![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fvsnun2 | GIF version |
Description: The value of a function with one of its ordered pairs replaced, at arguments other than the replaced one. See also fvsnun1 5756. (Contributed by NM, 23-Sep-2007.) |
Ref | Expression |
---|---|
fvsnun.1 | ⊢ 𝐴 ∈ V |
fvsnun.2 | ⊢ 𝐵 ∈ V |
fvsnun.3 | ⊢ 𝐺 = ({〈𝐴, 𝐵〉} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴}))) |
Ref | Expression |
---|---|
fvsnun2 | ⊢ (𝐷 ∈ (𝐶 ∖ {𝐴}) → (𝐺‘𝐷) = (𝐹‘𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvsnun.3 | . . . . 5 ⊢ 𝐺 = ({〈𝐴, 𝐵〉} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴}))) | |
2 | 1 | reseq1i 4939 | . . . 4 ⊢ (𝐺 ↾ (𝐶 ∖ {𝐴})) = (({〈𝐴, 𝐵〉} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴}))) ↾ (𝐶 ∖ {𝐴})) |
3 | resundir 4957 | . . . 4 ⊢ (({〈𝐴, 𝐵〉} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴}))) ↾ (𝐶 ∖ {𝐴})) = (({〈𝐴, 𝐵〉} ↾ (𝐶 ∖ {𝐴})) ∪ ((𝐹 ↾ (𝐶 ∖ {𝐴})) ↾ (𝐶 ∖ {𝐴}))) | |
4 | disjdif 3520 | . . . . . . 7 ⊢ ({𝐴} ∩ (𝐶 ∖ {𝐴})) = ∅ | |
5 | fvsnun.1 | . . . . . . . . 9 ⊢ 𝐴 ∈ V | |
6 | fvsnun.2 | . . . . . . . . 9 ⊢ 𝐵 ∈ V | |
7 | 5, 6 | fnsn 5309 | . . . . . . . 8 ⊢ {〈𝐴, 𝐵〉} Fn {𝐴} |
8 | fnresdisj 5365 | . . . . . . . 8 ⊢ ({〈𝐴, 𝐵〉} Fn {𝐴} → (({𝐴} ∩ (𝐶 ∖ {𝐴})) = ∅ ↔ ({〈𝐴, 𝐵〉} ↾ (𝐶 ∖ {𝐴})) = ∅)) | |
9 | 7, 8 | ax-mp 5 | . . . . . . 7 ⊢ (({𝐴} ∩ (𝐶 ∖ {𝐴})) = ∅ ↔ ({〈𝐴, 𝐵〉} ↾ (𝐶 ∖ {𝐴})) = ∅) |
10 | 4, 9 | mpbi 145 | . . . . . 6 ⊢ ({〈𝐴, 𝐵〉} ↾ (𝐶 ∖ {𝐴})) = ∅ |
11 | residm 4975 | . . . . . 6 ⊢ ((𝐹 ↾ (𝐶 ∖ {𝐴})) ↾ (𝐶 ∖ {𝐴})) = (𝐹 ↾ (𝐶 ∖ {𝐴})) | |
12 | 10, 11 | uneq12i 3312 | . . . . 5 ⊢ (({〈𝐴, 𝐵〉} ↾ (𝐶 ∖ {𝐴})) ∪ ((𝐹 ↾ (𝐶 ∖ {𝐴})) ↾ (𝐶 ∖ {𝐴}))) = (∅ ∪ (𝐹 ↾ (𝐶 ∖ {𝐴}))) |
13 | uncom 3304 | . . . . 5 ⊢ (∅ ∪ (𝐹 ↾ (𝐶 ∖ {𝐴}))) = ((𝐹 ↾ (𝐶 ∖ {𝐴})) ∪ ∅) | |
14 | un0 3481 | . . . . 5 ⊢ ((𝐹 ↾ (𝐶 ∖ {𝐴})) ∪ ∅) = (𝐹 ↾ (𝐶 ∖ {𝐴})) | |
15 | 12, 13, 14 | 3eqtri 2218 | . . . 4 ⊢ (({〈𝐴, 𝐵〉} ↾ (𝐶 ∖ {𝐴})) ∪ ((𝐹 ↾ (𝐶 ∖ {𝐴})) ↾ (𝐶 ∖ {𝐴}))) = (𝐹 ↾ (𝐶 ∖ {𝐴})) |
16 | 2, 3, 15 | 3eqtri 2218 | . . 3 ⊢ (𝐺 ↾ (𝐶 ∖ {𝐴})) = (𝐹 ↾ (𝐶 ∖ {𝐴})) |
17 | 16 | fveq1i 5556 | . 2 ⊢ ((𝐺 ↾ (𝐶 ∖ {𝐴}))‘𝐷) = ((𝐹 ↾ (𝐶 ∖ {𝐴}))‘𝐷) |
18 | fvres 5579 | . 2 ⊢ (𝐷 ∈ (𝐶 ∖ {𝐴}) → ((𝐺 ↾ (𝐶 ∖ {𝐴}))‘𝐷) = (𝐺‘𝐷)) | |
19 | fvres 5579 | . 2 ⊢ (𝐷 ∈ (𝐶 ∖ {𝐴}) → ((𝐹 ↾ (𝐶 ∖ {𝐴}))‘𝐷) = (𝐹‘𝐷)) | |
20 | 17, 18, 19 | 3eqtr3a 2250 | 1 ⊢ (𝐷 ∈ (𝐶 ∖ {𝐴}) → (𝐺‘𝐷) = (𝐹‘𝐷)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ∈ wcel 2164 Vcvv 2760 ∖ cdif 3151 ∪ cun 3152 ∩ cin 3153 ∅c0 3447 {csn 3619 〈cop 3622 ↾ cres 4662 Fn wfn 5250 ‘cfv 5255 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-res 4672 df-iota 5216 df-fun 5257 df-fn 5258 df-fv 5263 |
This theorem is referenced by: facnn 10801 |
Copyright terms: Public domain | W3C validator |