ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvsnun2 GIF version

Theorem fvsnun2 5716
Description: The value of a function with one of its ordered pairs replaced, at arguments other than the replaced one. See also fvsnun1 5715. (Contributed by NM, 23-Sep-2007.)
Hypotheses
Ref Expression
fvsnun.1 𝐴 ∈ V
fvsnun.2 𝐵 ∈ V
fvsnun.3 𝐺 = ({⟨𝐴, 𝐵⟩} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴})))
Assertion
Ref Expression
fvsnun2 (𝐷 ∈ (𝐶 ∖ {𝐴}) → (𝐺𝐷) = (𝐹𝐷))

Proof of Theorem fvsnun2
StepHypRef Expression
1 fvsnun.3 . . . . 5 𝐺 = ({⟨𝐴, 𝐵⟩} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴})))
21reseq1i 4905 . . . 4 (𝐺 ↾ (𝐶 ∖ {𝐴})) = (({⟨𝐴, 𝐵⟩} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴}))) ↾ (𝐶 ∖ {𝐴}))
3 resundir 4923 . . . 4 (({⟨𝐴, 𝐵⟩} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴}))) ↾ (𝐶 ∖ {𝐴})) = (({⟨𝐴, 𝐵⟩} ↾ (𝐶 ∖ {𝐴})) ∪ ((𝐹 ↾ (𝐶 ∖ {𝐴})) ↾ (𝐶 ∖ {𝐴})))
4 disjdif 3497 . . . . . . 7 ({𝐴} ∩ (𝐶 ∖ {𝐴})) = ∅
5 fvsnun.1 . . . . . . . . 9 𝐴 ∈ V
6 fvsnun.2 . . . . . . . . 9 𝐵 ∈ V
75, 6fnsn 5272 . . . . . . . 8 {⟨𝐴, 𝐵⟩} Fn {𝐴}
8 fnresdisj 5328 . . . . . . . 8 ({⟨𝐴, 𝐵⟩} Fn {𝐴} → (({𝐴} ∩ (𝐶 ∖ {𝐴})) = ∅ ↔ ({⟨𝐴, 𝐵⟩} ↾ (𝐶 ∖ {𝐴})) = ∅))
97, 8ax-mp 5 . . . . . . 7 (({𝐴} ∩ (𝐶 ∖ {𝐴})) = ∅ ↔ ({⟨𝐴, 𝐵⟩} ↾ (𝐶 ∖ {𝐴})) = ∅)
104, 9mpbi 145 . . . . . 6 ({⟨𝐴, 𝐵⟩} ↾ (𝐶 ∖ {𝐴})) = ∅
11 residm 4941 . . . . . 6 ((𝐹 ↾ (𝐶 ∖ {𝐴})) ↾ (𝐶 ∖ {𝐴})) = (𝐹 ↾ (𝐶 ∖ {𝐴}))
1210, 11uneq12i 3289 . . . . 5 (({⟨𝐴, 𝐵⟩} ↾ (𝐶 ∖ {𝐴})) ∪ ((𝐹 ↾ (𝐶 ∖ {𝐴})) ↾ (𝐶 ∖ {𝐴}))) = (∅ ∪ (𝐹 ↾ (𝐶 ∖ {𝐴})))
13 uncom 3281 . . . . 5 (∅ ∪ (𝐹 ↾ (𝐶 ∖ {𝐴}))) = ((𝐹 ↾ (𝐶 ∖ {𝐴})) ∪ ∅)
14 un0 3458 . . . . 5 ((𝐹 ↾ (𝐶 ∖ {𝐴})) ∪ ∅) = (𝐹 ↾ (𝐶 ∖ {𝐴}))
1512, 13, 143eqtri 2202 . . . 4 (({⟨𝐴, 𝐵⟩} ↾ (𝐶 ∖ {𝐴})) ∪ ((𝐹 ↾ (𝐶 ∖ {𝐴})) ↾ (𝐶 ∖ {𝐴}))) = (𝐹 ↾ (𝐶 ∖ {𝐴}))
162, 3, 153eqtri 2202 . . 3 (𝐺 ↾ (𝐶 ∖ {𝐴})) = (𝐹 ↾ (𝐶 ∖ {𝐴}))
1716fveq1i 5518 . 2 ((𝐺 ↾ (𝐶 ∖ {𝐴}))‘𝐷) = ((𝐹 ↾ (𝐶 ∖ {𝐴}))‘𝐷)
18 fvres 5541 . 2 (𝐷 ∈ (𝐶 ∖ {𝐴}) → ((𝐺 ↾ (𝐶 ∖ {𝐴}))‘𝐷) = (𝐺𝐷))
19 fvres 5541 . 2 (𝐷 ∈ (𝐶 ∖ {𝐴}) → ((𝐹 ↾ (𝐶 ∖ {𝐴}))‘𝐷) = (𝐹𝐷))
2017, 18, 193eqtr3a 2234 1 (𝐷 ∈ (𝐶 ∖ {𝐴}) → (𝐺𝐷) = (𝐹𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1353  wcel 2148  Vcvv 2739  cdif 3128  cun 3129  cin 3130  c0 3424  {csn 3594  cop 3597  cres 4630   Fn wfn 5213  cfv 5218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-res 4640  df-iota 5180  df-fun 5220  df-fn 5221  df-fv 5226
This theorem is referenced by:  facnn  10709
  Copyright terms: Public domain W3C validator