ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  phplem4on GIF version

Theorem phplem4on 6714
Description: Equinumerosity of successors of an ordinal and a natural number implies equinumerosity of the originals. (Contributed by Jim Kingdon, 5-Sep-2021.)
Assertion
Ref Expression
phplem4on ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (suc 𝐴 ≈ suc 𝐵𝐴𝐵))

Proof of Theorem phplem4on
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 bren 6595 . . . . 5 (suc 𝐴 ≈ suc 𝐵 ↔ ∃𝑓 𝑓:suc 𝐴1-1-onto→suc 𝐵)
21biimpi 119 . . . 4 (suc 𝐴 ≈ suc 𝐵 → ∃𝑓 𝑓:suc 𝐴1-1-onto→suc 𝐵)
32adantl 273 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) → ∃𝑓 𝑓:suc 𝐴1-1-onto→suc 𝐵)
4 f1of1 5322 . . . . . . . 8 (𝑓:suc 𝐴1-1-onto→suc 𝐵𝑓:suc 𝐴1-1→suc 𝐵)
54adantl 273 . . . . . . 7 ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → 𝑓:suc 𝐴1-1→suc 𝐵)
6 peano2 4469 . . . . . . . . 9 (𝐵 ∈ ω → suc 𝐵 ∈ ω)
7 nnon 4483 . . . . . . . . 9 (suc 𝐵 ∈ ω → suc 𝐵 ∈ On)
86, 7syl 14 . . . . . . . 8 (𝐵 ∈ ω → suc 𝐵 ∈ On)
98ad3antlr 482 . . . . . . 7 ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → suc 𝐵 ∈ On)
10 sssucid 4297 . . . . . . . 8 𝐴 ⊆ suc 𝐴
1110a1i 9 . . . . . . 7 ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → 𝐴 ⊆ suc 𝐴)
12 simplll 505 . . . . . . 7 ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → 𝐴 ∈ On)
13 f1imaen2g 6641 . . . . . . 7 (((𝑓:suc 𝐴1-1→suc 𝐵 ∧ suc 𝐵 ∈ On) ∧ (𝐴 ⊆ suc 𝐴𝐴 ∈ On)) → (𝑓𝐴) ≈ 𝐴)
145, 9, 11, 12, 13syl22anc 1200 . . . . . 6 ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → (𝑓𝐴) ≈ 𝐴)
1514ensymd 6631 . . . . 5 ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → 𝐴 ≈ (𝑓𝐴))
16 eloni 4257 . . . . . . . . 9 (𝐴 ∈ On → Ord 𝐴)
17 orddif 4422 . . . . . . . . 9 (Ord 𝐴𝐴 = (suc 𝐴 ∖ {𝐴}))
1816, 17syl 14 . . . . . . . 8 (𝐴 ∈ On → 𝐴 = (suc 𝐴 ∖ {𝐴}))
1918imaeq2d 4839 . . . . . . 7 (𝐴 ∈ On → (𝑓𝐴) = (𝑓 “ (suc 𝐴 ∖ {𝐴})))
2019ad3antrrr 481 . . . . . 6 ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → (𝑓𝐴) = (𝑓 “ (suc 𝐴 ∖ {𝐴})))
21 f1ofn 5324 . . . . . . . . . 10 (𝑓:suc 𝐴1-1-onto→suc 𝐵𝑓 Fn suc 𝐴)
2221adantl 273 . . . . . . . . 9 ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → 𝑓 Fn suc 𝐴)
23 sucidg 4298 . . . . . . . . . 10 (𝐴 ∈ On → 𝐴 ∈ suc 𝐴)
2412, 23syl 14 . . . . . . . . 9 ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → 𝐴 ∈ suc 𝐴)
25 fnsnfv 5434 . . . . . . . . 9 ((𝑓 Fn suc 𝐴𝐴 ∈ suc 𝐴) → {(𝑓𝐴)} = (𝑓 “ {𝐴}))
2622, 24, 25syl2anc 406 . . . . . . . 8 ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → {(𝑓𝐴)} = (𝑓 “ {𝐴}))
2726difeq2d 3160 . . . . . . 7 ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → ((𝑓 “ suc 𝐴) ∖ {(𝑓𝐴)}) = ((𝑓 “ suc 𝐴) ∖ (𝑓 “ {𝐴})))
28 imadmrn 4849 . . . . . . . . . . 11 (𝑓 “ dom 𝑓) = ran 𝑓
2928eqcomi 2119 . . . . . . . . . 10 ran 𝑓 = (𝑓 “ dom 𝑓)
30 f1ofo 5330 . . . . . . . . . . 11 (𝑓:suc 𝐴1-1-onto→suc 𝐵𝑓:suc 𝐴onto→suc 𝐵)
31 forn 5306 . . . . . . . . . . 11 (𝑓:suc 𝐴onto→suc 𝐵 → ran 𝑓 = suc 𝐵)
3230, 31syl 14 . . . . . . . . . 10 (𝑓:suc 𝐴1-1-onto→suc 𝐵 → ran 𝑓 = suc 𝐵)
33 f1odm 5327 . . . . . . . . . . 11 (𝑓:suc 𝐴1-1-onto→suc 𝐵 → dom 𝑓 = suc 𝐴)
3433imaeq2d 4839 . . . . . . . . . 10 (𝑓:suc 𝐴1-1-onto→suc 𝐵 → (𝑓 “ dom 𝑓) = (𝑓 “ suc 𝐴))
3529, 32, 343eqtr3a 2171 . . . . . . . . 9 (𝑓:suc 𝐴1-1-onto→suc 𝐵 → suc 𝐵 = (𝑓 “ suc 𝐴))
3635difeq1d 3159 . . . . . . . 8 (𝑓:suc 𝐴1-1-onto→suc 𝐵 → (suc 𝐵 ∖ {(𝑓𝐴)}) = ((𝑓 “ suc 𝐴) ∖ {(𝑓𝐴)}))
