ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  phplem4on GIF version

Theorem phplem4on 6866
Description: Equinumerosity of successors of an ordinal and a natural number implies equinumerosity of the originals. (Contributed by Jim Kingdon, 5-Sep-2021.)
Assertion
Ref Expression
phplem4on ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (suc 𝐴 ≈ suc 𝐵𝐴𝐵))

Proof of Theorem phplem4on
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 bren 6746 . . . . 5 (suc 𝐴 ≈ suc 𝐵 ↔ ∃𝑓 𝑓:suc 𝐴1-1-onto→suc 𝐵)
21biimpi 120 . . . 4 (suc 𝐴 ≈ suc 𝐵 → ∃𝑓 𝑓:suc 𝐴1-1-onto→suc 𝐵)
32adantl 277 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) → ∃𝑓 𝑓:suc 𝐴1-1-onto→suc 𝐵)
4 f1of1 5460 . . . . . . . 8 (𝑓:suc 𝐴1-1-onto→suc 𝐵𝑓:suc 𝐴1-1→suc 𝐵)
54adantl 277 . . . . . . 7 ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → 𝑓:suc 𝐴1-1→suc 𝐵)
6 peano2 4594 . . . . . . . . 9 (𝐵 ∈ ω → suc 𝐵 ∈ ω)
7 nnon 4609 . . . . . . . . 9 (suc 𝐵 ∈ ω → suc 𝐵 ∈ On)
86, 7syl 14 . . . . . . . 8 (𝐵 ∈ ω → suc 𝐵 ∈ On)
98ad3antlr 493 . . . . . . 7 ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → suc 𝐵 ∈ On)
10 sssucid 4415 . . . . . . . 8 𝐴 ⊆ suc 𝐴
1110a1i 9 . . . . . . 7 ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → 𝐴 ⊆ suc 𝐴)
12 simplll 533 . . . . . . 7 ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → 𝐴 ∈ On)
13 f1imaen2g 6792 . . . . . . 7 (((𝑓:suc 𝐴1-1→suc 𝐵 ∧ suc 𝐵 ∈ On) ∧ (𝐴 ⊆ suc 𝐴𝐴 ∈ On)) → (𝑓𝐴) ≈ 𝐴)
145, 9, 11, 12, 13syl22anc 1239 . . . . . 6 ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → (𝑓𝐴) ≈ 𝐴)
1514ensymd 6782 . . . . 5 ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → 𝐴 ≈ (𝑓𝐴))
16 eloni 4375 . . . . . . . . 9 (𝐴 ∈ On → Ord 𝐴)
17 orddif 4546 . . . . . . . . 9 (Ord 𝐴𝐴 = (suc 𝐴 ∖ {𝐴}))
1816, 17syl 14 . . . . . . . 8 (𝐴 ∈ On → 𝐴 = (suc 𝐴 ∖ {𝐴}))
1918imaeq2d 4970 . . . . . . 7 (𝐴 ∈ On → (𝑓𝐴) = (𝑓 “ (suc 𝐴 ∖ {𝐴})))
2019ad3antrrr 492 . . . . . 6 ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → (𝑓𝐴) = (𝑓 “ (suc 𝐴 ∖ {𝐴})))
21 f1ofn 5462 . . . . . . . . . 10 (𝑓:suc 𝐴1-1-onto→suc 𝐵𝑓 Fn suc 𝐴)
2221adantl 277 . . . . . . . . 9 ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → 𝑓 Fn suc 𝐴)
23 sucidg 4416 . . . . . . . . . 10 (𝐴 ∈ On → 𝐴 ∈ suc 𝐴)
2412, 23syl 14 . . . . . . . . 9 ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → 𝐴 ∈ suc 𝐴)
25 fnsnfv 5575 . . . . . . . . 9 ((𝑓 Fn suc 𝐴𝐴 ∈ suc 𝐴) → {(𝑓𝐴)} = (𝑓 “ {𝐴}))
2622, 24, 25syl2anc 411 . . . . . . . 8 ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → {(𝑓𝐴)} = (𝑓 “ {𝐴}))
2726difeq2d 3253 . . . . . . 7 ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → ((𝑓 “ suc 𝐴) ∖ {(𝑓𝐴)}) = ((𝑓 “ suc 𝐴) ∖ (𝑓 “ {𝐴})))
28 imadmrn 4980 . . . . . . . . . . 11 (𝑓 “ dom 𝑓) = ran 𝑓
2928eqcomi 2181 . . . . . . . . . 10 ran 𝑓 = (𝑓 “ dom 𝑓)
30 f1ofo 5468 . . . . . . . . . . 11 (𝑓:suc 𝐴1-1-onto→suc 𝐵𝑓:suc 𝐴onto→suc 𝐵)
31 forn 5441 . . . . . . . . . . 11 (𝑓:suc 𝐴onto→suc 𝐵 → ran 𝑓 = suc 𝐵)
3230, 31syl 14 . . . . . . . . . 10 (𝑓:suc 𝐴1-1-onto→suc 𝐵 → ran 𝑓 = suc 𝐵)
33 f1odm 5465 . . . . . . . . . . 11 (𝑓:suc 𝐴1-1-onto→suc 𝐵 → dom 𝑓 = suc 𝐴)
3433imaeq2d 4970 . . . . . . . . . 10 (𝑓:suc 𝐴1-1-onto→suc 𝐵 → (𝑓 “ dom 𝑓) = (𝑓 “ suc 𝐴))
3529, 32, 343eqtr3a 2234 . . . . . . . . 9 (𝑓:suc 𝐴1-1-onto→suc 𝐵 → suc 𝐵 = (𝑓 “ suc 𝐴))
3635difeq1d 3252 . . . . . . . 8 (𝑓:suc 𝐴1-1-onto→suc 𝐵 → (suc 𝐵 ∖ {(𝑓𝐴)}) = ((𝑓 “ suc 𝐴) ∖ {(𝑓𝐴)}))
3736adantl 277 . . . . . . 7 ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → (suc 𝐵 ∖ {(𝑓𝐴)}) = ((𝑓 “ suc 𝐴) ∖ {(𝑓𝐴)}))
38 dff1o3 5467 . . . . . . . . . 10 (𝑓:suc 𝐴1-1-onto→suc 𝐵 ↔ (𝑓:suc 𝐴onto→suc 𝐵 ∧ Fun 𝑓))
3938simprbi 275 . . . . . . . . 9 (𝑓:suc 𝐴1-1-onto→suc 𝐵 → Fun 𝑓)
40 imadif 5296 . . . . . . . . 9 (Fun 𝑓 → (𝑓 “ (suc 𝐴 ∖ {𝐴})) = ((𝑓 “ suc 𝐴) ∖ (𝑓 “ {𝐴})))
4139, 40syl 14 . . . . . . . 8 (𝑓:suc 𝐴1-1-onto→suc 𝐵 → (𝑓 “ (suc 𝐴 ∖ {𝐴})) = ((𝑓 “ suc 𝐴) ∖ (𝑓 “ {𝐴})))
4241adantl 277 . . . . . . 7 ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → (𝑓 “ (suc 𝐴 ∖ {𝐴})) = ((𝑓 “ suc 𝐴) ∖ (𝑓 “ {𝐴})))
4327, 37, 423eqtr4rd 2221 . . . . . 6 ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → (𝑓 “ (suc 𝐴 ∖ {𝐴})) = (suc 𝐵 ∖ {(𝑓𝐴)}))
4420, 43eqtrd 2210 . . . . 5 ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → (𝑓𝐴) = (suc 𝐵 ∖ {(𝑓𝐴)}))
4515, 44breqtrd 4029 . . . 4 ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → 𝐴 ≈ (suc 𝐵 ∖ {(𝑓𝐴)}))
46 simpllr 534 . . . . . 6 ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → 𝐵 ∈ ω)
47 fnfvelrn 5648 . . . . . . . 8 ((𝑓 Fn suc 𝐴𝐴 ∈ suc 𝐴) → (𝑓𝐴) ∈ ran 𝑓)
4822, 24, 47syl2anc 411 . . . . . . 7 ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → (𝑓𝐴) ∈ ran 𝑓)
4931eleq2d 2247 . . . . . . . . 9 (𝑓:suc 𝐴onto→suc 𝐵 → ((𝑓𝐴) ∈ ran 𝑓 ↔ (𝑓𝐴) ∈ suc 𝐵))
5030, 49syl 14 . . . . . . . 8 (𝑓:suc 𝐴1-1-onto→suc 𝐵 → ((𝑓𝐴) ∈ ran 𝑓 ↔ (𝑓𝐴) ∈ suc 𝐵))
5150adantl 277 . . . . . . 7 ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → ((𝑓𝐴) ∈ ran 𝑓 ↔ (𝑓𝐴) ∈ suc 𝐵))
5248, 51mpbid 147 . . . . . 6 ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → (𝑓𝐴) ∈ suc 𝐵)
53 phplem3g 6855 . . . . . 6 ((𝐵 ∈ ω ∧ (𝑓𝐴) ∈ suc 𝐵) → 𝐵 ≈ (suc 𝐵 ∖ {(𝑓𝐴)}))
5446, 52, 53syl2anc 411 . . . . 5 ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → 𝐵 ≈ (suc 𝐵 ∖ {(𝑓𝐴)}))
5554ensymd 6782 . . . 4 ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → (suc 𝐵 ∖ {(𝑓𝐴)}) ≈ 𝐵)
56 entr 6783 . . . 4 ((𝐴 ≈ (suc 𝐵 ∖ {(𝑓𝐴)}) ∧ (suc 𝐵 ∖ {(𝑓𝐴)}) ≈ 𝐵) → 𝐴𝐵)
5745, 55, 56syl2anc 411 . . 3 ((((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) ∧ 𝑓:suc 𝐴1-1-onto→suc 𝐵) → 𝐴𝐵)
583, 57exlimddv 1898 . 2 (((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ suc 𝐴 ≈ suc 𝐵) → 𝐴𝐵)
5958ex 115 1 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (suc 𝐴 ≈ suc 𝐵𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wex 1492  wcel 2148  cdif 3126  wss 3129  {csn 3592   class class class wbr 4003  Ord word 4362  Oncon0 4363  suc csuc 4365  ωcom 4589  ccnv 4625  dom cdm 4626  ran crn 4627  cima 4629  Fun wfun 5210   Fn wfn 5211  1-1wf1 5213  ontowfo 5214  1-1-ontowf1o 5215  cfv 5216  cen 6737
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4121  ax-nul 4129  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-iinf 4587
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2739  df-sbc 2963  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-br 4004  df-opab 4065  df-tr 4102  df-id 4293  df-iord 4366  df-on 4368  df-suc 4371  df-iom 4590  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-f1 5221  df-fo 5222  df-f1o 5223  df-fv 5224  df-er 6534  df-en 6740
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator