Proof of Theorem efieq1re
| Step | Hyp | Ref
 | Expression | 
| 1 |   | replim 11024 | 
. . . . . . . . 9
⊢ (𝐴 ∈ ℂ → 𝐴 = ((ℜ‘𝐴) + (i ·
(ℑ‘𝐴)))) | 
| 2 | 1 | oveq2d 5938 | 
. . . . . . . 8
⊢ (𝐴 ∈ ℂ → (i
· 𝐴) = (i ·
((ℜ‘𝐴) + (i
· (ℑ‘𝐴))))) | 
| 3 |   | recl 11018 | 
. . . . . . . . . . 11
⊢ (𝐴 ∈ ℂ →
(ℜ‘𝐴) ∈
ℝ) | 
| 4 | 3 | recnd 8055 | 
. . . . . . . . . 10
⊢ (𝐴 ∈ ℂ →
(ℜ‘𝐴) ∈
ℂ) | 
| 5 |   | ax-icn 7974 | 
. . . . . . . . . . 11
⊢ i ∈
ℂ | 
| 6 |   | imcl 11019 | 
. . . . . . . . . . . 12
⊢ (𝐴 ∈ ℂ →
(ℑ‘𝐴) ∈
ℝ) | 
| 7 | 6 | recnd 8055 | 
. . . . . . . . . . 11
⊢ (𝐴 ∈ ℂ →
(ℑ‘𝐴) ∈
ℂ) | 
| 8 |   | mulcl 8006 | 
. . . . . . . . . . 11
⊢ ((i
∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → (i ·
(ℑ‘𝐴)) ∈
ℂ) | 
| 9 | 5, 7, 8 | sylancr 414 | 
. . . . . . . . . 10
⊢ (𝐴 ∈ ℂ → (i
· (ℑ‘𝐴))
∈ ℂ) | 
| 10 |   | adddi 8011 | 
. . . . . . . . . . 11
⊢ ((i
∈ ℂ ∧ (ℜ‘𝐴) ∈ ℂ ∧ (i ·
(ℑ‘𝐴)) ∈
ℂ) → (i · ((ℜ‘𝐴) + (i · (ℑ‘𝐴)))) = ((i ·
(ℜ‘𝐴)) + (i
· (i · (ℑ‘𝐴))))) | 
| 11 | 5, 10 | mp3an1 1335 | 
. . . . . . . . . 10
⊢
(((ℜ‘𝐴)
∈ ℂ ∧ (i · (ℑ‘𝐴)) ∈ ℂ) → (i ·
((ℜ‘𝐴) + (i
· (ℑ‘𝐴)))) = ((i · (ℜ‘𝐴)) + (i · (i ·
(ℑ‘𝐴))))) | 
| 12 | 4, 9, 11 | syl2anc 411 | 
. . . . . . . . 9
⊢ (𝐴 ∈ ℂ → (i
· ((ℜ‘𝐴)
+ (i · (ℑ‘𝐴)))) = ((i · (ℜ‘𝐴)) + (i · (i ·
(ℑ‘𝐴))))) | 
| 13 |   | ixi 8610 | 
. . . . . . . . . . . 12
⊢ (i
· i) = -1 | 
| 14 | 13 | oveq1i 5932 | 
. . . . . . . . . . 11
⊢ ((i
· i) · (ℑ‘𝐴)) = (-1 · (ℑ‘𝐴)) | 
| 15 |   | mulass 8010 | 
. . . . . . . . . . . . 13
⊢ ((i
∈ ℂ ∧ i ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → ((i · i)
· (ℑ‘𝐴))
= (i · (i · (ℑ‘𝐴)))) | 
| 16 | 5, 5, 15 | mp3an12 1338 | 
. . . . . . . . . . . 12
⊢
((ℑ‘𝐴)
∈ ℂ → ((i · i) · (ℑ‘𝐴)) = (i · (i ·
(ℑ‘𝐴)))) | 
| 17 | 7, 16 | syl 14 | 
. . . . . . . . . . 11
⊢ (𝐴 ∈ ℂ → ((i
· i) · (ℑ‘𝐴)) = (i · (i ·
(ℑ‘𝐴)))) | 
| 18 | 7 | mulm1d 8436 | 
. . . . . . . . . . 11
⊢ (𝐴 ∈ ℂ → (-1
· (ℑ‘𝐴))
= -(ℑ‘𝐴)) | 
| 19 | 14, 17, 18 | 3eqtr3a 2253 | 
. . . . . . . . . 10
⊢ (𝐴 ∈ ℂ → (i
· (i · (ℑ‘𝐴))) = -(ℑ‘𝐴)) | 
| 20 | 19 | oveq2d 5938 | 
. . . . . . . . 9
⊢ (𝐴 ∈ ℂ → ((i
· (ℜ‘𝐴))
+ (i · (i · (ℑ‘𝐴)))) = ((i · (ℜ‘𝐴)) + -(ℑ‘𝐴))) | 
| 21 | 12, 20 | eqtrd 2229 | 
. . . . . . . 8
⊢ (𝐴 ∈ ℂ → (i
· ((ℜ‘𝐴)
+ (i · (ℑ‘𝐴)))) = ((i · (ℜ‘𝐴)) + -(ℑ‘𝐴))) | 
| 22 | 2, 21 | eqtrd 2229 | 
. . . . . . 7
⊢ (𝐴 ∈ ℂ → (i
· 𝐴) = ((i ·
(ℜ‘𝐴)) +
-(ℑ‘𝐴))) | 
| 23 | 22 | fveq2d 5562 | 
. . . . . 6
⊢ (𝐴 ∈ ℂ →
(exp‘(i · 𝐴))
= (exp‘((i · (ℜ‘𝐴)) + -(ℑ‘𝐴)))) | 
| 24 |   | mulcl 8006 | 
. . . . . . . 8
⊢ ((i
∈ ℂ ∧ (ℜ‘𝐴) ∈ ℂ) → (i ·
(ℜ‘𝐴)) ∈
ℂ) | 
| 25 | 5, 4, 24 | sylancr 414 | 
. . . . . . 7
⊢ (𝐴 ∈ ℂ → (i
· (ℜ‘𝐴))
∈ ℂ) | 
| 26 | 6 | renegcld 8406 | 
. . . . . . . 8
⊢ (𝐴 ∈ ℂ →
-(ℑ‘𝐴) ∈
ℝ) | 
| 27 | 26 | recnd 8055 | 
. . . . . . 7
⊢ (𝐴 ∈ ℂ →
-(ℑ‘𝐴) ∈
ℂ) | 
| 28 |   | efadd 11840 | 
. . . . . . 7
⊢ (((i
· (ℜ‘𝐴))
∈ ℂ ∧ -(ℑ‘𝐴) ∈ ℂ) → (exp‘((i
· (ℜ‘𝐴))
+ -(ℑ‘𝐴))) =
((exp‘(i · (ℜ‘𝐴))) ·
(exp‘-(ℑ‘𝐴)))) | 
| 29 | 25, 27, 28 | syl2anc 411 | 
. . . . . 6
⊢ (𝐴 ∈ ℂ →
(exp‘((i · (ℜ‘𝐴)) + -(ℑ‘𝐴))) = ((exp‘(i ·
(ℜ‘𝐴))) ·
(exp‘-(ℑ‘𝐴)))) | 
| 30 | 23, 29 | eqtrd 2229 | 
. . . . 5
⊢ (𝐴 ∈ ℂ →
(exp‘(i · 𝐴))
= ((exp‘(i · (ℜ‘𝐴))) ·
(exp‘-(ℑ‘𝐴)))) | 
| 31 | 30 | eqeq1d 2205 | 
. . . 4
⊢ (𝐴 ∈ ℂ →
((exp‘(i · 𝐴))
= 1 ↔ ((exp‘(i · (ℜ‘𝐴))) ·
(exp‘-(ℑ‘𝐴))) = 1)) | 
| 32 |   | efcl 11829 | 
. . . . . . . . 9
⊢ ((i
· (ℜ‘𝐴))
∈ ℂ → (exp‘(i · (ℜ‘𝐴))) ∈ ℂ) | 
| 33 | 25, 32 | syl 14 | 
. . . . . . . 8
⊢ (𝐴 ∈ ℂ →
(exp‘(i · (ℜ‘𝐴))) ∈ ℂ) | 
| 34 |   | efcl 11829 | 
. . . . . . . . 9
⊢
(-(ℑ‘𝐴)
∈ ℂ → (exp‘-(ℑ‘𝐴)) ∈ ℂ) | 
| 35 | 27, 34 | syl 14 | 
. . . . . . . 8
⊢ (𝐴 ∈ ℂ →
(exp‘-(ℑ‘𝐴)) ∈ ℂ) | 
| 36 | 33, 35 | absmuld 11359 | 
. . . . . . 7
⊢ (𝐴 ∈ ℂ →
(abs‘((exp‘(i · (ℜ‘𝐴))) ·
(exp‘-(ℑ‘𝐴)))) = ((abs‘(exp‘(i ·
(ℜ‘𝐴))))
· (abs‘(exp‘-(ℑ‘𝐴))))) | 
| 37 |   | absefi 11934 | 
. . . . . . . . 9
⊢
((ℜ‘𝐴)
∈ ℝ → (abs‘(exp‘(i · (ℜ‘𝐴)))) = 1) | 
| 38 | 3, 37 | syl 14 | 
. . . . . . . 8
⊢ (𝐴 ∈ ℂ →
(abs‘(exp‘(i · (ℜ‘𝐴)))) = 1) | 
| 39 | 26 | reefcld 11834 | 
. . . . . . . . 9
⊢ (𝐴 ∈ ℂ →
(exp‘-(ℑ‘𝐴)) ∈ ℝ) | 
| 40 |   | efgt0 11849 | 
. . . . . . . . . . 11
⊢
(-(ℑ‘𝐴)
∈ ℝ → 0 < (exp‘-(ℑ‘𝐴))) | 
| 41 | 26, 40 | syl 14 | 
. . . . . . . . . 10
⊢ (𝐴 ∈ ℂ → 0 <
(exp‘-(ℑ‘𝐴))) | 
| 42 |   | 0re 8026 | 
. . . . . . . . . . 11
⊢ 0 ∈
ℝ | 
| 43 |   | ltle 8114 | 
. . . . . . . . . . 11
⊢ ((0
∈ ℝ ∧ (exp‘-(ℑ‘𝐴)) ∈ ℝ) → (0 <
(exp‘-(ℑ‘𝐴)) → 0 ≤
(exp‘-(ℑ‘𝐴)))) | 
| 44 | 42, 43 | mpan 424 | 
. . . . . . . . . 10
⊢
((exp‘-(ℑ‘𝐴)) ∈ ℝ → (0 <
(exp‘-(ℑ‘𝐴)) → 0 ≤
(exp‘-(ℑ‘𝐴)))) | 
| 45 | 39, 41, 44 | sylc 62 | 
. . . . . . . . 9
⊢ (𝐴 ∈ ℂ → 0 ≤
(exp‘-(ℑ‘𝐴))) | 
| 46 | 39, 45 | absidd 11332 | 
. . . . . . . 8
⊢ (𝐴 ∈ ℂ →
(abs‘(exp‘-(ℑ‘𝐴))) = (exp‘-(ℑ‘𝐴))) | 
| 47 | 38, 46 | oveq12d 5940 | 
. . . . . . 7
⊢ (𝐴 ∈ ℂ →
((abs‘(exp‘(i · (ℜ‘𝐴)))) ·
(abs‘(exp‘-(ℑ‘𝐴)))) = (1 ·
(exp‘-(ℑ‘𝐴)))) | 
| 48 | 35 | mulid2d 8045 | 
. . . . . . 7
⊢ (𝐴 ∈ ℂ → (1
· (exp‘-(ℑ‘𝐴))) = (exp‘-(ℑ‘𝐴))) | 
| 49 | 36, 47, 48 | 3eqtrrd 2234 | 
. . . . . 6
⊢ (𝐴 ∈ ℂ →
(exp‘-(ℑ‘𝐴)) = (abs‘((exp‘(i ·
(ℜ‘𝐴))) ·
(exp‘-(ℑ‘𝐴))))) | 
| 50 |   | fveq2 5558 | 
. . . . . 6
⊢
(((exp‘(i · (ℜ‘𝐴))) ·
(exp‘-(ℑ‘𝐴))) = 1 → (abs‘((exp‘(i
· (ℜ‘𝐴)))
· (exp‘-(ℑ‘𝐴)))) = (abs‘1)) | 
| 51 | 49, 50 | sylan9eq 2249 | 
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧
((exp‘(i · (ℜ‘𝐴))) ·
(exp‘-(ℑ‘𝐴))) = 1) →
(exp‘-(ℑ‘𝐴)) = (abs‘1)) | 
| 52 | 51 | ex 115 | 
. . . 4
⊢ (𝐴 ∈ ℂ →
(((exp‘(i · (ℜ‘𝐴))) ·
(exp‘-(ℑ‘𝐴))) = 1 →
(exp‘-(ℑ‘𝐴)) = (abs‘1))) | 
| 53 | 31, 52 | sylbid 150 | 
. . 3
⊢ (𝐴 ∈ ℂ →
((exp‘(i · 𝐴))
= 1 → (exp‘-(ℑ‘𝐴)) = (abs‘1))) | 
| 54 | 7 | negeq0d 8329 | 
. . . 4
⊢ (𝐴 ∈ ℂ →
((ℑ‘𝐴) = 0
↔ -(ℑ‘𝐴) =
0)) | 
| 55 |   | reim0b 11027 | 
. . . 4
⊢ (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔
(ℑ‘𝐴) =
0)) | 
| 56 |   | ef0 11837 | 
. . . . . . 7
⊢
(exp‘0) = 1 | 
| 57 |   | abs1 11237 | 
. . . . . . 7
⊢
(abs‘1) = 1 | 
| 58 | 56, 57 | eqtr4i 2220 | 
. . . . . 6
⊢
(exp‘0) = (abs‘1) | 
| 59 | 58 | eqeq2i 2207 | 
. . . . 5
⊢
((exp‘-(ℑ‘𝐴)) = (exp‘0) ↔
(exp‘-(ℑ‘𝐴)) = (abs‘1)) | 
| 60 |   | reef11 11864 | 
. . . . . 6
⊢
((-(ℑ‘𝐴)
∈ ℝ ∧ 0 ∈ ℝ) → ((exp‘-(ℑ‘𝐴)) = (exp‘0) ↔
-(ℑ‘𝐴) =
0)) | 
| 61 | 26, 42, 60 | sylancl 413 | 
. . . . 5
⊢ (𝐴 ∈ ℂ →
((exp‘-(ℑ‘𝐴)) = (exp‘0) ↔
-(ℑ‘𝐴) =
0)) | 
| 62 | 59, 61 | bitr3id 194 | 
. . . 4
⊢ (𝐴 ∈ ℂ →
((exp‘-(ℑ‘𝐴)) = (abs‘1) ↔
-(ℑ‘𝐴) =
0)) | 
| 63 | 54, 55, 62 | 3bitr4rd 221 | 
. . 3
⊢ (𝐴 ∈ ℂ →
((exp‘-(ℑ‘𝐴)) = (abs‘1) ↔ 𝐴 ∈ ℝ)) | 
| 64 | 53, 63 | sylibd 149 | 
. 2
⊢ (𝐴 ∈ ℂ →
((exp‘(i · 𝐴))
= 1 → 𝐴 ∈
ℝ)) | 
| 65 | 64 | imp 124 | 
1
⊢ ((𝐴 ∈ ℂ ∧
(exp‘(i · 𝐴))
= 1) → 𝐴 ∈
ℝ) |