3736adantl 273 . . . . . . 7 ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → (suc 𝐵 ∖ {(𝑓𝐴)}) = ((𝑓 “ suc 𝐴) ∖ {(𝑓𝐴)}))
38 dff1o3 5329 . . . . . . . . . 10 (𝑓:suc 𝐴1-1-onto→suc 𝐵 ↔ (𝑓:suc 𝐴onto→suc 𝐵 ∧ Fun 𝑓))
3938simprbi 271 . . . . . . . . 9 (𝑓:suc 𝐴1-1-onto→suc 𝐵 → Fun 𝑓)
40 imadif 5161 . . . . . . . . 9 (Fun 𝑓 → (𝑓 “ (suc 𝐴 ∖ {𝐴})) = ((𝑓 “ suc 𝐴) ∖ (𝑓 “ {𝐴})))
4139, 40syl 14 . . . . . . . 8 (𝑓:suc 𝐴1-1-onto→suc 𝐵 → (𝑓 “ (suc 𝐴 ∖ {𝐴})) = ((𝑓 “ suc 𝐴) ∖ (𝑓 “ {𝐴})))
4241adantl 273 . . . . . . 7 ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → (𝑓 “ (suc 𝐴 ∖ {𝐴})) = ((𝑓 “ suc 𝐴) ∖ (𝑓 “ {𝐴})))
4327, 37, 423eqtr4rd 2158 . . . . . 6 ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → (𝑓 “ (suc 𝐴 ∖ {𝐴})) = (suc 𝐵 ∖ {(𝑓𝐴)}))
4420, 43eqtrd 2147 . . . . 5 ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → (𝑓𝐴) = (suc 𝐵 ∖ {(𝑓𝐴)}))
4515, 44breqtrd 3919 . . . 4 ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → 𝐴 ≈ (suc 𝐵 ∖ {(𝑓𝐴)}))
46 simpllr 506 . . . . . 6 ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → 𝐵 ∈ ω)
47 fnfvelrn 5506 . . . . . . . 8 ((𝑓 Fn suc 𝐴𝐴 ∈ suc 𝐴) → (𝑓𝐴) ∈ ran 𝑓)
4822, 24, 47syl2anc 406 . . . . . . 7 ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → (𝑓𝐴) ∈ ran 𝑓)
4931eleq2d 2184 . . . . . . . . 9 (𝑓:suc 𝐴onto→suc 𝐵 → ((𝑓𝐴) ∈ ran 𝑓 ↔ (𝑓𝐴) ∈ suc 𝐵))
5030, 49syl 14 . . . . . . . 8 (𝑓:suc 𝐴1-1-onto→suc 𝐵 → ((𝑓𝐴) ∈ ran 𝑓 ↔ (𝑓𝐴) ∈ suc 𝐵))
5150adantl 273 . . . . . . 7 ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → ((𝑓𝐴) ∈ ran 𝑓 ↔ (𝑓𝐴) ∈ suc 𝐵))
5248, 51mpbid 146 . . . . . 6 ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → (𝑓𝐴) ∈ suc 𝐵)
53 phplem3g 6703 . . . . . 6 ((𝐵 ∈ ω ∧ (𝑓𝐴) ∈ suc 𝐵) → 𝐵 ≈ (suc 𝐵 ∖ {(𝑓𝐴)}))
5446, 52, 53syl2anc 406 . . . . 5 ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → 𝐵 ≈ (suc 𝐵 ∖ {(𝑓𝐴)}))
5554ensymd 6631 . . . 4 ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → (suc 𝐵 ∖ {(𝑓𝐴)}) ≈ 𝐵)
56 entr 6632 . . . 4 ((𝐴 ≈ (suc 𝐵 ∖ {(𝑓𝐴)}) ∧ (suc 𝐵 ∖ {(𝑓𝐴)}) ≈ 𝐵) → 𝐴𝐵)
5745, 55, 56syl2anc 406 . . 3 ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → 𝐴𝐵)
583, 57exlimddv 1852 . 2 (((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) → 𝐴𝐵)
5958ex 114 1 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (suc 𝐴 ≈ suc 𝐵𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1314  wex 1451  wcel 1463  cdif 3034  wss 3037  {csn 3493   class class class wbr 3895  Ord word 4244  Oncon0 4245  suc csuc 4247  ωcom 4464  ccnv 4498  dom cdm 4499  ran crn 4500  cima 4502  Fun wfun 5075   Fn wfn 5076  1-1wf1 5078  ontowfo 5079  1-1-ontowf1o 5080  cfv 5081  cen 6586
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4006  ax-nul 4014  ax-pow 4058  ax-pr 4091  ax-un 4315  ax-setind 4412  ax-iinf 4462
This theorem depends on definitions:  df-bi 116  df-dc 803  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ne 2283  df-ral 2395  df-rex 2396  df-rab 2399  df-v 2659  df-sbc 2879  df-dif 3039  df-un 3041  df-in 3043  df-ss 3050  df-nul 3330  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-int 3738  df-br 3896  df-opab 3950  df-tr 3987  df-id 4175  df-iord 4248  df-on 4250  df-suc 4253  df-iom 4465  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-rn 4510  df-res 4511  df-ima 4512  df-iota 5046  df-fun 5083  df-fn 5084  df-f 5085  df-f1 5086  df-fo 5087  df-f1o 5088  df-fv 5089  df-er 6383  df-en 6589
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator