| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvsnun2 | GIF version | ||
| Description: The value of a function with one of its ordered pairs replaced, at arguments other than the replaced one. See also fvsnun1 5835. (Contributed by NM, 23-Sep-2007.) |
| Ref | Expression |
|---|---|
| fvsnun.1 | ⊢ 𝐴 ∈ V |
| fvsnun.2 | ⊢ 𝐵 ∈ V |
| fvsnun.3 | ⊢ 𝐺 = ({〈𝐴, 𝐵〉} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴}))) |
| Ref | Expression |
|---|---|
| fvsnun2 | ⊢ (𝐷 ∈ (𝐶 ∖ {𝐴}) → (𝐺‘𝐷) = (𝐹‘𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvsnun.3 | . . . . 5 ⊢ 𝐺 = ({〈𝐴, 𝐵〉} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴}))) | |
| 2 | 1 | reseq1i 5000 | . . . 4 ⊢ (𝐺 ↾ (𝐶 ∖ {𝐴})) = (({〈𝐴, 𝐵〉} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴}))) ↾ (𝐶 ∖ {𝐴})) |
| 3 | resundir 5018 | . . . 4 ⊢ (({〈𝐴, 𝐵〉} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴}))) ↾ (𝐶 ∖ {𝐴})) = (({〈𝐴, 𝐵〉} ↾ (𝐶 ∖ {𝐴})) ∪ ((𝐹 ↾ (𝐶 ∖ {𝐴})) ↾ (𝐶 ∖ {𝐴}))) | |
| 4 | disjdif 3564 | . . . . . . 7 ⊢ ({𝐴} ∩ (𝐶 ∖ {𝐴})) = ∅ | |
| 5 | fvsnun.1 | . . . . . . . . 9 ⊢ 𝐴 ∈ V | |
| 6 | fvsnun.2 | . . . . . . . . 9 ⊢ 𝐵 ∈ V | |
| 7 | 5, 6 | fnsn 5374 | . . . . . . . 8 ⊢ {〈𝐴, 𝐵〉} Fn {𝐴} |
| 8 | fnresdisj 5432 | . . . . . . . 8 ⊢ ({〈𝐴, 𝐵〉} Fn {𝐴} → (({𝐴} ∩ (𝐶 ∖ {𝐴})) = ∅ ↔ ({〈𝐴, 𝐵〉} ↾ (𝐶 ∖ {𝐴})) = ∅)) | |
| 9 | 7, 8 | ax-mp 5 | . . . . . . 7 ⊢ (({𝐴} ∩ (𝐶 ∖ {𝐴})) = ∅ ↔ ({〈𝐴, 𝐵〉} ↾ (𝐶 ∖ {𝐴})) = ∅) |
| 10 | 4, 9 | mpbi 145 | . . . . . 6 ⊢ ({〈𝐴, 𝐵〉} ↾ (𝐶 ∖ {𝐴})) = ∅ |
| 11 | residm 5036 | . . . . . 6 ⊢ ((𝐹 ↾ (𝐶 ∖ {𝐴})) ↾ (𝐶 ∖ {𝐴})) = (𝐹 ↾ (𝐶 ∖ {𝐴})) | |
| 12 | 10, 11 | uneq12i 3356 | . . . . 5 ⊢ (({〈𝐴, 𝐵〉} ↾ (𝐶 ∖ {𝐴})) ∪ ((𝐹 ↾ (𝐶 ∖ {𝐴})) ↾ (𝐶 ∖ {𝐴}))) = (∅ ∪ (𝐹 ↾ (𝐶 ∖ {𝐴}))) |
| 13 | uncom 3348 | . . . . 5 ⊢ (∅ ∪ (𝐹 ↾ (𝐶 ∖ {𝐴}))) = ((𝐹 ↾ (𝐶 ∖ {𝐴})) ∪ ∅) | |
| 14 | un0 3525 | . . . . 5 ⊢ ((𝐹 ↾ (𝐶 ∖ {𝐴})) ∪ ∅) = (𝐹 ↾ (𝐶 ∖ {𝐴})) | |
| 15 | 12, 13, 14 | 3eqtri 2254 | . . . 4 ⊢ (({〈𝐴, 𝐵〉} ↾ (𝐶 ∖ {𝐴})) ∪ ((𝐹 ↾ (𝐶 ∖ {𝐴})) ↾ (𝐶 ∖ {𝐴}))) = (𝐹 ↾ (𝐶 ∖ {𝐴})) |
| 16 | 2, 3, 15 | 3eqtri 2254 | . . 3 ⊢ (𝐺 ↾ (𝐶 ∖ {𝐴})) = (𝐹 ↾ (𝐶 ∖ {𝐴})) |
| 17 | 16 | fveq1i 5627 | . 2 ⊢ ((𝐺 ↾ (𝐶 ∖ {𝐴}))‘𝐷) = ((𝐹 ↾ (𝐶 ∖ {𝐴}))‘𝐷) |
| 18 | fvres 5650 | . 2 ⊢ (𝐷 ∈ (𝐶 ∖ {𝐴}) → ((𝐺 ↾ (𝐶 ∖ {𝐴}))‘𝐷) = (𝐺‘𝐷)) | |
| 19 | fvres 5650 | . 2 ⊢ (𝐷 ∈ (𝐶 ∖ {𝐴}) → ((𝐹 ↾ (𝐶 ∖ {𝐴}))‘𝐷) = (𝐹‘𝐷)) | |
| 20 | 17, 18, 19 | 3eqtr3a 2286 | 1 ⊢ (𝐷 ∈ (𝐶 ∖ {𝐴}) → (𝐺‘𝐷) = (𝐹‘𝐷)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1395 ∈ wcel 2200 Vcvv 2799 ∖ cdif 3194 ∪ cun 3195 ∩ cin 3196 ∅c0 3491 {csn 3666 〈cop 3669 ↾ cres 4720 Fn wfn 5312 ‘cfv 5317 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-res 4730 df-iota 5277 df-fun 5319 df-fn 5320 df-fv 5325 |
| This theorem is referenced by: facnn 10944 |
| Copyright terms: Public domain | W3C validator |