ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  phplem4on GIF version

Theorem phplem4on 7037
Description: Equinumerosity of successors of an ordinal and a natural number implies equinumerosity of the originals. (Contributed by Jim Kingdon, 5-Sep-2021.)
Assertion
Ref Expression
phplem4on ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (suc 𝐴 ≈ suc 𝐵𝐴𝐵))

Proof of Theorem phplem4on
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 bren 6903 . . . . 5 (suc 𝐴 ≈ suc 𝐵 ↔ ∃𝑓 𝑓:suc 𝐴1-1-onto→suc 𝐵)
21biimpi 120 . . . 4 (suc 𝐴 ≈ suc 𝐵 → ∃𝑓 𝑓:suc 𝐴1-1-onto→suc 𝐵)
32adantl 277 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) → ∃𝑓 𝑓:suc 𝐴1-1-onto→suc 𝐵)
4 f1of1 5573 . . . . . . . 8 (𝑓:suc 𝐴1-1-onto→suc 𝐵𝑓:suc 𝐴1-1→suc 𝐵)
54adantl 277 . . . . . . 7 ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → 𝑓:suc 𝐴1-1→suc 𝐵)
6 peano2 4687 . . . . . . . . 9 (𝐵 ∈ ω → suc 𝐵 ∈ ω)
7 nnon 4702 . . . . . . . . 9 (suc 𝐵 ∈ ω → suc 𝐵 ∈ On)
86, 7syl 14 . . . . . . . 8 (𝐵 ∈ ω → suc 𝐵 ∈ On)
98ad3antlr 493 . . . . . . 7 ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → suc 𝐵 ∈ On)
10 sssucid 4506 . . . . . . . 8 𝐴 ⊆ suc 𝐴
1110a1i 9 . . . . . . 7 ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → 𝐴 ⊆ suc 𝐴)
12 simplll 533 . . . . . . 7 ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → 𝐴 ∈ On)
13 f1imaen2g 6953 . . . . . . 7 (((𝑓:suc 𝐴1-1→suc 𝐵 ∧ suc 𝐵 ∈ On) ∧ (𝐴 ⊆ suc 𝐴𝐴 ∈ On)) → (𝑓𝐴) ≈ 𝐴)
145, 9, 11, 12, 13syl22anc 1272 . . . . . 6 ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → (𝑓𝐴) ≈ 𝐴)
1514ensymd 6943 . . . . 5 ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → 𝐴 ≈ (𝑓𝐴))
16 eloni 4466 . . . . . . . . 9 (𝐴 ∈ On → Ord 𝐴)
17 orddif 4639 . . . . . . . . 9 (Ord 𝐴𝐴 = (suc 𝐴 ∖ {𝐴}))
1816, 17syl 14 . . . . . . . 8 (𝐴 ∈ On → 𝐴 = (suc 𝐴 ∖ {𝐴}))
1918imaeq2d 5068 . . . . . . 7 (𝐴 ∈ On → (𝑓𝐴) = (𝑓 “ (suc 𝐴 ∖ {𝐴})))
2019ad3antrrr 492 . . . . . 6 ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → (𝑓𝐴) = (𝑓 “ (suc 𝐴 ∖ {𝐴})))
21 f1ofn 5575 . . . . . . . . . 10 (𝑓:suc 𝐴1-1-onto→suc 𝐵𝑓 Fn suc 𝐴)
2221adantl 277 . . . . . . . . 9 ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → 𝑓 Fn suc 𝐴)
23 sucidg 4507 . . . . . . . . . 10 (𝐴 ∈ On → 𝐴 ∈ suc 𝐴)
2412, 23syl 14 . . . . . . . . 9 ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → 𝐴 ∈ suc 𝐴)
25 fnsnfv 5695 . . . . . . . . 9 ((𝑓 Fn suc 𝐴𝐴 ∈ suc 𝐴) → {(𝑓𝐴)} = (𝑓 “ {𝐴}))
2622, 24, 25syl2anc 411 . . . . . . . 8 ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → {(𝑓𝐴)} = (𝑓 “ {𝐴}))
2726difeq2d 3322 . . . . . . 7 ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → ((𝑓 “ suc 𝐴) ∖ {(𝑓𝐴)}) = ((𝑓 “ suc 𝐴) ∖ (𝑓 “ {𝐴})))
28 imadmrn 5078 . . . . . . . . . . 11 (𝑓 “ dom 𝑓) = ran 𝑓
2928eqcomi 2233 . . . . . . . . . 10 ran 𝑓 = (𝑓 “ dom 𝑓)
30 f1ofo 5581 . . . . . . . . . . 11 (𝑓:suc 𝐴1-1-onto→suc 𝐵𝑓:suc 𝐴onto→suc 𝐵)
31 forn 5553 . . . . . . . . . . 11 (𝑓:suc 𝐴onto→suc 𝐵 → ran 𝑓 = suc 𝐵)
3230, 31syl 14 . . . . . . . . . 10 (𝑓:suc 𝐴1-1-onto→suc 𝐵 → ran 𝑓 = suc 𝐵)
33 f1odm 5578 . . . . . . . . . . 11 (𝑓:suc 𝐴1-1-onto→suc 𝐵 → dom 𝑓 = suc 𝐴)
3433imaeq2d 5068 . . . . . . . . . 10 (𝑓:suc 𝐴1-1-onto→suc 𝐵 → (𝑓 “ dom 𝑓) = (𝑓 “ suc 𝐴))
3529, 32, 343eqtr3a 2286 . . . . . . . . 9 (𝑓:suc 𝐴1-1-onto→suc 𝐵 → suc 𝐵 = (𝑓 “ suc 𝐴))
3635difeq1d 3321 . . . . . . . 8 (𝑓:suc 𝐴1-1-onto→suc 𝐵 → (suc 𝐵 ∖ {(𝑓𝐴)}) = ((𝑓 “ suc 𝐴) ∖ {(𝑓𝐴)}))
3736adantl 277 . . . . . . 7 ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → (suc 𝐵 ∖ {(𝑓𝐴)}) = ((𝑓 “ suc 𝐴) ∖ {(𝑓𝐴)}))
38 dff1o3 5580 . . . . . . . . . 10 (𝑓:suc 𝐴1-1-onto→suc 𝐵 ↔ (𝑓:suc 𝐴onto→suc 𝐵 ∧ Fun 𝑓))
3938simprbi 275 . . . . . . . . 9 (𝑓:suc 𝐴1-1-onto→suc 𝐵 → Fun 𝑓)
40 imadif 5401 . . . . . . . . 9 (Fun 𝑓 → (𝑓 “ (suc 𝐴 ∖ {𝐴})) = ((𝑓 “ suc 𝐴) ∖ (𝑓 “ {𝐴})))
4139, 40syl 14 . . . . . . . 8 (𝑓:suc 𝐴1-1-onto→suc 𝐵 → (𝑓 “ (suc 𝐴 ∖ {𝐴})) = ((𝑓 “ suc 𝐴) ∖ (𝑓 “ {𝐴})))
4241adantl 277 . . . . . . 7 ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → (𝑓 “ (suc 𝐴 ∖ {𝐴})) = ((𝑓 “ suc 𝐴) ∖ (𝑓 “ {𝐴})))
4327, 37, 423eqtr4rd 2273 . . . . . 6 ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → (𝑓 “ (suc 𝐴 ∖ {𝐴})) = (suc 𝐵 ∖ {(𝑓𝐴)}))
4420, 43eqtrd 2262 . . . . 5 ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → (𝑓𝐴) = (suc 𝐵 ∖ {(𝑓𝐴)}))
4515, 44breqtrd 4109 . . . 4 ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → 𝐴 ≈ (suc 𝐵 ∖ {(𝑓𝐴)}))
46 simpllr 534 . . . . . 6 ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → 𝐵 ∈ ω)
47 fnfvelrn 5769 . . . . . . . 8 ((𝑓 Fn suc 𝐴𝐴 ∈ suc 𝐴) → (𝑓𝐴) ∈ ran 𝑓)
4822, 24, 47syl2anc 411 . . . . . . 7 ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → (𝑓𝐴) ∈ ran 𝑓)
4931eleq2d 2299 . . . . . . . . 9 (𝑓:suc 𝐴onto→suc 𝐵 → ((𝑓𝐴) ∈ ran 𝑓 ↔ (𝑓𝐴) ∈ suc 𝐵))
5030, 49syl 14 . . . . . . . 8 (𝑓:suc 𝐴1-1-onto→suc 𝐵 → ((𝑓𝐴) ∈ ran 𝑓 ↔ (𝑓𝐴) ∈ suc 𝐵))
5150adantl 277 . . . . . . 7 ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → ((𝑓𝐴) ∈ ran 𝑓 ↔ (𝑓𝐴) ∈ suc 𝐵))
5248, 51mpbid 147 . . . . . 6 ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → (𝑓𝐴) ∈ suc 𝐵)
53 phplem3g 7025 . . . . . 6 ((𝐵 ∈ ω ∧ (𝑓𝐴) ∈ suc 𝐵) → 𝐵 ≈ (suc 𝐵 ∖ {(𝑓𝐴)}))
5446, 52, 53syl2anc 411 . . . . 5 ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → 𝐵 ≈ (suc 𝐵 ∖ {(𝑓𝐴)}))
5554ensymd 6943 . . . 4 ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → (suc 𝐵 ∖ {(𝑓𝐴)}) ≈ 𝐵)
56 entr 6944 . . . 4 ((𝐴 ≈ (suc 𝐵 ∖ {(𝑓𝐴)}) ∧ (suc 𝐵 ∖ {(𝑓𝐴)}) ≈ 𝐵) → 𝐴𝐵)
5745, 55, 56syl2anc 411 . . 3 ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → 𝐴𝐵)
583, 57exlimddv 1945 . 2 (((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) → 𝐴𝐵)
5958ex 115 1 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (suc 𝐴 ≈ suc 𝐵𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wex 1538  wcel 2200  cdif 3194  wss 3197  {csn 3666   class class class wbr 4083  Ord word 4453  Oncon0 4454  suc csuc 4456  ωcom 4682  ccnv 4718  dom cdm 4719  ran crn 4720  cima 4722  Fun wfun 5312   Fn wfn 5313  1-1wf1 5315  ontowfo 5316  1-1-ontowf1o 5317  cfv 5318  cen 6893
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-er 6688  df-en 6896
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator