| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > coi2 | GIF version | ||
| Description: Composition with the identity relation. Part of Theorem 3.7(i) of [Monk1] p. 36. (Contributed by NM, 22-Apr-2004.) |
| Ref | Expression |
|---|---|
| coi2 | ⊢ (Rel 𝐴 → ( I ∘ 𝐴) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvco 4868 | . . 3 ⊢ ◡(◡𝐴 ∘ I ) = (◡ I ∘ ◡◡𝐴) | |
| 2 | relcnv 5066 | . . . . 5 ⊢ Rel ◡𝐴 | |
| 3 | coi1 5204 | . . . . 5 ⊢ (Rel ◡𝐴 → (◡𝐴 ∘ I ) = ◡𝐴) | |
| 4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ (◡𝐴 ∘ I ) = ◡𝐴 |
| 5 | 4 | cnveqi 4858 | . . 3 ⊢ ◡(◡𝐴 ∘ I ) = ◡◡𝐴 |
| 6 | 1, 5 | eqtr3i 2229 | . 2 ⊢ (◡ I ∘ ◡◡𝐴) = ◡◡𝐴 |
| 7 | dfrel2 5139 | . . 3 ⊢ (Rel 𝐴 ↔ ◡◡𝐴 = 𝐴) | |
| 8 | cnvi 5093 | . . . 4 ⊢ ◡ I = I | |
| 9 | coeq2 4841 | . . . . 5 ⊢ (◡◡𝐴 = 𝐴 → (◡ I ∘ ◡◡𝐴) = (◡ I ∘ 𝐴)) | |
| 10 | coeq1 4840 | . . . . 5 ⊢ (◡ I = I → (◡ I ∘ 𝐴) = ( I ∘ 𝐴)) | |
| 11 | 9, 10 | sylan9eq 2259 | . . . 4 ⊢ ((◡◡𝐴 = 𝐴 ∧ ◡ I = I ) → (◡ I ∘ ◡◡𝐴) = ( I ∘ 𝐴)) |
| 12 | 8, 11 | mpan2 425 | . . 3 ⊢ (◡◡𝐴 = 𝐴 → (◡ I ∘ ◡◡𝐴) = ( I ∘ 𝐴)) |
| 13 | 7, 12 | sylbi 121 | . 2 ⊢ (Rel 𝐴 → (◡ I ∘ ◡◡𝐴) = ( I ∘ 𝐴)) |
| 14 | 7 | biimpi 120 | . 2 ⊢ (Rel 𝐴 → ◡◡𝐴 = 𝐴) |
| 15 | 6, 13, 14 | 3eqtr3a 2263 | 1 ⊢ (Rel 𝐴 → ( I ∘ 𝐴) = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 I cid 4340 ◡ccnv 4679 ∘ ccom 4684 Rel wrel 4685 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-pow 4223 ax-pr 4258 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3172 df-in 3174 df-ss 3181 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-br 4049 df-opab 4111 df-id 4345 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 |
| This theorem is referenced by: relcoi2 5219 funi 5309 fcoi2 5466 |
| Copyright terms: Public domain | W3C validator |