ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  phplem4on GIF version

Theorem phplem4on 6537
Description: Equinumerosity of successors of an ordinal and a natural number implies equinumerosity of the originals. (Contributed by Jim Kingdon, 5-Sep-2021.)
Assertion
Ref Expression
phplem4on ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (suc 𝐴 ≈ suc 𝐵𝐴𝐵))

Proof of Theorem phplem4on
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 bren 6418 . . . . 5 (suc 𝐴 ≈ suc 𝐵 ↔ ∃𝑓 𝑓:suc 𝐴1-1-onto→suc 𝐵)
21biimpi 118 . . . 4 (suc 𝐴 ≈ suc 𝐵 → ∃𝑓 𝑓:suc 𝐴1-1-onto→suc 𝐵)
32adantl 271 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) → ∃𝑓 𝑓:suc 𝐴1-1-onto→suc 𝐵)
4 f1of1 5217 . . . . . . . 8 (𝑓:suc 𝐴1-1-onto→suc 𝐵𝑓:suc 𝐴1-1→suc 𝐵)
54adantl 271 . . . . . . 7 ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → 𝑓:suc 𝐴1-1→suc 𝐵)
6 peano2 4385 . . . . . . . . 9 (𝐵 ∈ ω → suc 𝐵 ∈ ω)
7 nnon 4399 . . . . . . . . 9 (suc 𝐵 ∈ ω → suc 𝐵 ∈ On)
86, 7syl 14 . . . . . . . 8 (𝐵 ∈ ω → suc 𝐵 ∈ On)
98ad3antlr 477 . . . . . . 7 ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → suc 𝐵 ∈ On)
10 sssucid 4218 . . . . . . . 8 𝐴 ⊆ suc 𝐴
1110a1i 9 . . . . . . 7 ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → 𝐴 ⊆ suc 𝐴)
12 simplll 500 . . . . . . 7 ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → 𝐴 ∈ On)
13 f1imaen2g 6464 . . . . . . 7 (((𝑓:suc 𝐴1-1→suc 𝐵 ∧ suc 𝐵 ∈ On) ∧ (𝐴 ⊆ suc 𝐴𝐴 ∈ On)) → (𝑓𝐴) ≈ 𝐴)
145, 9, 11, 12, 13syl22anc 1173 . . . . . 6 ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → (𝑓𝐴) ≈ 𝐴)
1514ensymd 6454 . . . . 5 ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → 𝐴 ≈ (𝑓𝐴))
16 eloni 4178 . . . . . . . . 9 (𝐴 ∈ On → Ord 𝐴)
17 orddif 4338 . . . . . . . . 9 (Ord 𝐴𝐴 = (suc 𝐴 ∖ {𝐴}))
1816, 17syl 14 . . . . . . . 8 (𝐴 ∈ On → 𝐴 = (suc 𝐴 ∖ {𝐴}))
1918imaeq2d 4743 . . . . . . 7 (𝐴 ∈ On → (𝑓𝐴) = (𝑓 “ (suc 𝐴 ∖ {𝐴})))
2019ad3antrrr 476 . . . . . 6 ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → (𝑓𝐴) = (𝑓 “ (suc 𝐴 ∖ {𝐴})))
21 f1ofn 5219 . . . . . . . . . 10 (𝑓:suc 𝐴1-1-onto→suc 𝐵𝑓 Fn suc 𝐴)
2221adantl 271 . . . . . . . . 9 ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → 𝑓 Fn suc 𝐴)
23 sucidg 4219 . . . . . . . . . 10 (𝐴 ∈ On → 𝐴 ∈ suc 𝐴)
2412, 23syl 14 . . . . . . . . 9 ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → 𝐴 ∈ suc 𝐴)
25 fnsnfv 5328 . . . . . . . . 9 ((𝑓 Fn suc 𝐴𝐴 ∈ suc 𝐴) → {(𝑓𝐴)} = (𝑓 “ {𝐴}))
2622, 24, 25syl2anc 403 . . . . . . . 8 ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → {(𝑓𝐴)} = (𝑓 “ {𝐴}))
2726difeq2d 3107 . . . . . . 7 ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → ((𝑓 “ suc 𝐴) ∖ {(𝑓𝐴)}) = ((𝑓 “ suc 𝐴) ∖ (𝑓 “ {𝐴})))
28 imadmrn 4753 . . . . . . . . . . 11 (𝑓 “ dom 𝑓) = ran 𝑓
2928eqcomi 2089 . . . . . . . . . 10 ran 𝑓 = (𝑓 “ dom 𝑓)
30 f1ofo 5225 . . . . . . . . . . 11 (𝑓:suc 𝐴1-1-onto→suc 𝐵𝑓:suc 𝐴onto→suc 𝐵)
31 forn 5201 . . . . . . . . . . 11 (𝑓:suc 𝐴onto→suc 𝐵 → ran 𝑓 = suc 𝐵)
3230, 31syl 14 . . . . . . . . . 10 (𝑓:suc 𝐴1-1-onto→suc 𝐵 → ran 𝑓 = suc 𝐵)
33 f1odm 5222 . . . . . . . . . . 11 (𝑓:suc 𝐴1-1-onto→suc 𝐵 → dom 𝑓 = suc 𝐴)
3433imaeq2d 4743 . . . . . . . . . 10 (𝑓:suc 𝐴1-1-onto→suc 𝐵 → (𝑓 “ dom 𝑓) = (𝑓 “ suc 𝐴))
3529, 32, 343eqtr3a 2141 . . . . . . . . 9 (𝑓:suc 𝐴1-1-onto→suc 𝐵 → suc 𝐵 = (𝑓 “ suc 𝐴))
3635difeq1d 3106 . . . . . . . 8 (𝑓:suc 𝐴1-1-onto→suc 𝐵 → (suc 𝐵 ∖ {(𝑓𝐴)}) = ((𝑓 “ suc 𝐴) ∖ {(𝑓𝐴)}))
3736adantl 271 . . . . . . 7 ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → (suc 𝐵 ∖ {(𝑓𝐴)}) = ((𝑓 “ suc 𝐴) ∖ {(𝑓𝐴)}))
38 dff1o3 5224 . . . . . . . . . 10 (𝑓:suc 𝐴1-1-onto→suc 𝐵 ↔ (𝑓:suc 𝐴onto→suc 𝐵 ∧ Fun 𝑓))
3938simprbi 269 . . . . . . . . 9 (𝑓:suc 𝐴1-1-onto→suc 𝐵 → Fun 𝑓)
40 imadif 5061 . . . . . . . . 9 (Fun 𝑓 → (𝑓 “ (suc 𝐴 ∖ {𝐴})) = ((𝑓 “ suc 𝐴) ∖ (𝑓 “ {𝐴})))
4139, 40syl 14 . . . . . . . 8 (𝑓:suc 𝐴1-1-onto→suc 𝐵 → (𝑓 “ (suc 𝐴 ∖ {𝐴})) = ((𝑓 “ suc 𝐴) ∖ (𝑓 “ {𝐴})))
4241adantl 271 . . . . . . 7 ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → (𝑓 “ (suc 𝐴 ∖ {𝐴})) = ((𝑓 “ suc 𝐴) ∖ (𝑓 “ {𝐴})))
4327, 37, 423eqtr4rd 2128 . . . . . 6 ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → (𝑓 “ (suc 𝐴 ∖ {𝐴})) = (suc 𝐵 ∖ {(𝑓𝐴)}))
4420, 43eqtrd 2117 . . . . 5 ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → (𝑓𝐴) = (suc 𝐵 ∖ {(𝑓𝐴)}))
4515, 44breqtrd 3846 . . . 4 ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → 𝐴 ≈ (suc 𝐵 ∖ {(𝑓𝐴)}))
46 simpllr 501 . . . . . 6 ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → 𝐵 ∈ ω)
47 fnfvelrn 5396 . . . . . . . 8 ((𝑓 Fn suc 𝐴𝐴 ∈ suc 𝐴) → (𝑓𝐴) ∈ ran 𝑓)
4822, 24, 47syl2anc 403 . . . . . . 7 ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → (𝑓𝐴) ∈ ran 𝑓)
