∘ 𝐴) = ( I ∘ 𝐴))
137, 12sylbi 121 . 2 (Rel 𝐴 → ( I ∘ 𝐴) = ( I ∘ 𝐴))
147biimpi 120 . 2 (Rel 𝐴𝐴 = 𝐴)
156, 13, 143eqtr3a 2253 1 (Rel 𝐴 → ( I ∘ 𝐴) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364   I cid 4324  ccnv 4663  ccom 4668  Rel wrel 4669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-br 4035  df-opab 4096  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673
This theorem is referenced by:  relcoi2  5201  funi  5291  fcoi2  5442
  Copyright terms: Public domain W3C validator