![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rpcxpsqrt | GIF version |
Description: The exponential function with exponent 1 / 2 exactly matches the square root function, and thus serves as a suitable generalization to other ๐-th roots and irrational roots. (Contributed by Mario Carneiro, 2-Aug-2014.) (Revised by Jim Kingdon, 16-Jun-2024.) |
Ref | Expression |
---|---|
rpcxpsqrt | โข (๐ด โ โ+ โ (๐ดโ๐(1 / 2)) = (โโ๐ด)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | halfre 9145 | . . . 4 โข (1 / 2) โ โ | |
2 | rpcxpcl 14595 | . . . 4 โข ((๐ด โ โ+ โง (1 / 2) โ โ) โ (๐ดโ๐(1 / 2)) โ โ+) | |
3 | 1, 2 | mpan2 425 | . . 3 โข (๐ด โ โ+ โ (๐ดโ๐(1 / 2)) โ โ+) |
4 | 3 | rpred 9709 | . 2 โข (๐ด โ โ+ โ (๐ดโ๐(1 / 2)) โ โ) |
5 | rpre 9673 | . . 3 โข (๐ด โ โ+ โ ๐ด โ โ) | |
6 | rpge0 9679 | . . 3 โข (๐ด โ โ+ โ 0 โค ๐ด) | |
7 | 5, 6 | resqrtcld 11185 | . 2 โข (๐ด โ โ+ โ (โโ๐ด) โ โ) |
8 | 3 | rpge0d 9713 | . 2 โข (๐ด โ โ+ โ 0 โค (๐ดโ๐(1 / 2))) |
9 | 5, 6 | sqrtge0d 11188 | . 2 โข (๐ด โ โ+ โ 0 โค (โโ๐ด)) |
10 | ax-1cn 7917 | . . . . . 6 โข 1 โ โ | |
11 | 2halves 9161 | . . . . . 6 โข (1 โ โ โ ((1 / 2) + (1 / 2)) = 1) | |
12 | 10, 11 | ax-mp 5 | . . . . 5 โข ((1 / 2) + (1 / 2)) = 1 |
13 | 12 | oveq2i 5899 | . . . 4 โข (๐ดโ๐((1 / 2) + (1 / 2))) = (๐ดโ๐1) |
14 | halfcn 9146 | . . . . 5 โข (1 / 2) โ โ | |
15 | rpcxpadd 14597 | . . . . 5 โข ((๐ด โ โ+ โง (1 / 2) โ โ โง (1 / 2) โ โ) โ (๐ดโ๐((1 / 2) + (1 / 2))) = ((๐ดโ๐(1 / 2)) ยท (๐ดโ๐(1 / 2)))) | |
16 | 14, 14, 15 | mp3an23 1339 | . . . 4 โข (๐ด โ โ+ โ (๐ดโ๐((1 / 2) + (1 / 2))) = ((๐ดโ๐(1 / 2)) ยท (๐ดโ๐(1 / 2)))) |
17 | rpcxp1 14591 | . . . 4 โข (๐ด โ โ+ โ (๐ดโ๐1) = ๐ด) | |
18 | 13, 16, 17 | 3eqtr3a 2244 | . . 3 โข (๐ด โ โ+ โ ((๐ดโ๐(1 / 2)) ยท (๐ดโ๐(1 / 2))) = ๐ด) |
19 | 3 | rpcnd 9711 | . . . 4 โข (๐ด โ โ+ โ (๐ดโ๐(1 / 2)) โ โ) |
20 | 19 | sqvald 10664 | . . 3 โข (๐ด โ โ+ โ ((๐ดโ๐(1 / 2))โ2) = ((๐ดโ๐(1 / 2)) ยท (๐ดโ๐(1 / 2)))) |
21 | resqrtth 11053 | . . . 4 โข ((๐ด โ โ โง 0 โค ๐ด) โ ((โโ๐ด)โ2) = ๐ด) | |
22 | 5, 6, 21 | syl2anc 411 | . . 3 โข (๐ด โ โ+ โ ((โโ๐ด)โ2) = ๐ด) |
23 | 18, 20, 22 | 3eqtr4d 2230 | . 2 โข (๐ด โ โ+ โ ((๐ดโ๐(1 / 2))โ2) = ((โโ๐ด)โ2)) |
24 | 4, 7, 8, 9, 23 | sq11d 10700 | 1 โข (๐ด โ โ+ โ (๐ดโ๐(1 / 2)) = (โโ๐ด)) |
Colors of variables: wff set class |
Syntax hints: โ wi 4 = wceq 1363 โ wcel 2158 class class class wbr 4015 โcfv 5228 (class class class)co 5888 โcc 7822 โcr 7823 0cc0 7824 1c1 7825 + caddc 7827 ยท cmul 7829 โค cle 8006 / cdiv 8642 2c2 8983 โ+crp 9666 โcexp 10532 โcsqrt 11018 โ๐ccxp 14549 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-coll 4130 ax-sep 4133 ax-nul 4141 ax-pow 4186 ax-pr 4221 ax-un 4445 ax-setind 4548 ax-iinf 4599 ax-cnex 7915 ax-resscn 7916 ax-1cn 7917 ax-1re 7918 ax-icn 7919 ax-addcl 7920 ax-addrcl 7921 ax-mulcl 7922 ax-mulrcl 7923 ax-addcom 7924 ax-mulcom 7925 ax-addass 7926 ax-mulass 7927 ax-distr 7928 ax-i2m1 7929 ax-0lt1 7930 ax-1rid 7931 ax-0id 7932 ax-rnegex 7933 ax-precex 7934 ax-cnre 7935 ax-pre-ltirr 7936 ax-pre-ltwlin 7937 ax-pre-lttrn 7938 ax-pre-apti 7939 ax-pre-ltadd 7940 ax-pre-mulgt0 7941 ax-pre-mulext 7942 ax-arch 7943 ax-caucvg 7944 ax-pre-suploc 7945 ax-addf 7946 ax-mulf 7947 |
This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 980 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ne 2358 df-nel 2453 df-ral 2470 df-rex 2471 df-reu 2472 df-rmo 2473 df-rab 2474 df-v 2751 df-sbc 2975 df-csb 3070 df-dif 3143 df-un 3145 df-in 3147 df-ss 3154 df-nul 3435 df-if 3547 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-int 3857 df-iun 3900 df-disj 3993 df-br 4016 df-opab 4077 df-mpt 4078 df-tr 4114 df-id 4305 df-po 4308 df-iso 4309 df-iord 4378 df-on 4380 df-ilim 4381 df-suc 4383 df-iom 4602 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-rn 4649 df-res 4650 df-ima 4651 df-iota 5190 df-fun 5230 df-fn 5231 df-f 5232 df-f1 5233 df-fo 5234 df-f1o 5235 df-fv 5236 df-isom 5237 df-riota 5844 df-ov 5891 df-oprab 5892 df-mpo 5893 df-of 6096 df-1st 6154 df-2nd 6155 df-recs 6319 df-irdg 6384 df-frec 6405 df-1o 6430 df-oadd 6434 df-er 6548 df-map 6663 df-pm 6664 df-en 6754 df-dom 6755 df-fin 6756 df-sup 6996 df-inf 6997 df-pnf 8007 df-mnf 8008 df-xr 8009 df-ltxr 8010 df-le 8011 df-sub 8143 df-neg 8144 df-reap 8545 df-ap 8552 df-div 8643 df-inn 8933 df-2 8991 df-3 8992 df-4 8993 df-n0 9190 df-z 9267 df-uz 9542 df-q 9633 df-rp 9667 df-xneg 9785 df-xadd 9786 df-ioo 9905 df-ico 9907 df-icc 9908 df-fz 10022 df-fzo 10156 df-seqfrec 10459 df-exp 10533 df-fac 10719 df-bc 10741 df-ihash 10769 df-shft 10837 df-cj 10864 df-re 10865 df-im 10866 df-rsqrt 11020 df-abs 11021 df-clim 11300 df-sumdc 11375 df-ef 11669 df-e 11670 df-rest 12707 df-topgen 12726 df-psmet 13704 df-xmet 13705 df-met 13706 df-bl 13707 df-mopn 13708 df-top 13769 df-topon 13782 df-bases 13814 df-ntr 13867 df-cn 13959 df-cnp 13960 df-tx 14024 df-cncf 14329 df-limced 14396 df-dvap 14397 df-relog 14550 df-rpcxp 14551 |
This theorem is referenced by: logsqrt 14614 sqrt2cxp2logb9e3 14664 |
Copyright terms: Public domain | W3C validator |