ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  efieq1re GIF version

Theorem efieq1re 11645
Description: A number whose imaginary exponential is one is real. (Contributed by NM, 21-Aug-2008.)
Assertion
Ref Expression
efieq1re ((𝐴 ∈ ℂ ∧ (exp‘(i · 𝐴)) = 1) → 𝐴 ∈ ℝ)

Proof of Theorem efieq1re
StepHypRef Expression
1 replim 10736 . . . . . . . . 9 (𝐴 ∈ ℂ → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))))
21oveq2d 5830 . . . . . . . 8 (𝐴 ∈ ℂ → (i · 𝐴) = (i · ((ℜ‘𝐴) + (i · (ℑ‘𝐴)))))
3 recl 10730 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
43recnd 7885 . . . . . . . . . 10 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℂ)
5 ax-icn 7806 . . . . . . . . . . 11 i ∈ ℂ
6 imcl 10731 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ)
76recnd 7885 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℂ)
8 mulcl 7838 . . . . . . . . . . 11 ((i ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → (i · (ℑ‘𝐴)) ∈ ℂ)
95, 7, 8sylancr 411 . . . . . . . . . 10 (𝐴 ∈ ℂ → (i · (ℑ‘𝐴)) ∈ ℂ)
10 adddi 7843 . . . . . . . . . . 11 ((i ∈ ℂ ∧ (ℜ‘𝐴) ∈ ℂ ∧ (i · (ℑ‘𝐴)) ∈ ℂ) → (i · ((ℜ‘𝐴) + (i · (ℑ‘𝐴)))) = ((i · (ℜ‘𝐴)) + (i · (i · (ℑ‘𝐴)))))
115, 10mp3an1 1303 . . . . . . . . . 10 (((ℜ‘𝐴) ∈ ℂ ∧ (i · (ℑ‘𝐴)) ∈ ℂ) → (i · ((ℜ‘𝐴) + (i · (ℑ‘𝐴)))) = ((i · (ℜ‘𝐴)) + (i · (i · (ℑ‘𝐴)))))
124, 9, 11syl2anc 409 . . . . . . . . 9 (𝐴 ∈ ℂ → (i · ((ℜ‘𝐴) + (i · (ℑ‘𝐴)))) = ((i · (ℜ‘𝐴)) + (i · (i · (ℑ‘𝐴)))))
13 ixi 8437 . . . . . . . . . . . 12 (i · i) = -1
1413oveq1i 5824 . . . . . . . . . . 11 ((i · i) · (ℑ‘𝐴)) = (-1 · (ℑ‘𝐴))
15 mulass 7842 . . . . . . . . . . . . 13 ((i ∈ ℂ ∧ i ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → ((i · i) · (ℑ‘𝐴)) = (i · (i · (ℑ‘𝐴))))
165, 5, 15mp3an12 1306 . . . . . . . . . . . 12 ((ℑ‘𝐴) ∈ ℂ → ((i · i) · (ℑ‘𝐴)) = (i · (i · (ℑ‘𝐴))))
177, 16syl 14 . . . . . . . . . . 11 (𝐴 ∈ ℂ → ((i · i) · (ℑ‘𝐴)) = (i · (i · (ℑ‘𝐴))))
187mulm1d 8264 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (-1 · (ℑ‘𝐴)) = -(ℑ‘𝐴))
1914, 17, 183eqtr3a 2211 . . . . . . . . . 10 (𝐴 ∈ ℂ → (i · (i · (ℑ‘𝐴))) = -(ℑ‘𝐴))
2019oveq2d 5830 . . . . . . . . 9 (𝐴 ∈ ℂ → ((i · (ℜ‘𝐴)) + (i · (i · (ℑ‘𝐴)))) = ((i · (ℜ‘𝐴)) + -(ℑ‘𝐴)))
2112, 20eqtrd 2187 . . . . . . . 8 (𝐴 ∈ ℂ → (i · ((ℜ‘𝐴) + (i · (ℑ‘𝐴)))) = ((i · (ℜ‘𝐴)) + -(ℑ‘𝐴)))
222, 21eqtrd 2187 . . . . . . 7 (𝐴 ∈ ℂ → (i · 𝐴) = ((i · (ℜ‘𝐴)) + -(ℑ‘𝐴)))
2322fveq2d 5465 . . . . . 6 (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) = (exp‘((i · (ℜ‘𝐴)) + -(ℑ‘𝐴))))
24 mulcl 7838 . . . . . . . 8 ((i ∈ ℂ ∧ (ℜ‘𝐴) ∈ ℂ) → (i · (ℜ‘𝐴)) ∈ ℂ)
255, 4, 24sylancr 411 . . . . . . 7 (𝐴 ∈ ℂ → (i · (ℜ‘𝐴)) ∈ ℂ)
266renegcld 8234 . . . . . . . 8 (𝐴 ∈ ℂ → -(ℑ‘𝐴) ∈ ℝ)
2726recnd 7885 . . . . . . 7 (𝐴 ∈ ℂ → -(ℑ‘𝐴) ∈ ℂ)
28 efadd 11549 . . . . . . 7 (((i · (ℜ‘𝐴)) ∈ ℂ ∧ -(ℑ‘𝐴) ∈ ℂ) → (exp‘((i · (ℜ‘𝐴)) + -(ℑ‘𝐴))) = ((exp‘(i · (ℜ‘𝐴))) · (exp‘-(ℑ‘𝐴))))
2925, 27, 28syl2anc 409 . . . . . 6 (𝐴 ∈ ℂ → (exp‘((i · (ℜ‘𝐴)) + -(ℑ‘𝐴))) = ((exp‘(i · (ℜ‘𝐴))) · (exp‘-(ℑ‘𝐴))))
3023, 29eqtrd 2187 . . . . 5 (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) = ((exp‘(i · (ℜ‘𝐴))) · (exp‘-(ℑ‘𝐴))))
3130eqeq1d 2163 . . . 4 (𝐴 ∈ ℂ → ((exp‘(i · 𝐴)) = 1 ↔ ((exp‘(i · (ℜ‘𝐴))) · (exp‘-(ℑ‘𝐴))) = 1))
32 efcl 11538 . . . . . . . . 9 ((i · (ℜ‘𝐴)) ∈ ℂ → (exp‘(i · (ℜ‘𝐴))) ∈ ℂ)
3325, 32syl 14 . . . . . . . 8 (𝐴 ∈ ℂ → (exp‘(i · (ℜ‘𝐴))) ∈ ℂ)
34 efcl 11538 . . . . . . . . 9 (-(ℑ‘𝐴) ∈ ℂ → (exp‘-(ℑ‘𝐴)) ∈ ℂ)
3527, 34syl 14 . . . . . . . 8 (𝐴 ∈ ℂ → (exp‘-(ℑ‘𝐴)) ∈ ℂ)
3633, 35absmuld 11071 . . . . . . 7 (𝐴 ∈ ℂ → (abs‘((exp‘(i · (ℜ‘𝐴))) · (exp‘-(ℑ‘𝐴)))) = ((abs‘(exp‘(i · (ℜ‘𝐴)))) · (abs‘(exp‘-(ℑ‘𝐴)))))
37 absefi 11642 . . . . . . . . 9 ((ℜ‘𝐴) ∈ ℝ → (abs‘(exp‘(i · (ℜ‘𝐴)))) = 1)
383, 37syl 14 . . . . . . . 8 (𝐴 ∈ ℂ → (abs‘(exp‘(i · (ℜ‘𝐴)))) = 1)
3926reefcld 11543 . . . . . . . . 9 (𝐴 ∈ ℂ → (exp‘-(ℑ‘𝐴)) ∈ ℝ)
40 efgt0 11558 . . . . . . . . . . 11 (-(ℑ‘𝐴) ∈ ℝ → 0 < (exp‘-(ℑ‘𝐴)))
4126, 40syl 14 . . . . . . . . . 10 (𝐴 ∈ ℂ → 0 < (exp‘-(ℑ‘𝐴)))
42 0re 7857 . . . . . . . . . . 11 0 ∈ ℝ
43 ltle 7943 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ (exp‘-(ℑ‘𝐴)) ∈ ℝ) → (0 < (exp‘-(ℑ‘𝐴)) → 0 ≤ (exp‘-(ℑ‘𝐴))))
4442, 43mpan 421 . . . . . . . . . 10 ((exp‘-(ℑ‘𝐴)) ∈ ℝ → (0 < (exp‘-(ℑ‘𝐴)) → 0 ≤ (exp‘-(ℑ‘𝐴))))
4539, 41, 44sylc 62 . . . . . . . . 9 (𝐴 ∈ ℂ → 0 ≤ (exp‘-(ℑ‘𝐴)))
4639, 45absidd 11044 . . . . . . . 8 (𝐴 ∈ ℂ → (abs‘(exp‘-(ℑ‘𝐴))) = (exp‘-(ℑ‘𝐴)))
4738, 46oveq12d 5832 . . . . . . 7 (𝐴 ∈ ℂ → ((abs‘(exp‘(i · (ℜ‘𝐴)))) · (abs‘(exp‘-(ℑ‘𝐴)))) = (1 · (exp‘-(ℑ‘𝐴))))
4835mulid2d 7875 . . . . . . 7 (𝐴 ∈ ℂ → (1 · (exp‘-(ℑ‘𝐴))) = (exp‘-(ℑ‘𝐴)))
4936, 47, 483eqtrrd 2192 . . . . . 6 (𝐴 ∈ ℂ → (exp‘-(ℑ‘𝐴)) = (abs‘((exp‘(i · (ℜ‘𝐴))) · (exp‘-(ℑ‘𝐴)))))
50 fveq2 5461 . . . . . 6 (((exp‘(i · (ℜ‘𝐴))) · (exp‘-(ℑ‘𝐴))) = 1 → (abs‘((exp‘(i · (ℜ‘𝐴))) · (exp‘-(ℑ‘𝐴)))) = (abs‘1))
5149, 50sylan9eq 2207 . . . . 5 ((𝐴 ∈ ℂ ∧ ((exp‘(i · (ℜ‘𝐴))) · (exp‘-(ℑ‘𝐴))) = 1) → (exp‘-(ℑ‘𝐴)) = (abs‘1))
5251ex 114 . . . 4 (𝐴 ∈ ℂ → (((exp‘(i · (ℜ‘𝐴))) · (exp‘-(ℑ‘𝐴))) = 1 → (exp‘-(ℑ‘𝐴)) = (abs‘1)))
5331, 52sylbid 149 . . 3 (𝐴 ∈ ℂ → ((exp‘(i · 𝐴)) = 1 → (exp‘-(ℑ‘𝐴)) = (abs‘1)))
547negeq0d 8157 . . . 4 (𝐴 ∈ ℂ → ((ℑ‘𝐴) = 0 ↔ -(ℑ‘𝐴) = 0))
55 reim0b 10739 . . . 4 (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (ℑ‘𝐴) = 0))
56 ef0 11546 . . . . . . 7 (exp‘0) = 1
57 abs1 10949 . . . . . . 7 (abs‘1) = 1
5856, 57eqtr4i 2178 . . . . . 6 (exp‘0) = (abs‘1)
5958eqeq2i 2165 . . . . 5 ((exp‘-(ℑ‘𝐴)) = (exp‘0) ↔ (exp‘-(ℑ‘𝐴)) = (abs‘1))
60 reef11 11573 . . . . . 6 ((-(ℑ‘𝐴) ∈ ℝ ∧ 0 ∈ ℝ) → ((exp‘-(ℑ‘𝐴)) = (exp‘0) ↔ -(ℑ‘𝐴) = 0))
6126, 42, 60sylancl 410 . . . . 5 (𝐴 ∈ ℂ → ((exp‘-(ℑ‘𝐴)) = (exp‘0) ↔ -(ℑ‘𝐴) = 0))
6259, 61bitr3id 193 . . . 4 (𝐴 ∈ ℂ → ((exp‘-(ℑ‘𝐴)) = (abs‘1) ↔ -(ℑ‘𝐴) = 0))
6354, 55, 623bitr4rd 220 . . 3 (𝐴 ∈ ℂ → ((exp‘-(ℑ‘𝐴)) = (abs‘1) ↔ 𝐴 ∈ ℝ))
6453, 63sylibd 148 . 2 (𝐴 ∈ ℂ → ((exp‘(i · 𝐴)) = 1 → 𝐴 ∈ ℝ))
6564imp 123 1 ((𝐴 ∈ ℂ ∧ (exp‘(i · 𝐴)) = 1) → 𝐴 ∈ ℝ)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1332  wcel 2125   class class class wbr 3961  cfv 5163  (class class class)co 5814  cc 7709  cr 7710  0cc0 7711  1c1 7712  ici 7713   + caddc 7714   · cmul 7716   < clt 7891  cle 7892  -cneg 8026  cre 10717  cim 10718  abscabs 10874  expce 11516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-13 2127  ax-14 2128  ax-ext 2136  ax-coll 4075  ax-sep 4078  ax-nul 4086  ax-pow 4130  ax-pr 4164  ax-un 4388  ax-setind 4490  ax-iinf 4541  ax-cnex 7802  ax-resscn 7803  ax-1cn 7804  ax-1re 7805  ax-icn 7806  ax-addcl 7807  ax-addrcl 7808  ax-mulcl 7809  ax-mulrcl 7810  ax-addcom 7811  ax-mulcom 7812  ax-addass 7813  ax-mulass 7814  ax-distr 7815  ax-i2m1 7816  ax-0lt1 7817  ax-1rid 7818  ax-0id 7819  ax-rnegex 7820  ax-precex 7821  ax-cnre 7822  ax-pre-ltirr 7823  ax-pre-ltwlin 7824  ax-pre-lttrn 7825  ax-pre-apti 7826  ax-pre-ltadd 7827  ax-pre-mulgt0 7828  ax-pre-mulext 7829  ax-arch 7830  ax-caucvg 7831
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ne 2325  df-nel 2420  df-ral 2437  df-rex 2438  df-reu 2439  df-rmo 2440  df-rab 2441  df-v 2711  df-sbc 2934  df-csb 3028  df-dif 3100  df-un 3102  df-in 3104  df-ss 3111  df-nul 3391  df-if 3502  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-uni 3769  df-int 3804  df-iun 3847  df-disj 3939  df-br 3962  df-opab 4022  df-mpt 4023  df-tr 4059  df-id 4248  df-po 4251  df-iso 4252  df-iord 4321  df-on 4323  df-ilim 4324  df-suc 4326  df-iom 4544  df-xp 4585  df-rel 4586  df-cnv 4587  df-co 4588  df-dm 4589  df-rn 4590  df-res 4591  df-ima 4592  df-iota 5128  df-fun 5165  df-fn 5166  df-f 5167  df-f1 5168  df-fo 5169  df-f1o 5170  df-fv 5171  df-isom 5172  df-riota 5770  df-ov 5817  df-oprab 5818  df-mpo 5819  df-1st 6078  df-2nd 6079  df-recs 6242  df-irdg 6307  df-frec 6328  df-1o 6353  df-oadd 6357  df-er 6469  df-en 6675  df-dom 6676  df-fin 6677  df-sup 6916  df-pnf 7893  df-mnf 7894  df-xr 7895  df-ltxr 7896  df-le 7897  df-sub 8027  df-neg 8028  df-reap 8429  df-ap 8436  df-div 8525  df-inn 8813  df-2 8871  df-3 8872  df-4 8873  df-n0 9070  df-z 9147  df-uz 9419  df-q 9507  df-rp 9539  df-ico 9776  df-fz 9891  df-fzo 10020  df-seqfrec 10323  df-exp 10397  df-fac 10577  df-bc 10599  df-ihash 10627  df-cj 10719  df-re 10720  df-im 10721  df-rsqrt 10875  df-abs 10876  df-clim 11153  df-sumdc 11228  df-ef 11522  df-sin 11524  df-cos 11525
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator