ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvsnun2 GIF version

Theorem fvsnun2 5495
Description: The value of a function with one of its ordered pairs replaced, at arguments other than the replaced one. See also fvsnun1 5494. (Contributed by NM, 23-Sep-2007.)
Hypotheses
Ref Expression
fvsnun.1 𝐴 ∈ V
fvsnun.2 𝐵 ∈ V
fvsnun.3 𝐺 = ({⟨𝐴, 𝐵⟩} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴})))
Assertion
Ref Expression
fvsnun2 (𝐷 ∈ (𝐶 ∖ {𝐴}) → (𝐺𝐷) = (𝐹𝐷))

Proof of Theorem fvsnun2
StepHypRef Expression
1 fvsnun.3 . . . . 5 𝐺 = ({⟨𝐴, 𝐵⟩} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴})))
21reseq1i 4709 . . . 4 (𝐺 ↾ (𝐶 ∖ {𝐴})) = (({⟨𝐴, 𝐵⟩} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴}))) ↾ (𝐶 ∖ {𝐴}))
3 resundir 4727 . . . 4 (({⟨𝐴, 𝐵⟩} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴}))) ↾ (𝐶 ∖ {𝐴})) = (({⟨𝐴, 𝐵⟩} ↾ (𝐶 ∖ {𝐴})) ∪ ((𝐹 ↾ (𝐶 ∖ {𝐴})) ↾ (𝐶 ∖ {𝐴})))
4 disjdif 3355 . . . . . . 7 ({𝐴} ∩ (𝐶 ∖ {𝐴})) = ∅
5 fvsnun.1 . . . . . . . . 9 𝐴 ∈ V
6 fvsnun.2 . . . . . . . . 9 𝐵 ∈ V
75, 6fnsn 5068 . . . . . . . 8 {⟨𝐴, 𝐵⟩} Fn {𝐴}
8 fnresdisj 5124 . . . . . . . 8 ({⟨𝐴, 𝐵⟩} Fn {𝐴} → (({𝐴} ∩ (𝐶 ∖ {𝐴})) = ∅ ↔ ({⟨𝐴, 𝐵⟩} ↾ (𝐶 ∖ {𝐴})) = ∅))
97, 8ax-mp 7 . . . . . . 7 (({𝐴} ∩ (𝐶 ∖ {𝐴})) = ∅ ↔ ({⟨𝐴, 𝐵⟩} ↾ (𝐶 ∖ {𝐴})) = ∅)
104, 9mpbi 143 . . . . . 6 ({⟨𝐴, 𝐵⟩} ↾ (𝐶 ∖ {𝐴})) = ∅
11 residm 4744 . . . . . 6 ((𝐹 ↾ (𝐶 ∖ {𝐴})) ↾ (𝐶 ∖ {𝐴})) = (𝐹 ↾ (𝐶 ∖ {𝐴}))
1210, 11uneq12i 3152 . . . . 5 (({⟨𝐴, 𝐵⟩} ↾ (𝐶 ∖ {𝐴})) ∪ ((𝐹 ↾ (𝐶 ∖ {𝐴})) ↾ (𝐶 ∖ {𝐴}))) = (∅ ∪ (𝐹 ↾ (𝐶 ∖ {𝐴})))
13 uncom 3144 . . . . 5 (∅ ∪ (𝐹 ↾ (𝐶 ∖ {𝐴}))) = ((𝐹 ↾ (𝐶 ∖ {𝐴})) ∪ ∅)
14 un0 3316 . . . . 5 ((𝐹 ↾ (𝐶 ∖ {𝐴})) ∪ ∅) = (𝐹 ↾ (𝐶 ∖ {𝐴}))
1512, 13, 143eqtri 2112 . . . 4 (({⟨𝐴, 𝐵⟩} ↾ (𝐶 ∖ {𝐴})) ∪ ((𝐹 ↾ (𝐶 ∖ {𝐴})) ↾ (𝐶 ∖ {𝐴}))) = (𝐹 ↾ (𝐶 ∖ {𝐴}))
162, 3, 153eqtri 2112 . . 3 (𝐺 ↾ (𝐶 ∖ {𝐴})) = (𝐹 ↾ (𝐶 ∖ {𝐴}))
1716fveq1i 5306 . 2 ((𝐺 ↾ (𝐶 ∖ {𝐴}))‘𝐷) = ((𝐹 ↾ (𝐶 ∖ {𝐴}))‘𝐷)
18 fvres 5329 . 2 (𝐷 ∈ (𝐶 ∖ {𝐴}) → ((𝐺 ↾ (𝐶 ∖ {𝐴}))‘𝐷) = (𝐺𝐷))
19 fvres 5329 . 2 (𝐷 ∈ (𝐶 ∖ {𝐴}) → ((𝐹 ↾ (𝐶 ∖ {𝐴}))‘𝐷) = (𝐹𝐷))
2017, 18, 193eqtr3a 2144 1 (𝐷 ∈ (𝐶 ∖ {𝐴}) → (𝐺𝐷) = (𝐹𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 103   = wceq 1289  wcel 1438  Vcvv 2619  cdif 2996  cun 2997  cin 2998  c0 3286  {csn 3446  cop 3449  cres 4440   Fn wfn 5010  cfv 5015
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3957  ax-pow 4009  ax-pr 4036
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365  df-v 2621  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-nul 3287  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-br 3846  df-opab 3900  df-id 4120  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-res 4450  df-iota 4980  df-fun 5017  df-fn 5018  df-fv 5023
This theorem is referenced by:  facnn  10131
  Copyright terms: Public domain W3C validator