Step | Hyp | Ref
| Expression |
1 | | bren 6713 |
. . . . 5
⊢ (suc
𝐴 ≈ suc 𝐵 ↔ ∃𝑓 𝑓:suc 𝐴–1-1-onto→suc
𝐵) |
2 | 1 | biimpi 119 |
. . . 4
⊢ (suc
𝐴 ≈ suc 𝐵 → ∃𝑓 𝑓:suc 𝐴–1-1-onto→suc
𝐵) |
3 | 2 | adantl 275 |
. . 3
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) → ∃𝑓 𝑓:suc 𝐴–1-1-onto→suc
𝐵) |
4 | | f1of1 5431 |
. . . . . . . 8
⊢ (𝑓:suc 𝐴–1-1-onto→suc
𝐵 → 𝑓:suc 𝐴–1-1→suc 𝐵) |
5 | 4 | adantl 275 |
. . . . . . 7
⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴–1-1-onto→suc
𝐵) → 𝑓:suc 𝐴–1-1→suc 𝐵) |
6 | | peano2 4572 |
. . . . . . . . 9
⊢ (𝐵 ∈ ω → suc 𝐵 ∈
ω) |
7 | | nnon 4587 |
. . . . . . . . 9
⊢ (suc
𝐵 ∈ ω → suc
𝐵 ∈
On) |
8 | 6, 7 | syl 14 |
. . . . . . . 8
⊢ (𝐵 ∈ ω → suc 𝐵 ∈ On) |
9 | 8 | ad3antlr 485 |
. . . . . . 7
⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴–1-1-onto→suc
𝐵) → suc 𝐵 ∈ On) |
10 | | sssucid 4393 |
. . . . . . . 8
⊢ 𝐴 ⊆ suc 𝐴 |
11 | 10 | a1i 9 |
. . . . . . 7
⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴–1-1-onto→suc
𝐵) → 𝐴 ⊆ suc 𝐴) |
12 | | simplll 523 |
. . . . . . 7
⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴–1-1-onto→suc
𝐵) → 𝐴 ∈ On) |
13 | | f1imaen2g 6759 |
. . . . . . 7
⊢ (((𝑓:suc 𝐴–1-1→suc 𝐵 ∧ suc 𝐵 ∈ On) ∧ (𝐴 ⊆ suc 𝐴 ∧ 𝐴 ∈ On)) → (𝑓 “ 𝐴) ≈ 𝐴) |
14 | 5, 9, 11, 12, 13 | syl22anc 1229 |
. . . . . 6
⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴–1-1-onto→suc
𝐵) → (𝑓 “ 𝐴) ≈ 𝐴) |
15 | 14 | ensymd 6749 |
. . . . 5
⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴–1-1-onto→suc
𝐵) → 𝐴 ≈ (𝑓 “ 𝐴)) |
16 | | eloni 4353 |
. . . . . . . . 9
⊢ (𝐴 ∈ On → Ord 𝐴) |
17 | | orddif 4524 |
. . . . . . . . 9
⊢ (Ord
𝐴 → 𝐴 = (suc 𝐴 ∖ {𝐴})) |
18 | 16, 17 | syl 14 |
. . . . . . . 8
⊢ (𝐴 ∈ On → 𝐴 = (suc 𝐴 ∖ {𝐴})) |
19 | 18 | imaeq2d 4946 |
. . . . . . 7
⊢ (𝐴 ∈ On → (𝑓 “ 𝐴) = (𝑓 “ (suc 𝐴 ∖ {𝐴}))) |
20 | 19 | ad3antrrr 484 |
. . . . . 6
⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴–1-1-onto→suc
𝐵) → (𝑓 “ 𝐴) = (𝑓 “ (suc 𝐴 ∖ {𝐴}))) |
21 | | f1ofn 5433 |
. . . . . . . . . 10
⊢ (𝑓:suc 𝐴–1-1-onto→suc
𝐵 → 𝑓 Fn suc 𝐴) |
22 | 21 | adantl 275 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴–1-1-onto→suc
𝐵) → 𝑓 Fn suc 𝐴) |
23 | | sucidg 4394 |
. . . . . . . . . 10
⊢ (𝐴 ∈ On → 𝐴 ∈ suc 𝐴) |
24 | 12, 23 | syl 14 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴–1-1-onto→suc
𝐵) → 𝐴 ∈ suc 𝐴) |
25 | | fnsnfv 5545 |
. . . . . . . . 9
⊢ ((𝑓 Fn suc 𝐴 ∧ 𝐴 ∈ suc 𝐴) → {(𝑓‘𝐴)} = (𝑓 “ {𝐴})) |
26 | 22, 24, 25 | syl2anc 409 |
. . . . . . . 8
⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴–1-1-onto→suc
𝐵) → {(𝑓‘𝐴)} = (𝑓 “ {𝐴})) |
27 | 26 | difeq2d 3240 |
. . . . . . 7
⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴–1-1-onto→suc
𝐵) → ((𝑓 “ suc 𝐴) ∖ {(𝑓‘𝐴)}) = ((𝑓 “ suc 𝐴) ∖ (𝑓 “ {𝐴}))) |
28 | | imadmrn 4956 |
. . . . . . . . . . 11
⊢ (𝑓 “ dom 𝑓) = ran 𝑓 |
29 | 28 | eqcomi 2169 |
. . . . . . . . . 10
⊢ ran 𝑓 = (𝑓 “ dom 𝑓) |
30 | | f1ofo 5439 |
. . . . . . . . . . 11
⊢ (𝑓:suc 𝐴–1-1-onto→suc
𝐵 → 𝑓:suc 𝐴–onto→suc 𝐵) |
31 | | forn 5413 |
. . . . . . . . . . 11
⊢ (𝑓:suc 𝐴–onto→suc 𝐵 → ran 𝑓 = suc 𝐵) |
32 | 30, 31 | syl 14 |
. . . . . . . . . 10
⊢ (𝑓:suc 𝐴–1-1-onto→suc
𝐵 → ran 𝑓 = suc 𝐵) |
33 | | f1odm 5436 |
. . . . . . . . . . 11
⊢ (𝑓:suc 𝐴–1-1-onto→suc
𝐵 → dom 𝑓 = suc 𝐴) |
34 | 33 | imaeq2d 4946 |
. . . . . . . . . 10
⊢ (𝑓:suc 𝐴–1-1-onto→suc
𝐵 → (𝑓 “ dom 𝑓) = (𝑓 “ suc 𝐴)) |
35 | 29, 32, 34 | 3eqtr3a 2223 |
. . . . . . . . 9
⊢ (𝑓:suc 𝐴–1-1-onto→suc
𝐵 → suc 𝐵 = (𝑓 “ suc 𝐴)) |
36 | 35 | difeq1d 3239 |
. . . . . . . 8
⊢ (𝑓:suc 𝐴–1-1-onto→suc
𝐵 → (suc 𝐵 ∖ {(𝑓‘𝐴)}) = ((𝑓 “ suc 𝐴) ∖ {(𝑓‘𝐴)})) |
37 | 36 | adantl 275 |
. . . . . . 7
⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴–1-1-onto→suc
𝐵) → (suc 𝐵 ∖ {(𝑓‘𝐴)}) = ((𝑓 “ suc 𝐴) ∖ {(𝑓‘𝐴)})) |
38 | | dff1o3 5438 |
. . . . . . . . . 10
⊢ (𝑓:suc 𝐴–1-1-onto→suc
𝐵 ↔ (𝑓:suc 𝐴–onto→suc 𝐵 ∧ Fun ◡𝑓)) |
39 | 38 | simprbi 273 |
. . . . . . . . 9
⊢ (𝑓:suc 𝐴–1-1-onto→suc
𝐵 → Fun ◡𝑓) |
40 | | imadif 5268 |
. . . . . . . . 9
⊢ (Fun
◡𝑓 → (𝑓 “ (suc 𝐴 ∖ {𝐴})) = ((𝑓 “ suc 𝐴) ∖ (𝑓 “ {𝐴}))) |
41 | 39, 40 | syl 14 |
. . . . . . . 8
⊢ (𝑓:suc 𝐴–1-1-onto→suc
𝐵 → (𝑓 “ (suc 𝐴 ∖ {𝐴})) = ((𝑓 “ suc 𝐴) ∖ (𝑓 “ {𝐴}))) |
42 | 41 | adantl 275 |
. . . . . . 7
⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴–1-1-onto→suc
𝐵) → (𝑓 “ (suc 𝐴 ∖ {𝐴})) = ((𝑓 “ suc 𝐴) ∖ (𝑓 “ {𝐴}))) |
43 | 27, 37, 42 | 3eqtr4rd 2209 |
. . . . . 6
⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴–1-1-onto→suc
𝐵) → (𝑓 “ (suc 𝐴 ∖ {𝐴})) = (suc 𝐵 ∖ {(𝑓‘𝐴)})) |
44 | 20, 43 | eqtrd 2198 |
. . . . 5
⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴–1-1-onto→suc
𝐵) → (𝑓 “ 𝐴) = (suc 𝐵 ∖ {(𝑓‘𝐴)})) |
45 | 15, 44 | breqtrd 4008 |
. . . 4
⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴–1-1-onto→suc
𝐵) → 𝐴 ≈ (suc 𝐵 ∖ {(𝑓‘𝐴)})) |
46 | | simpllr 524 |
. . . . . 6
⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴–1-1-onto→suc
𝐵) → 𝐵 ∈ ω) |
47 | | fnfvelrn 5617 |
. . . . . . . 8
⊢ ((𝑓 Fn suc 𝐴 ∧ 𝐴 ∈ suc 𝐴) → (𝑓‘𝐴) ∈ ran 𝑓) |
48 | 22, 24, 47 | syl2anc 409 |
. . . . . . 7
⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴–1-1-onto→suc
𝐵) → (𝑓‘𝐴) ∈ ran 𝑓) |
49 | 31 | eleq2d 2236 |
. . . . . . . . 9
⊢ (𝑓:suc 𝐴–onto→suc 𝐵 → ((𝑓‘𝐴) ∈ ran 𝑓 ↔ (𝑓‘𝐴) ∈ suc 𝐵)) |
50 | 30, 49 | syl 14 |
. . . . . . . 8
⊢ (𝑓:suc 𝐴–1-1-onto→suc
𝐵 → ((𝑓‘𝐴) ∈ ran 𝑓 ↔ (𝑓‘𝐴) ∈ suc 𝐵)) |
51 | 50 | adantl 275 |
. . . . . . 7
⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴–1-1-onto→suc
𝐵) → ((𝑓‘𝐴) ∈ ran 𝑓 ↔ (𝑓‘𝐴) ∈ suc 𝐵)) |
52 | 48, 51 | mpbid 146 |
. . . . . 6
⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴–1-1-onto→suc
𝐵) → (𝑓‘𝐴) ∈ suc 𝐵) |
53 | | phplem3g 6822 |
. . . . . 6
⊢ ((𝐵 ∈ ω ∧ (𝑓‘𝐴) ∈ suc 𝐵) → 𝐵 ≈ (suc 𝐵 ∖ {(𝑓‘𝐴)})) |
54 | 46, 52, 53 | syl2anc 409 |
. . . . 5
⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴–1-1-onto→suc
𝐵) → 𝐵 ≈ (suc 𝐵 ∖ {(𝑓‘𝐴)})) |
55 | 54 | ensymd 6749 |
. . . 4
⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴–1-1-onto→suc
𝐵) → (suc 𝐵 ∖ {(𝑓‘𝐴)}) ≈ 𝐵) |
56 | | entr 6750 |
. . . 4
⊢ ((𝐴 ≈ (suc 𝐵 ∖ {(𝑓‘𝐴)}) ∧ (suc 𝐵 ∖ {(𝑓‘𝐴)}) ≈ 𝐵) → 𝐴 ≈ 𝐵) |
57 | 45, 55, 56 | syl2anc 409 |
. . 3
⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴–1-1-onto→suc
𝐵) → 𝐴 ≈ 𝐵) |
58 | 3, 57 | exlimddv 1886 |
. 2
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) → 𝐴 ≈ 𝐵) |
59 | 58 | ex 114 |
1
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (suc
𝐴 ≈ suc 𝐵 → 𝐴 ≈ 𝐵)) |