ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  efieq1re GIF version

Theorem efieq1re 11478
Description: A number whose imaginary exponential is one is real. (Contributed by NM, 21-Aug-2008.)
Assertion
Ref Expression
efieq1re ((𝐴 ∈ ℂ ∧ (exp‘(i · 𝐴)) = 1) → 𝐴 ∈ ℝ)

Proof of Theorem efieq1re
StepHypRef Expression
1 replim 10631 . . . . . . . . 9 (𝐴 ∈ ℂ → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))))
21oveq2d 5790 . . . . . . . 8 (𝐴 ∈ ℂ → (i · 𝐴) = (i · ((ℜ‘𝐴) + (i · (ℑ‘𝐴)))))
3 recl 10625 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
43recnd 7794 . . . . . . . . . 10 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℂ)
5 ax-icn 7715 . . . . . . . . . . 11 i ∈ ℂ
6 imcl 10626 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ)
76recnd 7794 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℂ)
8 mulcl 7747 . . . . . . . . . . 11 ((i ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → (i · (ℑ‘𝐴)) ∈ ℂ)
95, 7, 8sylancr 410 . . . . . . . . . 10 (𝐴 ∈ ℂ → (i · (ℑ‘𝐴)) ∈ ℂ)
10 adddi 7752 . . . . . . . . . . 11 ((i ∈ ℂ ∧ (ℜ‘𝐴) ∈ ℂ ∧ (i · (ℑ‘𝐴)) ∈ ℂ) → (i · ((ℜ‘𝐴) + (i · (ℑ‘𝐴)))) = ((i · (ℜ‘𝐴)) + (i · (i · (ℑ‘𝐴)))))
115, 10mp3an1 1302 . . . . . . . . . 10 (((ℜ‘𝐴) ∈ ℂ ∧ (i · (ℑ‘𝐴)) ∈ ℂ) → (i · ((ℜ‘𝐴) + (i · (ℑ‘𝐴)))) = ((i · (ℜ‘𝐴)) + (i · (i · (ℑ‘𝐴)))))
124, 9, 11syl2anc 408 . . . . . . . . 9 (𝐴 ∈ ℂ → (i · ((ℜ‘𝐴) + (i · (ℑ‘𝐴)))) = ((i · (ℜ‘𝐴)) + (i · (i · (ℑ‘𝐴)))))
13 ixi 8345 . . . . . . . . . . . 12 (i · i) = -1
1413oveq1i 5784 . . . . . . . . . . 11 ((i · i) · (ℑ‘𝐴)) = (-1 · (ℑ‘𝐴))
15 mulass 7751 . . . . . . . . . . . . 13 ((i ∈ ℂ ∧ i ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → ((i · i) · (ℑ‘𝐴)) = (i · (i · (ℑ‘𝐴))))
165, 5, 15mp3an12 1305 . . . . . . . . . . . 12 ((ℑ‘𝐴) ∈ ℂ → ((i · i) · (ℑ‘𝐴)) = (i · (i · (ℑ‘𝐴))))
177, 16syl 14 . . . . . . . . . . 11 (𝐴 ∈ ℂ → ((i · i) · (ℑ‘𝐴)) = (i · (i · (ℑ‘𝐴))))
187mulm1d 8172 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (-1 · (ℑ‘𝐴)) = -(ℑ‘𝐴))
1914, 17, 183eqtr3a 2196 . . . . . . . . . 10 (𝐴 ∈ ℂ → (i · (i · (ℑ‘𝐴))) = -(ℑ‘𝐴))
2019oveq2d 5790 . . . . . . . . 9 (𝐴 ∈ ℂ → ((i · (ℜ‘𝐴)) + (i · (i · (ℑ‘𝐴)))) = ((i · (ℜ‘𝐴)) + -(ℑ‘𝐴)))
2112, 20eqtrd 2172 . . . . . . . 8 (𝐴 ∈ ℂ → (i · ((ℜ‘𝐴) + (i · (ℑ‘𝐴)))) = ((i · (ℜ‘𝐴)) + -(ℑ‘𝐴)))
