ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1imacnv GIF version

Theorem f1imacnv 5517
Description: Preimage of an image. (Contributed by NM, 30-Sep-2004.)
Assertion
Ref Expression
f1imacnv ((𝐹:𝐴1-1𝐵𝐶𝐴) → (𝐹 “ (𝐹𝐶)) = 𝐶)

Proof of Theorem f1imacnv
StepHypRef Expression
1 resima 4975 . 2 ((𝐹 ↾ (𝐹𝐶)) “ (𝐹𝐶)) = (𝐹 “ (𝐹𝐶))
2 df-f1 5259 . . . . . . 7 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ Fun 𝐹))
32simprbi 275 . . . . . 6 (𝐹:𝐴1-1𝐵 → Fun 𝐹)
43adantr 276 . . . . 5 ((𝐹:𝐴1-1𝐵𝐶𝐴) → Fun 𝐹)
5 funcnvres 5327 . . . . 5 (Fun 𝐹(𝐹𝐶) = (𝐹 ↾ (𝐹𝐶)))
64, 5syl 14 . . . 4 ((𝐹:𝐴1-1𝐵𝐶𝐴) → (𝐹𝐶) = (𝐹 ↾ (𝐹𝐶)))
76imaeq1d 5004 . . 3 ((𝐹:𝐴1-1𝐵𝐶𝐴) → ((𝐹𝐶) “ (𝐹𝐶)) = ((𝐹 ↾ (𝐹𝐶)) “ (𝐹𝐶)))
8 f1ores 5515 . . . . 5 ((𝐹:𝐴1-1𝐵𝐶𝐴) → (𝐹𝐶):𝐶1-1-onto→(𝐹𝐶))
9 f1ocnv 5513 . . . . 5 ((𝐹𝐶):𝐶1-1-onto→(𝐹𝐶) → (𝐹𝐶):(𝐹𝐶)–1-1-onto𝐶)
108, 9syl 14 . . . 4 ((𝐹:𝐴1-1𝐵𝐶𝐴) → (𝐹𝐶):(𝐹𝐶)–1-1-onto𝐶)
11 imadmrn 5015 . . . . 5 ((𝐹𝐶) “ dom (𝐹𝐶)) = ran (𝐹𝐶)
12 f1odm 5504 . . . . . 6 ((𝐹𝐶):(𝐹𝐶)–1-1-onto𝐶 → dom (𝐹𝐶) = (𝐹𝐶))
1312imaeq2d 5005 . . . . 5 ((𝐹𝐶):(𝐹𝐶)–1-1-onto𝐶 → ((𝐹𝐶) “ dom (𝐹𝐶)) = ((𝐹𝐶) “ (𝐹𝐶)))
14 f1ofo 5507 . . . . . 6 ((𝐹𝐶):(𝐹𝐶)–1-1-onto𝐶(𝐹𝐶):(𝐹𝐶)–onto𝐶)
15 forn 5479 . . . . . 6 ((𝐹𝐶):(𝐹𝐶)–onto𝐶 → ran (𝐹𝐶) = 𝐶)
1614, 15syl 14 . . . . 5 ((𝐹𝐶):(𝐹𝐶)–1-1-onto𝐶 → ran (𝐹𝐶) = 𝐶)
1711, 13, 163eqtr3a 2250 . . . 4 ((𝐹𝐶):(𝐹𝐶)–1-1-onto𝐶 → ((𝐹𝐶) “ (𝐹𝐶)) = 𝐶)
1810, 17syl 14 . . 3 ((𝐹:𝐴1-1𝐵𝐶𝐴) → ((𝐹𝐶) “ (𝐹𝐶)) = 𝐶)
197, 18eqtr3d 2228 . 2 ((𝐹:𝐴1-1𝐵𝐶𝐴) → ((𝐹 ↾ (𝐹𝐶)) “ (𝐹𝐶)) = 𝐶)
201, 19eqtr3id 2240 1 ((𝐹:𝐴1-1𝐵𝐶𝐴) → (𝐹 “ (𝐹𝐶)) = 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wss 3153  ccnv 4658  dom cdm 4659  ran crn 4660  cres 4661  cima 4662  Fun wfun 5248  wf 5250  1-1wf1 5251  ontowfo 5252  1-1-ontowf1o 5253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261
This theorem is referenced by:  f1opw2  6124  ssenen  6907  hmeoopn  14479  hmeocld  14480  hmeontr  14481
  Copyright terms: Public domain W3C validator