| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvsnun2 | GIF version | ||
| Description: The value of a function with one of its ordered pairs replaced, at arguments other than the replaced one. See also fvsnun1 5794. (Contributed by NM, 23-Sep-2007.) |
| Ref | Expression |
|---|---|
| fvsnun.1 | ⊢ 𝐴 ∈ V |
| fvsnun.2 | ⊢ 𝐵 ∈ V |
| fvsnun.3 | ⊢ 𝐺 = ({〈𝐴, 𝐵〉} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴}))) |
| Ref | Expression |
|---|---|
| fvsnun2 | ⊢ (𝐷 ∈ (𝐶 ∖ {𝐴}) → (𝐺‘𝐷) = (𝐹‘𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvsnun.3 | . . . . 5 ⊢ 𝐺 = ({〈𝐴, 𝐵〉} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴}))) | |
| 2 | 1 | reseq1i 4964 | . . . 4 ⊢ (𝐺 ↾ (𝐶 ∖ {𝐴})) = (({〈𝐴, 𝐵〉} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴}))) ↾ (𝐶 ∖ {𝐴})) |
| 3 | resundir 4982 | . . . 4 ⊢ (({〈𝐴, 𝐵〉} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴}))) ↾ (𝐶 ∖ {𝐴})) = (({〈𝐴, 𝐵〉} ↾ (𝐶 ∖ {𝐴})) ∪ ((𝐹 ↾ (𝐶 ∖ {𝐴})) ↾ (𝐶 ∖ {𝐴}))) | |
| 4 | disjdif 3537 | . . . . . . 7 ⊢ ({𝐴} ∩ (𝐶 ∖ {𝐴})) = ∅ | |
| 5 | fvsnun.1 | . . . . . . . . 9 ⊢ 𝐴 ∈ V | |
| 6 | fvsnun.2 | . . . . . . . . 9 ⊢ 𝐵 ∈ V | |
| 7 | 5, 6 | fnsn 5337 | . . . . . . . 8 ⊢ {〈𝐴, 𝐵〉} Fn {𝐴} |
| 8 | fnresdisj 5395 | . . . . . . . 8 ⊢ ({〈𝐴, 𝐵〉} Fn {𝐴} → (({𝐴} ∩ (𝐶 ∖ {𝐴})) = ∅ ↔ ({〈𝐴, 𝐵〉} ↾ (𝐶 ∖ {𝐴})) = ∅)) | |
| 9 | 7, 8 | ax-mp 5 | . . . . . . 7 ⊢ (({𝐴} ∩ (𝐶 ∖ {𝐴})) = ∅ ↔ ({〈𝐴, 𝐵〉} ↾ (𝐶 ∖ {𝐴})) = ∅) |
| 10 | 4, 9 | mpbi 145 | . . . . . 6 ⊢ ({〈𝐴, 𝐵〉} ↾ (𝐶 ∖ {𝐴})) = ∅ |
| 11 | residm 5000 | . . . . . 6 ⊢ ((𝐹 ↾ (𝐶 ∖ {𝐴})) ↾ (𝐶 ∖ {𝐴})) = (𝐹 ↾ (𝐶 ∖ {𝐴})) | |
| 12 | 10, 11 | uneq12i 3329 | . . . . 5 ⊢ (({〈𝐴, 𝐵〉} ↾ (𝐶 ∖ {𝐴})) ∪ ((𝐹 ↾ (𝐶 ∖ {𝐴})) ↾ (𝐶 ∖ {𝐴}))) = (∅ ∪ (𝐹 ↾ (𝐶 ∖ {𝐴}))) |
| 13 | uncom 3321 | . . . . 5 ⊢ (∅ ∪ (𝐹 ↾ (𝐶 ∖ {𝐴}))) = ((𝐹 ↾ (𝐶 ∖ {𝐴})) ∪ ∅) | |
| 14 | un0 3498 | . . . . 5 ⊢ ((𝐹 ↾ (𝐶 ∖ {𝐴})) ∪ ∅) = (𝐹 ↾ (𝐶 ∖ {𝐴})) | |
| 15 | 12, 13, 14 | 3eqtri 2231 | . . . 4 ⊢ (({〈𝐴, 𝐵〉} ↾ (𝐶 ∖ {𝐴})) ∪ ((𝐹 ↾ (𝐶 ∖ {𝐴})) ↾ (𝐶 ∖ {𝐴}))) = (𝐹 ↾ (𝐶 ∖ {𝐴})) |
| 16 | 2, 3, 15 | 3eqtri 2231 | . . 3 ⊢ (𝐺 ↾ (𝐶 ∖ {𝐴})) = (𝐹 ↾ (𝐶 ∖ {𝐴})) |
| 17 | 16 | fveq1i 5590 | . 2 ⊢ ((𝐺 ↾ (𝐶 ∖ {𝐴}))‘𝐷) = ((𝐹 ↾ (𝐶 ∖ {𝐴}))‘𝐷) |
| 18 | fvres 5613 | . 2 ⊢ (𝐷 ∈ (𝐶 ∖ {𝐴}) → ((𝐺 ↾ (𝐶 ∖ {𝐴}))‘𝐷) = (𝐺‘𝐷)) | |
| 19 | fvres 5613 | . 2 ⊢ (𝐷 ∈ (𝐶 ∖ {𝐴}) → ((𝐹 ↾ (𝐶 ∖ {𝐴}))‘𝐷) = (𝐹‘𝐷)) | |
| 20 | 17, 18, 19 | 3eqtr3a 2263 | 1 ⊢ (𝐷 ∈ (𝐶 ∖ {𝐴}) → (𝐺‘𝐷) = (𝐹‘𝐷)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1373 ∈ wcel 2177 Vcvv 2773 ∖ cdif 3167 ∪ cun 3168 ∩ cin 3169 ∅c0 3464 {csn 3638 〈cop 3641 ↾ cres 4685 Fn wfn 5275 ‘cfv 5280 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-opab 4114 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-res 4695 df-iota 5241 df-fun 5282 df-fn 5283 df-fv 5288 |
| This theorem is referenced by: facnn 10894 |
| Copyright terms: Public domain | W3C validator |