ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvsnun2 GIF version

Theorem fvsnun2 5694
Description: The value of a function with one of its ordered pairs replaced, at arguments other than the replaced one. See also fvsnun1 5693. (Contributed by NM, 23-Sep-2007.)
Hypotheses
Ref Expression
fvsnun.1 𝐴 ∈ V
fvsnun.2 𝐵 ∈ V
fvsnun.3 𝐺 = ({⟨𝐴, 𝐵⟩} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴})))
Assertion
Ref Expression
fvsnun2 (𝐷 ∈ (𝐶 ∖ {𝐴}) → (𝐺𝐷) = (𝐹𝐷))

Proof of Theorem fvsnun2
StepHypRef Expression
1 fvsnun.3 . . . . 5 𝐺 = ({⟨𝐴, 𝐵⟩} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴})))
21reseq1i 4887 . . . 4 (𝐺 ↾ (𝐶 ∖ {𝐴})) = (({⟨𝐴, 𝐵⟩} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴}))) ↾ (𝐶 ∖ {𝐴}))
3 resundir 4905 . . . 4 (({⟨𝐴, 𝐵⟩} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴}))) ↾ (𝐶 ∖ {𝐴})) = (({⟨𝐴, 𝐵⟩} ↾ (𝐶 ∖ {𝐴})) ∪ ((𝐹 ↾ (𝐶 ∖ {𝐴})) ↾ (𝐶 ∖ {𝐴})))
4 disjdif 3487 . . . . . . 7 ({𝐴} ∩ (𝐶 ∖ {𝐴})) = ∅
5 fvsnun.1 . . . . . . . . 9 𝐴 ∈ V
6 fvsnun.2 . . . . . . . . 9 𝐵 ∈ V
75, 6fnsn 5252 . . . . . . . 8 {⟨𝐴, 𝐵⟩} Fn {𝐴}
8 fnresdisj 5308 . . . . . . . 8 ({⟨𝐴, 𝐵⟩} Fn {𝐴} → (({𝐴} ∩ (𝐶 ∖ {𝐴})) = ∅ ↔ ({⟨𝐴, 𝐵⟩} ↾ (𝐶 ∖ {𝐴})) = ∅))
97, 8ax-mp 5 . . . . . . 7 (({𝐴} ∩ (𝐶 ∖ {𝐴})) = ∅ ↔ ({⟨𝐴, 𝐵⟩} ↾ (𝐶 ∖ {𝐴})) = ∅)
104, 9mpbi 144 . . . . . 6 ({⟨𝐴, 𝐵⟩} ↾ (𝐶 ∖ {𝐴})) = ∅
11 residm 4923 . . . . . 6 ((𝐹 ↾ (𝐶 ∖ {𝐴})) ↾ (𝐶 ∖ {𝐴})) = (𝐹 ↾ (𝐶 ∖ {𝐴}))
1210, 11uneq12i 3279 . . . . 5 (({⟨𝐴, 𝐵⟩} ↾ (𝐶 ∖ {𝐴})) ∪ ((𝐹 ↾ (𝐶 ∖ {𝐴})) ↾ (𝐶 ∖ {𝐴}))) = (∅ ∪ (𝐹 ↾ (𝐶 ∖ {𝐴})))
13 uncom 3271 . . . . 5 (∅ ∪ (𝐹 ↾ (𝐶 ∖ {𝐴}))) = ((𝐹 ↾ (𝐶 ∖ {𝐴})) ∪ ∅)
14 un0 3448 . . . . 5 ((𝐹 ↾ (𝐶 ∖ {𝐴})) ∪ ∅) = (𝐹 ↾ (𝐶 ∖ {𝐴}))
1512, 13, 143eqtri 2195 . . . 4 (({⟨𝐴, 𝐵⟩} ↾ (𝐶 ∖ {𝐴})) ∪ ((𝐹 ↾ (𝐶 ∖ {𝐴})) ↾ (𝐶 ∖ {𝐴}))) = (𝐹 ↾ (𝐶 ∖ {𝐴}))
162, 3, 153eqtri 2195 . . 3 (𝐺 ↾ (𝐶 ∖ {𝐴})) = (𝐹 ↾ (𝐶 ∖ {𝐴}))
1716fveq1i 5497 . 2 ((𝐺 ↾ (𝐶 ∖ {𝐴}))‘𝐷) = ((𝐹 ↾ (𝐶 ∖ {𝐴}))‘𝐷)
18 fvres 5520 . 2 (𝐷 ∈ (𝐶 ∖ {𝐴}) → ((𝐺 ↾ (𝐶 ∖ {𝐴}))‘𝐷) = (𝐺𝐷))
19 fvres 5520 . 2 (𝐷 ∈ (𝐶 ∖ {𝐴}) → ((𝐹 ↾ (𝐶 ∖ {𝐴}))‘𝐷) = (𝐹𝐷))
2017, 18, 193eqtr3a 2227 1 (𝐷 ∈ (𝐶 ∖ {𝐴}) → (𝐺𝐷) = (𝐹𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104   = wceq 1348  wcel 2141  Vcvv 2730  cdif 3118  cun 3119  cin 3120  c0 3414  {csn 3583  cop 3586  cres 4613   Fn wfn 5193  cfv 5198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-res 4623  df-iota 5160  df-fun 5200  df-fn 5201  df-fv 5206
This theorem is referenced by:  facnn  10661
  Copyright terms: Public domain W3C validator