| Step | Hyp | Ref
| Expression |
| 1 | | bren 6806 |
. . . . 5
⊢ (suc
𝐴 ≈ suc 𝐵 ↔ ∃𝑓 𝑓:suc 𝐴–1-1-onto→suc
𝐵) |
| 2 | 1 | biimpi 120 |
. . . 4
⊢ (suc
𝐴 ≈ suc 𝐵 → ∃𝑓 𝑓:suc 𝐴–1-1-onto→suc
𝐵) |
| 3 | 2 | adantl 277 |
. . 3
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) → ∃𝑓 𝑓:suc 𝐴–1-1-onto→suc
𝐵) |
| 4 | | f1of1 5503 |
. . . . . . . 8
⊢ (𝑓:suc 𝐴–1-1-onto→suc
𝐵 → 𝑓:suc 𝐴–1-1→suc 𝐵) |
| 5 | 4 | adantl 277 |
. . . . . . 7
⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴–1-1-onto→suc
𝐵) → 𝑓:suc 𝐴–1-1→suc 𝐵) |
| 6 | | peano2 4631 |
. . . . . . . . 9
⊢ (𝐵 ∈ ω → suc 𝐵 ∈
ω) |
| 7 | | nnon 4646 |
. . . . . . . . 9
⊢ (suc
𝐵 ∈ ω → suc
𝐵 ∈
On) |
| 8 | 6, 7 | syl 14 |
. . . . . . . 8
⊢ (𝐵 ∈ ω → suc 𝐵 ∈ On) |
| 9 | 8 | ad3antlr 493 |
. . . . . . 7
⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴–1-1-onto→suc
𝐵) → suc 𝐵 ∈ On) |
| 10 | | sssucid 4450 |
. . . . . . . 8
⊢ 𝐴 ⊆ suc 𝐴 |
| 11 | 10 | a1i 9 |
. . . . . . 7
⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴–1-1-onto→suc
𝐵) → 𝐴 ⊆ suc 𝐴) |
| 12 | | simplll 533 |
. . . . . . 7
⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴–1-1-onto→suc
𝐵) → 𝐴 ∈ On) |
| 13 | | f1imaen2g 6852 |
. . . . . . 7
⊢ (((𝑓:suc 𝐴–1-1→suc 𝐵 ∧ suc 𝐵 ∈ On) ∧ (𝐴 ⊆ suc 𝐴 ∧ 𝐴 ∈ On)) → (𝑓 “ 𝐴) ≈ 𝐴) |
| 14 | 5, 9, 11, 12, 13 | syl22anc 1250 |
. . . . . 6
⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴–1-1-onto→suc
𝐵) → (𝑓 “ 𝐴) ≈ 𝐴) |
| 15 | 14 | ensymd 6842 |
. . . . 5
⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴–1-1-onto→suc
𝐵) → 𝐴 ≈ (𝑓 “ 𝐴)) |
| 16 | | eloni 4410 |
. . . . . . . . 9
⊢ (𝐴 ∈ On → Ord 𝐴) |
| 17 | | orddif 4583 |
. . . . . . . . 9
⊢ (Ord
𝐴 → 𝐴 = (suc 𝐴 ∖ {𝐴})) |
| 18 | 16, 17 | syl 14 |
. . . . . . . 8
⊢ (𝐴 ∈ On → 𝐴 = (suc 𝐴 ∖ {𝐴})) |
| 19 | 18 | imaeq2d 5009 |
. . . . . . 7
⊢ (𝐴 ∈ On → (𝑓 “ 𝐴) = (𝑓 “ (suc 𝐴 ∖ {𝐴}))) |
| 20 | 19 | ad3antrrr 492 |
. . . . . 6
⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴–1-1-onto→suc
𝐵) → (𝑓 “ 𝐴) = (𝑓 “ (suc 𝐴 ∖ {𝐴}))) |
| 21 | | f1ofn 5505 |
. . . . . . . . . 10
⊢ (𝑓:suc 𝐴–1-1-onto→suc
𝐵 → 𝑓 Fn suc 𝐴) |
| 22 | 21 | adantl 277 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴–1-1-onto→suc
𝐵) → 𝑓 Fn suc 𝐴) |
| 23 | | sucidg 4451 |
. . . . . . . . . 10
⊢ (𝐴 ∈ On → 𝐴 ∈ suc 𝐴) |
| 24 | 12, 23 | syl 14 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴–1-1-onto→suc
𝐵) → 𝐴 ∈ suc 𝐴) |
| 25 | | fnsnfv 5620 |
. . . . . . . . 9
⊢ ((𝑓 Fn suc 𝐴 ∧ 𝐴 ∈ suc 𝐴) → {(𝑓‘𝐴)} = (𝑓 “ {𝐴})) |
| 26 | 22, 24, 25 | syl2anc 411 |
. . . . . . . 8
⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴–1-1-onto→suc
𝐵) → {(𝑓‘𝐴)} = (𝑓 “ {𝐴})) |
| 27 | 26 | difeq2d 3281 |
. . . . . . 7
⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴–1-1-onto→suc
𝐵) → ((𝑓 “ suc 𝐴) ∖ {(𝑓‘𝐴)}) = ((𝑓 “ suc 𝐴) ∖ (𝑓 “ {𝐴}))) |
| 28 | | imadmrn 5019 |
. . . . . . . . . . 11
⊢ (𝑓 “ dom 𝑓) = ran 𝑓 |
| 29 | 28 | eqcomi 2200 |
. . . . . . . . . 10
⊢ ran 𝑓 = (𝑓 “ dom 𝑓) |
| 30 | | f1ofo 5511 |
. . . . . . . . . . 11
⊢ (𝑓:suc 𝐴–1-1-onto→suc
𝐵 → 𝑓:suc 𝐴–onto→suc 𝐵) |
| 31 | | forn 5483 |
. . . . . . . . . . 11
⊢ (𝑓:suc 𝐴–onto→suc 𝐵 → ran 𝑓 = suc 𝐵) |
| 32 | 30, 31 | syl 14 |
. . . . . . . . . 10
⊢ (𝑓:suc 𝐴–1-1-onto→suc
𝐵 → ran 𝑓 = suc 𝐵) |
| 33 | | f1odm 5508 |
. . . . . . . . . . 11
⊢ (𝑓:suc 𝐴–1-1-onto→suc
𝐵 → dom 𝑓 = suc 𝐴) |
| 34 | 33 | imaeq2d 5009 |
. . . . . . . . . 10
⊢ (𝑓:suc 𝐴–1-1-onto→suc
𝐵 → (𝑓 “ dom 𝑓) = (𝑓 “ suc 𝐴)) |
| 35 | 29, 32, 34 | 3eqtr3a 2253 |
. . . . . . . . 9
⊢ (𝑓:suc 𝐴–1-1-onto→suc
𝐵 → suc 𝐵 = (𝑓 “ suc 𝐴)) |
| 36 | 35 | difeq1d 3280 |
. . . . . . . 8
⊢ (𝑓:suc 𝐴–1-1-onto→suc
𝐵 → (suc 𝐵 ∖ {(𝑓‘𝐴)}) = ((𝑓 “ suc 𝐴) ∖ {(𝑓‘𝐴)})) |
| 37 | 36 | adantl 277 |
. . . . . . 7
⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴–1-1-onto→suc
𝐵) → (suc 𝐵 ∖ {(𝑓‘𝐴)}) = ((𝑓 “ suc 𝐴) ∖ {(𝑓‘𝐴)})) |
| 38 | | dff1o3 5510 |
. . . . . . . . . 10
⊢ (𝑓:suc 𝐴–1-1-onto→suc
𝐵 ↔ (𝑓:suc 𝐴–onto→suc 𝐵 ∧ Fun ◡𝑓)) |
| 39 | 38 | simprbi 275 |
. . . . . . . . 9
⊢ (𝑓:suc 𝐴–1-1-onto→suc
𝐵 → Fun ◡𝑓) |
| 40 | | imadif 5338 |
. . . . . . . . 9
⊢ (Fun
◡𝑓 → (𝑓 “ (suc 𝐴 ∖ {𝐴})) = ((𝑓 “ suc 𝐴) ∖ (𝑓 “ {𝐴}))) |
| 41 | 39, 40 | syl 14 |
. . . . . . . 8
⊢ (𝑓:suc 𝐴–1-1-onto→suc
𝐵 → (𝑓 “ (suc 𝐴 ∖ {𝐴})) = ((𝑓 “ suc 𝐴) ∖ (𝑓 “ {𝐴}))) |
| 42 | 41 | adantl 277 |
. . . . . . 7
⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴–1-1-onto→suc