222, 21eqtrd 2172 . . . . . . 7 (𝐴 ∈ ℂ → (i · 𝐴) = ((i · (ℜ‘𝐴)) + -(ℑ‘𝐴)))
2322fveq2d 5425 . . . . . 6 (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) = (exp‘((i · (ℜ‘𝐴)) + -(ℑ‘𝐴))))
24 mulcl 7747 . . . . . . . 8 ((i ∈ ℂ ∧ (ℜ‘𝐴) ∈ ℂ) → (i · (ℜ‘𝐴)) ∈ ℂ)
255, 4, 24sylancr 410 . . . . . . 7 (𝐴 ∈ ℂ → (i · (ℜ‘𝐴)) ∈ ℂ)
266renegcld 8142 . . . . . . . 8 (𝐴 ∈ ℂ → -(ℑ‘𝐴) ∈ ℝ)
2726recnd 7794 . . . . . . 7 (𝐴 ∈ ℂ → -(ℑ‘𝐴) ∈ ℂ)
28 efadd 11381 . . . . . . 7 (((i · (ℜ‘𝐴)) ∈ ℂ ∧ -(ℑ‘𝐴) ∈ ℂ) → (exp‘((i · (ℜ‘𝐴)) + -(ℑ‘𝐴))) = ((exp‘(i · (ℜ‘𝐴))) · (exp‘-(ℑ‘𝐴))))
2925, 27, 28syl2anc 408 . . . . . 6 (𝐴 ∈ ℂ → (exp‘((i · (ℜ‘𝐴)) + -(ℑ‘𝐴))) = ((exp‘(i · (ℜ‘𝐴))) · (exp‘-(ℑ‘𝐴))))
3023, 29eqtrd 2172 . . . . 5 (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) = ((exp‘(i · (ℜ‘𝐴))) · (exp‘-(ℑ‘𝐴))))
3130eqeq1d 2148 . . . 4 (𝐴 ∈ ℂ → ((exp‘(i · 𝐴)) = 1 ↔ ((exp‘(i · (ℜ‘𝐴))) · (exp‘-(ℑ‘𝐴))) = 1))
32 efcl 11370 . . . . . . . . 9 ((i · (ℜ‘𝐴)) ∈ ℂ → (exp‘(i · (ℜ‘𝐴))) ∈ ℂ)
3325, 32syl 14 . . . . . . . 8 (𝐴 ∈ ℂ → (exp‘(i · (ℜ‘𝐴))) ∈ ℂ)
34 efcl 11370 . . . . . . . . 9 (-(ℑ‘𝐴) ∈ ℂ → (exp‘-(ℑ‘𝐴)) ∈ ℂ)
3527, 34syl 14 . . . . . . . 8 (𝐴 ∈ ℂ → (exp‘-(ℑ‘𝐴)) ∈ ℂ)
3633, 35absmuld 10966 . . . . . . 7 (𝐴 ∈ ℂ → (abs‘((exp‘(i · (ℜ‘𝐴))) · (exp‘-(ℑ‘𝐴)))) = ((abs‘(exp‘(i · (ℜ‘𝐴)))) · (abs‘(exp‘-(ℑ‘𝐴)))))
37 absefi 11475 . . . . . . . . 9 ((ℜ‘𝐴) ∈ ℝ → (abs‘(exp‘(i · (ℜ‘𝐴)))) = 1)
383, 37syl 14 . . . . . . . 8 (𝐴 ∈ ℂ → (abs‘(exp‘(i · (ℜ‘𝐴)))) = 1)
3926reefcld 11375 . . . . . . . . 9 (𝐴 ∈ ℂ → (exp‘-(ℑ‘𝐴)) ∈ ℝ)
40 efgt0 11390 . . . . . . . . . . 11 (-(ℑ‘𝐴) ∈ ℝ → 0 < (exp‘-(ℑ‘𝐴)))
4126, 40syl 14 . . . . . . . . . 10 (𝐴 ∈ ℂ → 0 < (exp‘-(ℑ‘𝐴)))
42 0re 7766 . . . . . . . . . . 11 0 ∈ ℝ
43 ltle 7851 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ (exp‘-(ℑ‘𝐴)) ∈ ℝ) → (0 < (exp‘-(ℑ‘𝐴)) → 0 ≤ (exp‘-(ℑ‘𝐴))))
4442, 43mpan 420 . . . . . . . . . 10 ((exp‘-(ℑ‘𝐴)) ∈ ℝ → (0 < (exp‘-(ℑ‘𝐴)) → 0 ≤ (exp‘-(ℑ‘𝐴))))
4539, 41, 44sylc 62 . . . . . . . . 9 (𝐴 ∈ ℂ → 0 ≤ (exp‘-(ℑ‘𝐴)))
4639, 45absidd 10939 . . . . . . . 8 (𝐴 ∈ ℂ → (abs‘(exp‘-(ℑ‘𝐴))) = (exp‘-(ℑ‘𝐴)))
4738, 46oveq12d 5792 . . . . . . 7 (𝐴 ∈ ℂ → ((abs‘(exp‘(i · (ℜ‘𝐴)))) · (abs‘(exp‘-(ℑ‘𝐴)))) = (1 · (exp‘-(ℑ‘𝐴))))
4835mulid2d 7784 . . . . . . 7 (𝐴 ∈ ℂ → (1 · (exp‘-(ℑ‘𝐴))) = (exp‘-(ℑ‘𝐴)))
4936, 47, 483eqtrrd 2177 . . . . . 6 (𝐴 ∈ ℂ → (exp‘-(ℑ‘𝐴)) = (abs‘((exp‘(i · (ℜ‘𝐴))) · (exp‘-(ℑ‘𝐴)))))
50 fveq2 5421 . . . . . 6 (((exp‘(i · (ℜ‘𝐴))) · (exp‘-(ℑ‘𝐴))) = 1 → (abs‘((exp‘(i · (ℜ‘𝐴))) · (exp‘-(ℑ‘𝐴)))) = (abs‘1))
5149, 50sylan9eq 2192 . . . . 5 ((𝐴 ∈ ℂ ∧ ((exp‘(i · (ℜ‘𝐴))) · (exp‘-(ℑ‘𝐴))) = 1) → (exp‘-(ℑ‘𝐴)) = (abs‘1))
5251ex 114 . . . 4 (𝐴 ∈ ℂ → (((exp‘(i · (ℜ‘𝐴))) · (exp‘-(ℑ‘𝐴))) = 1 → (exp‘-(ℑ‘𝐴)) = (abs‘1)))
5331, 52sylbid 149 . . 3 (𝐴 ∈ ℂ → ((exp‘(i · 𝐴)) = 1 → (exp‘-(ℑ‘𝐴)) = (abs‘1)))
547negeq0d 8065 . . . 4 (𝐴 ∈ ℂ → ((ℑ‘𝐴) = 0 ↔ -(ℑ‘𝐴) = 0))
55 reim0b 10634 . . . 4 (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (ℑ‘𝐴) = 0))
56 ef0 11378 . . . . . . 7 (exp‘0) = 1
57 abs1 10844 . . . . . . 7 (abs‘1) = 1
5856, 57eqtr4i 2163 . . . . . 6 (exp‘0) = (abs‘1)
5958eqeq2i 2150 . . . . 5 ((exp‘-(ℑ‘𝐴)) = (exp‘0) ↔ (exp‘-(ℑ‘𝐴)) = (abs‘1))
60 reef11 11406 . . . . . 6 ((-(ℑ‘𝐴) ∈ ℝ ∧ 0 ∈ ℝ) → ((exp‘-(ℑ‘𝐴)) = (exp‘0) ↔ -(ℑ‘𝐴) = 0))
6126, 42, 60sylancl 409 . . . . 5 (𝐴 ∈ ℂ → ((exp‘-(ℑ‘𝐴)) = (exp‘0) ↔ -(ℑ‘𝐴) = 0))
6259, 61syl5bbr 193 . . . 4 (𝐴 ∈ ℂ → ((exp‘-(ℑ‘𝐴)) = (abs‘1) ↔ -(ℑ‘𝐴) = 0))
6354, 55, 623bitr4rd 220 . . 3 (𝐴 ∈ ℂ → ((exp‘-(ℑ‘𝐴)) = (abs‘1) ↔ 𝐴 ∈ ℝ))
6453, 63sylibd 148 . 2 (𝐴 ∈ ℂ → ((exp‘(i · 𝐴)) = 1 → 𝐴 ∈ ℝ))
6564imp 123 1 ((𝐴 ∈ ℂ ∧ (exp‘(i · 𝐴)) = 1) → 𝐴 ∈ ℝ)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1331  wcel 1480   class class class wbr 3929  cfv 5123  (class class class)co 5774  cc 7618  cr 7619  0cc0 7620  1c1 7621  ici 7622   + caddc 7623   · cmul 7625   < clt 7800  cle 7801  -cneg 7934  cre 10612  cim 10613  abscabs 10769  expce 11348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-disj 3907  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-frec 6288  df-1o 6313  df-oadd 6317  df-er 6429  df-en 6635  df-dom 6636  df-fin 6637  df-sup 6871  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-q 9412  df-rp 9442  df-ico 9677  df-fz 9791  df-fzo 9920  df-seqfrec 10219  df-exp 10293  df-fac 10472  df-bc 10494  df-ihash 10522  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771  df-clim 11048  df-sumdc 11123  df-ef 11354  df-sin 11356  df-cos 11357
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator