Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fvsnun2 | GIF version |
Description: The value of a function with one of its ordered pairs replaced, at arguments other than the replaced one. See also fvsnun1 5693. (Contributed by NM, 23-Sep-2007.) |
Ref | Expression |
---|---|
fvsnun.1 | ⊢ 𝐴 ∈ V |
fvsnun.2 | ⊢ 𝐵 ∈ V |
fvsnun.3 | ⊢ 𝐺 = ({〈𝐴, 𝐵〉} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴}))) |
Ref | Expression |
---|---|
fvsnun2 | ⊢ (𝐷 ∈ (𝐶 ∖ {𝐴}) → (𝐺‘𝐷) = (𝐹‘𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvsnun.3 | . . . . 5 ⊢ 𝐺 = ({〈𝐴, 𝐵〉} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴}))) | |
2 | 1 | reseq1i 4887 | . . . 4 ⊢ (𝐺 ↾ (𝐶 ∖ {𝐴})) = (({〈𝐴, 𝐵〉} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴}))) ↾ (𝐶 ∖ {𝐴})) |
3 | resundir 4905 | . . . 4 ⊢ (({〈𝐴, 𝐵〉} ∪ (𝐹 ↾ (𝐶 ∖ {𝐴}))) ↾ (𝐶 ∖ {𝐴})) = (({〈𝐴, 𝐵〉} ↾ (𝐶 ∖ {𝐴})) ∪ ((𝐹 ↾ (𝐶 ∖ {𝐴})) ↾ (𝐶 ∖ {𝐴}))) | |
4 | disjdif 3487 | . . . . . . 7 ⊢ ({𝐴} ∩ (𝐶 ∖ {𝐴})) = ∅ | |
5 | fvsnun.1 | . . . . . . . . 9 ⊢ 𝐴 ∈ V | |
6 | fvsnun.2 | . . . . . . . . 9 ⊢ 𝐵 ∈ V | |
7 | 5, 6 | fnsn 5252 | . . . . . . . 8 ⊢ {〈𝐴, 𝐵〉} Fn {𝐴} |
8 | fnresdisj 5308 | . . . . . . . 8 ⊢ ({〈𝐴, 𝐵〉} Fn {𝐴} → (({𝐴} ∩ (𝐶 ∖ {𝐴})) = ∅ ↔ ({〈𝐴, 𝐵〉} ↾ (𝐶 ∖ {𝐴})) = ∅)) | |
9 | 7, 8 | ax-mp 5 | . . . . . . 7 ⊢ (({𝐴} ∩ (𝐶 ∖ {𝐴})) = ∅ ↔ ({〈𝐴, 𝐵〉} ↾ (𝐶 ∖ {𝐴})) = ∅) |
10 | 4, 9 | mpbi 144 | . . . . . 6 ⊢ ({〈𝐴, 𝐵〉} ↾ (𝐶 ∖ {𝐴})) = ∅ |
11 | residm 4923 | . . . . . 6 ⊢ ((𝐹 ↾ (𝐶 ∖ {𝐴})) ↾ (𝐶 ∖ {𝐴})) = (𝐹 ↾ (𝐶 ∖ {𝐴})) | |
12 | 10, 11 | uneq12i 3279 | . . . . 5 ⊢ (({〈𝐴, 𝐵〉} ↾ (𝐶 ∖ {𝐴})) ∪ ((𝐹 ↾ (𝐶 ∖ {𝐴})) ↾ (𝐶 ∖ {𝐴}))) = (∅ ∪ (𝐹 ↾ (𝐶 ∖ {𝐴}))) |
13 | uncom 3271 | . . . . 5 ⊢ (∅ ∪ (𝐹 ↾ (𝐶 ∖ {𝐴}))) = ((𝐹 ↾ (𝐶 ∖ {𝐴})) ∪ ∅) | |
14 | un0 3448 | . . . . 5 ⊢ ((𝐹 ↾ (𝐶 ∖ {𝐴})) ∪ ∅) = (𝐹 ↾ (𝐶 ∖ {𝐴})) | |
15 | 12, 13, 14 | 3eqtri 2195 | . . . 4 ⊢ (({〈𝐴, 𝐵〉} ↾ (𝐶 ∖ {𝐴})) ∪ ((𝐹 ↾ (𝐶 ∖ {𝐴})) ↾ (𝐶 ∖ {𝐴}))) = (𝐹 ↾ (𝐶 ∖ {𝐴})) |
16 | 2, 3, 15 | 3eqtri 2195 | . . 3 ⊢ (𝐺 ↾ (𝐶 ∖ {𝐴})) = (𝐹 ↾ (𝐶 ∖ {𝐴})) |
17 | 16 | fveq1i 5497 | . 2 ⊢ ((𝐺 ↾ (𝐶 ∖ {𝐴}))‘𝐷) = ((𝐹 ↾ (𝐶 ∖ {𝐴}))‘𝐷) |
18 | fvres 5520 | . 2 ⊢ (𝐷 ∈ (𝐶 ∖ {𝐴}) → ((𝐺 ↾ (𝐶 ∖ {𝐴}))‘𝐷) = (𝐺‘𝐷)) | |
19 | fvres 5520 | . 2 ⊢ (𝐷 ∈ (𝐶 ∖ {𝐴}) → ((𝐹 ↾ (𝐶 ∖ {𝐴}))‘𝐷) = (𝐹‘𝐷)) | |
20 | 17, 18, 19 | 3eqtr3a 2227 | 1 ⊢ (𝐷 ∈ (𝐶 ∖ {𝐴}) → (𝐺‘𝐷) = (𝐹‘𝐷)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1348 ∈ wcel 2141 Vcvv 2730 ∖ cdif 3118 ∪ cun 3119 ∩ cin 3120 ∅c0 3414 {csn 3583 〈cop 3586 ↾ cres 4613 Fn wfn 5193 ‘cfv 5198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-res 4623 df-iota 5160 df-fun 5200 df-fn 5201 df-fv 5206 |
This theorem is referenced by: facnn 10661 |
Copyright terms: Public domain | W3C validator |