𝐵) → (𝑓 “ (suc 𝐴 ∖ {𝐴})) = ((𝑓 “ suc 𝐴) ∖ (𝑓 “ {𝐴}))) |
| 43 | 27, 37, 42 | 3eqtr4rd 2240 |
. . . . . 6
⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴–1-1-onto→suc
𝐵) → (𝑓 “ (suc 𝐴 ∖ {𝐴})) = (suc 𝐵 ∖ {(𝑓‘𝐴)})) |
| 44 | 20, 43 | eqtrd 2229 |
. . . . 5
⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴–1-1-onto→suc
𝐵) → (𝑓 “ 𝐴) = (suc 𝐵 ∖ {(𝑓‘𝐴)})) |
| 45 | 15, 44 | breqtrd 4059 |
. . . 4
⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴–1-1-onto→suc
𝐵) → 𝐴 ≈ (suc 𝐵 ∖ {(𝑓‘𝐴)})) |
| 46 | | simpllr 534 |
. . . . . 6
⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴–1-1-onto→suc
𝐵) → 𝐵 ∈ ω) |
| 47 | | fnfvelrn 5694 |
. . . . . . . 8
⊢ ((𝑓 Fn suc 𝐴 ∧ 𝐴 ∈ suc 𝐴) → (𝑓‘𝐴) ∈ ran 𝑓) |
| 48 | 22, 24, 47 | syl2anc 411 |
. . . . . . 7
⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴–1-1-onto→suc
𝐵) → (𝑓‘𝐴) ∈ ran 𝑓) |
| 49 | 31 | eleq2d 2266 |
. . . . . . . . 9
⊢ (𝑓:suc 𝐴–onto→suc 𝐵 → ((𝑓‘𝐴) ∈ ran 𝑓 ↔ (𝑓‘𝐴) ∈ suc 𝐵)) |
| 50 | 30, 49 | syl 14 |
. . . . . . . 8
⊢ (𝑓:suc 𝐴–1-1-onto→suc
𝐵 → ((𝑓‘𝐴) ∈ ran 𝑓 ↔ (𝑓‘𝐴) ∈ suc 𝐵)) |
| 51 | 50 | adantl 277 |
. . . . . . 7
⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴–1-1-onto→suc
𝐵) → ((𝑓‘𝐴) ∈ ran 𝑓 ↔ (𝑓‘𝐴) ∈ suc 𝐵)) |
| 52 | 48, 51 | mpbid 147 |
. . . . . 6
⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴–1-1-onto→suc
𝐵) → (𝑓‘𝐴) ∈ suc 𝐵) |
| 53 | | phplem3g 6917 |
. . . . . 6
⊢ ((𝐵 ∈ ω ∧ (𝑓‘𝐴) ∈ suc 𝐵) → 𝐵 ≈ (suc 𝐵 ∖ {(𝑓‘𝐴)})) |
| 54 | 46, 52, 53 | syl2anc 411 |
. . . . 5
⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴–1-1-onto→suc
𝐵) → 𝐵 ≈ (suc 𝐵 ∖ {(𝑓‘𝐴)})) |
| 55 | 54 | ensymd 6842 |
. . . 4
⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴–1-1-onto→suc
𝐵) → (suc 𝐵 ∖ {(𝑓‘𝐴)}) ≈ 𝐵) |
| 56 | | entr 6843 |
. . . 4
⊢ ((𝐴 ≈ (suc 𝐵 ∖ {(𝑓‘𝐴)}) ∧ (suc 𝐵 ∖ {(𝑓‘𝐴)}) ≈ 𝐵) → 𝐴 ≈ 𝐵) |
| 57 | 45, 55, 56 | syl2anc 411 |
. . 3
⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴–1-1-onto→suc
𝐵) → 𝐴 ≈ 𝐵) |
| 58 | 3, 57 | exlimddv 1913 |
. 2
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) → 𝐴 ≈ 𝐵) |
| 59 | 58 | ex 115 |
1
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (suc
𝐴 ≈ suc 𝐵 → 𝐴 ≈ 𝐵)) |