4931eleq2d 2154 . . . . . . . . 9 (𝑓:suc 𝐴onto→suc 𝐵 → ((𝑓𝐴) ∈ ran 𝑓 ↔ (𝑓𝐴) ∈ suc 𝐵))
5030, 49syl 14 . . . . . . . 8 (𝑓:suc 𝐴1-1-onto→suc 𝐵 → ((𝑓𝐴) ∈ ran 𝑓 ↔ (𝑓𝐴) ∈ suc 𝐵))
5150adantl 271 . . . . . . 7 ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → ((𝑓𝐴) ∈ ran 𝑓 ↔ (𝑓𝐴) ∈ suc 𝐵))
5248, 51mpbid 145 . . . . . 6 ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → (𝑓𝐴) ∈ suc 𝐵)
53 phplem3g 6526 . . . . . 6 ((𝐵 ∈ ω ∧ (𝑓𝐴) ∈ suc 𝐵) → 𝐵 ≈ (suc 𝐵 ∖ {(𝑓𝐴)}))
5446, 52, 53syl2anc 403 . . . . 5 ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → 𝐵 ≈ (suc 𝐵 ∖ {(𝑓𝐴)}))
5554ensymd 6454 . . . 4 ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → (suc 𝐵 ∖ {(𝑓𝐴)}) ≈ 𝐵)
56 entr 6455 . . . 4 ((𝐴 ≈ (suc 𝐵 ∖ {(𝑓𝐴)}) ∧ (suc 𝐵 ∖ {(𝑓𝐴)}) ≈ 𝐵) → 𝐴𝐵)
5745, 55, 56syl2anc 403 . . 3 ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → 𝐴𝐵)
583, 57exlimddv 1823 . 2 (((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) → 𝐴𝐵)
5958ex 113 1 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (suc 𝐴 ≈ suc 𝐵𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103   = wceq 1287  wex 1424  wcel 1436  cdif 2985  wss 2988  {csn 3431   class class class wbr 3822  Ord word 4165  Oncon0 4166  suc csuc 4168  ωcom 4380  ccnv 4412  dom cdm 4413  ran crn 4414  cima 4416  Fun wfun 4977   Fn wfn 4978  1-1wf1 4980  ontowfo 4981  1-1-ontowf1o 4982  cfv 4983  cen 6409
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-13 1447  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-sep 3934  ax-nul 3942  ax-pow 3986  ax-pr 4012  ax-un 4236  ax-setind 4328  ax-iinf 4378
This theorem depends on definitions:  df-bi 115  df-dc 779  df-3or 923  df-3an 924  df-tru 1290  df-fal 1293  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ne 2252  df-ral 2360  df-rex 2361  df-rab 2364  df-v 2617  df-sbc 2830  df-dif 2990  df-un 2992  df-in 2994  df-ss 3001  df-nul 3276  df-pw 3417  df-sn 3437  df-pr 3438  df-op 3440  df-uni 3639  df-int 3674  df-br 3823  df-opab 3877  df-tr 3914  df-id 4096  df-iord 4169  df-on 4171  df-suc 4174  df-iom 4381  df-xp 4419  df-rel 4420  df-cnv 4421  df-co 4422  df-dm 4423  df-rn 4424  df-res 4425  df-ima 4426  df-iota 4948  df-fun 4985  df-fn 4986  df-f 4987  df-f1 4988  df-fo 4989  df-f1o 4990  df-fv 4991  df-er 6246  df-en 6412
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator