ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  phplem4on GIF version

Theorem phplem4on 6923
Description: Equinumerosity of successors of an ordinal and a natural number implies equinumerosity of the originals. (Contributed by Jim Kingdon, 5-Sep-2021.)
Assertion
Ref Expression
phplem4on ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (suc 𝐴 ≈ suc 𝐵𝐴𝐵))

Proof of Theorem phplem4on
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 bren 6801 . . . . 5 (suc 𝐴 ≈ suc 𝐵 ↔ ∃𝑓 𝑓:suc 𝐴1-1-onto→suc 𝐵)
21biimpi 120 . . . 4 (suc 𝐴 ≈ suc 𝐵 → ∃𝑓 𝑓:suc 𝐴1-1-onto→suc 𝐵)
32adantl 277 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) → ∃𝑓 𝑓:suc 𝐴1-1-onto→suc 𝐵)
4 f1of1 5499 . . . . . . . 8 (𝑓:suc 𝐴1-1-onto→suc 𝐵𝑓:suc 𝐴1-1→suc 𝐵)
54adantl 277 . . . . . . 7 ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → 𝑓:suc 𝐴1-1→suc 𝐵)
6 peano2 4627 . . . . . . . . 9 (𝐵 ∈ ω → suc 𝐵 ∈ ω)
7 nnon 4642 . . . . . . . . 9 (suc 𝐵 ∈ ω → suc 𝐵 ∈ On)
86, 7syl 14 . . . . . . . 8 (𝐵 ∈ ω → suc 𝐵 ∈ On)
98ad3antlr 493 . . . . . . 7 ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → suc 𝐵 ∈ On)
10 sssucid 4446 . . . . . . . 8 𝐴 ⊆ suc 𝐴
1110a1i 9 . . . . . . 7 ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → 𝐴 ⊆ suc 𝐴)
12 simplll 533 . . . . . . 7 ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → 𝐴 ∈ On)
13 f1imaen2g 6847 . . . . . . 7 (((𝑓:suc 𝐴1-1→suc 𝐵 ∧ suc 𝐵 ∈ On) ∧ (𝐴 ⊆ suc 𝐴𝐴 ∈ On)) → (𝑓𝐴) ≈ 𝐴)
145, 9, 11, 12, 13syl22anc 1250 . . . . . 6 ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → (𝑓𝐴) ≈ 𝐴)
1514ensymd 6837 . . . . 5 ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → 𝐴 ≈ (𝑓𝐴))
16 eloni 4406 . . . . . . . . 9 (𝐴 ∈ On → Ord 𝐴)
17 orddif 4579 . . . . . . . . 9 (Ord 𝐴𝐴 = (suc 𝐴 ∖ {𝐴}))
1816, 17syl 14 . . . . . . . 8 (𝐴 ∈ On → 𝐴 = (suc 𝐴 ∖ {𝐴}))
1918imaeq2d 5005 . . . . . . 7 (𝐴 ∈ On → (𝑓𝐴) = (𝑓 “ (suc 𝐴 ∖ {𝐴})))
2019ad3antrrr 492 . . . . . 6 ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → (𝑓𝐴) = (𝑓 “ (suc 𝐴 ∖ {𝐴})))
21 f1ofn 5501 . . . . . . . . . 10 (𝑓:suc 𝐴1-1-onto→suc 𝐵𝑓 Fn suc 𝐴)
2221adantl 277 . . . . . . . . 9 ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → 𝑓 Fn suc 𝐴)
23 sucidg 4447 . . . . . . . . . 10 (𝐴 ∈ On → 𝐴 ∈ suc 𝐴)
2412, 23syl 14 . . . . . . . . 9 ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → 𝐴 ∈ suc 𝐴)
25 fnsnfv 5616 . . . . . . . . 9 ((𝑓 Fn suc 𝐴𝐴 ∈ suc 𝐴) → {(𝑓𝐴)} = (𝑓 “ {𝐴}))
2622, 24, 25syl2anc 411 . . . . . . . 8 ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → {(𝑓𝐴)} = (𝑓 “ {𝐴}))
2726difeq2d 3277 . . . . . . 7 ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → ((𝑓 “ suc 𝐴) ∖ {(𝑓𝐴)}) = ((𝑓 “ suc 𝐴) ∖ (𝑓 “ {𝐴})))
28 imadmrn 5015 . . . . . . . . . . 11 (𝑓 “ dom 𝑓) = ran 𝑓
2928eqcomi 2197 . . . . . . . . . 10 ran 𝑓 = (𝑓 “ dom 𝑓)
30 f1ofo 5507 . . . . . . . . . . 11 (𝑓:suc 𝐴1-1-onto→suc 𝐵𝑓:suc 𝐴onto→suc 𝐵)
31 forn 5479 . . . . . . . . . . 11 (𝑓:suc 𝐴onto→suc 𝐵 → ran 𝑓 = suc 𝐵)
3230, 31syl 14 . . . . . . . . . 10 (𝑓:suc 𝐴1-1-onto→suc 𝐵 → ran 𝑓 = suc 𝐵)
33 f1odm 5504 . . . . . . . . . . 11 (𝑓:suc 𝐴1-1-onto→suc 𝐵 → dom 𝑓 = suc 𝐴)
3433imaeq2d 5005 . . . . . . . . . 10 (𝑓:suc 𝐴1-1-onto→suc 𝐵 → (𝑓 “ dom 𝑓) = (𝑓 “ suc 𝐴))
3529, 32, 343eqtr3a 2250 . . . . . . . . 9 (𝑓:suc 𝐴1-1-onto→suc 𝐵 → suc 𝐵 = (𝑓 “ suc 𝐴))
3635difeq1d 3276 . . . . . . . 8 (𝑓:suc 𝐴1-1-onto→suc 𝐵 → (suc 𝐵 ∖ {(𝑓𝐴)}) = ((𝑓 “ suc 𝐴) ∖ {(𝑓𝐴)}))
3736adantl 277 . . . . . . 7 ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → (suc 𝐵 ∖ {(𝑓𝐴)}) = ((𝑓 “ suc 𝐴) ∖ {(𝑓𝐴)}))
38 dff1o3 5506 . . . . . . . . . 10 (𝑓:suc 𝐴1-1-onto→suc 𝐵 ↔ (𝑓:suc 𝐴onto→suc 𝐵 ∧ Fun 𝑓))
3938simprbi 275 . . . . . . . . 9 (𝑓:suc 𝐴1-1-onto→suc 𝐵 → Fun 𝑓)
40 imadif 5334 . . . . . . . . 9 (Fun 𝑓 → (𝑓 “ (suc 𝐴 ∖ {𝐴})) = ((𝑓 “ suc 𝐴) ∖ (𝑓 “ {𝐴})))
4139, 40syl 14 . . . . . . . 8 (𝑓:suc 𝐴1-1-onto→suc 𝐵 → (𝑓 “ (suc 𝐴 ∖ {𝐴})) = ((𝑓 “ suc 𝐴) ∖ (𝑓 “ {𝐴})))
4241adantl 277 . . . . . . 7 ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → (𝑓 “ (suc 𝐴 ∖ {𝐴})) = ((𝑓 “ suc 𝐴) ∖ (𝑓 “ {𝐴})))
4327, 37, 423eqtr4rd 2237 . . . . . 6 ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → (𝑓 “ (suc 𝐴 ∖ {𝐴})) = (suc 𝐵 ∖ {(𝑓𝐴)}))
4420, 43eqtrd 2226 . . . . 5 ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → (𝑓𝐴) = (suc 𝐵 ∖ {(𝑓𝐴)}))
4515, 44breqtrd 4055 . . . 4 ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → 𝐴 ≈ (suc 𝐵 ∖ {(𝑓𝐴)}))
46 simpllr 534 . . . . . 6 ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → 𝐵 ∈ ω)
47 fnfvelrn 5690 . . . . . . . 8 ((𝑓 Fn suc 𝐴𝐴 ∈ suc 𝐴) → (𝑓𝐴) ∈ ran 𝑓)
4822, 24, 47syl2anc 411 . . . . . . 7 ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → (𝑓𝐴) ∈ ran 𝑓)
4931eleq2d 2263 . . . . . . . . 9 (𝑓:suc 𝐴onto→suc 𝐵 → ((𝑓𝐴) ∈ ran 𝑓 ↔ (𝑓𝐴) ∈ suc 𝐵))
5030, 49syl 14 . . . . . . . 8 (𝑓:suc 𝐴1-1-onto→suc 𝐵 → ((𝑓𝐴) ∈ ran 𝑓 ↔ (𝑓𝐴) ∈ suc 𝐵))
5150adantl 277 . . . . . . 7 ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → ((𝑓𝐴) ∈ ran 𝑓 ↔ (𝑓𝐴) ∈ suc 𝐵))
5248, 51mpbid 147 . . . . . 6 ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → (𝑓𝐴) ∈ suc 𝐵)
53 phplem3g 6912 . . . . . 6 ((𝐵 ∈ ω ∧ (𝑓𝐴) ∈ suc 𝐵) → 𝐵 ≈ (suc 𝐵 ∖ {(𝑓𝐴)}))
5446, 52, 53syl2anc 411 . . . . 5 ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → 𝐵 ≈ (suc 𝐵 ∖ {(𝑓𝐴)}))
5554ensymd 6837 . . . 4 ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → (suc 𝐵 ∖ {(𝑓𝐴)}) ≈ 𝐵)
56 entr 6838 . . . 4 ((𝐴 ≈ (suc 𝐵 ∖ {(𝑓𝐴)}) ∧ (suc 𝐵 ∖ {(𝑓𝐴)}) ≈ 𝐵) → 𝐴𝐵)
5745, 55, 56syl2anc 411 . . 3 ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → 𝐴𝐵)
583, 57exlimddv 1910 . 2 (((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) → 𝐴𝐵)
5958ex 115 1 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (suc 𝐴 ≈ suc 𝐵𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wex 1503  wcel 2164  cdif 3150  wss 3153  {csn 3618   class class class wbr 4029  Ord word 4393  Oncon0 4394  suc csuc 4396  ωcom 4622  ccnv 4658  dom cdm 4659  ran crn 4660  cima 4662  Fun wfun 5248   Fn wfn 5249  1-1wf1 5251  ontowfo 5252  1-1-ontowf1o 5253  cfv 5254  cen 6792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-er 6587  df-en 6795
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator