ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1imacnv GIF version

Theorem f1imacnv 5449
Description: Preimage of an image. (Contributed by NM, 30-Sep-2004.)
Assertion
Ref Expression
f1imacnv ((𝐹:𝐴1-1𝐵𝐶𝐴) → (𝐹 “ (𝐹𝐶)) = 𝐶)

Proof of Theorem f1imacnv
StepHypRef Expression
1 resima 4917 . 2 ((𝐹 ↾ (𝐹𝐶)) “ (𝐹𝐶)) = (𝐹 “ (𝐹𝐶))
2 df-f1 5193 . . . . . . 7 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ Fun 𝐹))
32simprbi 273 . . . . . 6 (𝐹:𝐴1-1𝐵 → Fun 𝐹)
43adantr 274 . . . . 5 ((𝐹:𝐴1-1𝐵𝐶𝐴) → Fun 𝐹)
5 funcnvres 5261 . . . . 5 (Fun 𝐹(𝐹𝐶) = (𝐹 ↾ (𝐹𝐶)))
64, 5syl 14 . . . 4 ((𝐹:𝐴1-1𝐵𝐶𝐴) → (𝐹𝐶) = (𝐹 ↾ (𝐹𝐶)))
76imaeq1d 4945 . . 3 ((𝐹:𝐴1-1𝐵𝐶𝐴) → ((𝐹𝐶) “ (𝐹𝐶)) = ((𝐹 ↾ (𝐹𝐶)) “ (𝐹𝐶)))
8 f1ores 5447 . . . . 5 ((𝐹:𝐴1-1𝐵𝐶𝐴) → (𝐹𝐶):𝐶1-1-onto→(𝐹𝐶))
9 f1ocnv 5445 . . . . 5 ((𝐹𝐶):𝐶1-1-onto→(𝐹𝐶) → (𝐹𝐶):(𝐹𝐶)–1-1-onto𝐶)
108, 9syl 14 . . . 4 ((𝐹:𝐴1-1𝐵𝐶𝐴) → (𝐹𝐶):(𝐹𝐶)–1-1-onto𝐶)
11 imadmrn 4956 . . . . 5 ((𝐹𝐶) “ dom (𝐹𝐶)) = ran (𝐹𝐶)
12 f1odm 5436 . . . . . 6 ((𝐹𝐶):(𝐹𝐶)–1-1-onto𝐶 → dom (𝐹𝐶) = (𝐹𝐶))
1312imaeq2d 4946 . . . . 5 ((𝐹𝐶):(𝐹𝐶)–1-1-onto𝐶 → ((𝐹𝐶) “ dom (𝐹𝐶)) = ((𝐹𝐶) “ (𝐹𝐶)))
14 f1ofo 5439 . . . . . 6 ((𝐹𝐶):(𝐹𝐶)–1-1-onto𝐶(𝐹𝐶):(𝐹𝐶)–onto𝐶)
15 forn 5413 . . . . . 6 ((𝐹𝐶):(𝐹𝐶)–onto𝐶 → ran (𝐹𝐶) = 𝐶)
1614, 15syl 14 . . . . 5 ((𝐹𝐶):(𝐹𝐶)–1-1-onto𝐶 → ran (𝐹𝐶) = 𝐶)
1711, 13, 163eqtr3a 2223 . . . 4 ((𝐹𝐶):(𝐹𝐶)–1-1-onto𝐶 → ((𝐹𝐶) “ (𝐹𝐶)) = 𝐶)
1810, 17syl 14 . . 3 ((𝐹:𝐴1-1𝐵𝐶𝐴) → ((𝐹𝐶) “ (𝐹𝐶)) = 𝐶)
197, 18eqtr3d 2200 . 2 ((𝐹:𝐴1-1𝐵𝐶𝐴) → ((𝐹 ↾ (𝐹𝐶)) “ (𝐹𝐶)) = 𝐶)
201, 19eqtr3id 2213 1 ((𝐹:𝐴1-1𝐵𝐶𝐴) → (𝐹 “ (𝐹𝐶)) = 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  wss 3116  ccnv 4603  dom cdm 4604  ran crn 4605  cres 4606  cima 4607  Fun wfun 5182  wf 5184  1-1wf1 5185  ontowfo 5186  1-1-ontowf1o 5187
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195
This theorem is referenced by:  f1opw2  6044  ssenen  6817  hmeoopn  12951  hmeocld  12952  hmeontr  12953
  Copyright terms: Public domain W3C validator