ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqtrid GIF version

Theorem eqtrid 2210
Description: An equality transitivity deduction. (Contributed by NM, 21-Jun-1993.)
Hypotheses
Ref Expression
eqtrid.1 𝐴 = 𝐵
eqtrid.2 (𝜑𝐵 = 𝐶)
Assertion
Ref Expression
eqtrid (𝜑𝐴 = 𝐶)

Proof of Theorem eqtrid
StepHypRef Expression
1 eqtrid.1 . . 3 𝐴 = 𝐵
21a1i 9 . 2 (𝜑𝐴 = 𝐵)
3 eqtrid.2 . 2 (𝜑𝐵 = 𝐶)
42, 3eqtrd 2198 1 (𝜑𝐴 = 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-4 1498  ax-17 1514  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-cleq 2158
This theorem is referenced by:  mgm1  12601  grpidvalg  12604
  Copyright terms: Public domain W3C validator