| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rpcxpsqrt | GIF version | ||
| Description: The exponential function with exponent 1 / 2 exactly matches the square root function, and thus serves as a suitable generalization to other 𝑛-th roots and irrational roots. (Contributed by Mario Carneiro, 2-Aug-2014.) (Revised by Jim Kingdon, 16-Jun-2024.) |
| Ref | Expression |
|---|---|
| rpcxpsqrt | ⊢ (𝐴 ∈ ℝ+ → (𝐴↑𝑐(1 / 2)) = (√‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | halfre 9292 | . . . 4 ⊢ (1 / 2) ∈ ℝ | |
| 2 | rpcxpcl 15542 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ (1 / 2) ∈ ℝ) → (𝐴↑𝑐(1 / 2)) ∈ ℝ+) | |
| 3 | 1, 2 | mpan2 425 | . . 3 ⊢ (𝐴 ∈ ℝ+ → (𝐴↑𝑐(1 / 2)) ∈ ℝ+) |
| 4 | 3 | rpred 9860 | . 2 ⊢ (𝐴 ∈ ℝ+ → (𝐴↑𝑐(1 / 2)) ∈ ℝ) |
| 5 | rpre 9824 | . . 3 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ) | |
| 6 | rpge0 9830 | . . 3 ⊢ (𝐴 ∈ ℝ+ → 0 ≤ 𝐴) | |
| 7 | 5, 6 | resqrtcld 11640 | . 2 ⊢ (𝐴 ∈ ℝ+ → (√‘𝐴) ∈ ℝ) |
| 8 | 3 | rpge0d 9864 | . 2 ⊢ (𝐴 ∈ ℝ+ → 0 ≤ (𝐴↑𝑐(1 / 2))) |
| 9 | 5, 6 | sqrtge0d 11643 | . 2 ⊢ (𝐴 ∈ ℝ+ → 0 ≤ (√‘𝐴)) |
| 10 | ax-1cn 8060 | . . . . . 6 ⊢ 1 ∈ ℂ | |
| 11 | 2halves 9308 | . . . . . 6 ⊢ (1 ∈ ℂ → ((1 / 2) + (1 / 2)) = 1) | |
| 12 | 10, 11 | ax-mp 5 | . . . . 5 ⊢ ((1 / 2) + (1 / 2)) = 1 |
| 13 | 12 | oveq2i 5985 | . . . 4 ⊢ (𝐴↑𝑐((1 / 2) + (1 / 2))) = (𝐴↑𝑐1) |
| 14 | halfcn 9293 | . . . . 5 ⊢ (1 / 2) ∈ ℂ | |
| 15 | rpcxpadd 15544 | . . . . 5 ⊢ ((𝐴 ∈ ℝ+ ∧ (1 / 2) ∈ ℂ ∧ (1 / 2) ∈ ℂ) → (𝐴↑𝑐((1 / 2) + (1 / 2))) = ((𝐴↑𝑐(1 / 2)) · (𝐴↑𝑐(1 / 2)))) | |
| 16 | 14, 14, 15 | mp3an23 1344 | . . . 4 ⊢ (𝐴 ∈ ℝ+ → (𝐴↑𝑐((1 / 2) + (1 / 2))) = ((𝐴↑𝑐(1 / 2)) · (𝐴↑𝑐(1 / 2)))) |
| 17 | rpcxp1 15538 | . . . 4 ⊢ (𝐴 ∈ ℝ+ → (𝐴↑𝑐1) = 𝐴) | |
| 18 | 13, 16, 17 | 3eqtr3a 2266 | . . 3 ⊢ (𝐴 ∈ ℝ+ → ((𝐴↑𝑐(1 / 2)) · (𝐴↑𝑐(1 / 2))) = 𝐴) |
| 19 | 3 | rpcnd 9862 | . . . 4 ⊢ (𝐴 ∈ ℝ+ → (𝐴↑𝑐(1 / 2)) ∈ ℂ) |
| 20 | 19 | sqvald 10859 | . . 3 ⊢ (𝐴 ∈ ℝ+ → ((𝐴↑𝑐(1 / 2))↑2) = ((𝐴↑𝑐(1 / 2)) · (𝐴↑𝑐(1 / 2)))) |
| 21 | resqrtth 11508 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((√‘𝐴)↑2) = 𝐴) | |
| 22 | 5, 6, 21 | syl2anc 411 | . . 3 ⊢ (𝐴 ∈ ℝ+ → ((√‘𝐴)↑2) = 𝐴) |
| 23 | 18, 20, 22 | 3eqtr4d 2252 | . 2 ⊢ (𝐴 ∈ ℝ+ → ((𝐴↑𝑐(1 / 2))↑2) = ((√‘𝐴)↑2)) |
| 24 | 4, 7, 8, 9, 23 | sq11d 10895 | 1 ⊢ (𝐴 ∈ ℝ+ → (𝐴↑𝑐(1 / 2)) = (√‘𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1375 ∈ wcel 2180 class class class wbr 4062 ‘cfv 5294 (class class class)co 5974 ℂcc 7965 ℝcr 7966 0cc0 7967 1c1 7968 + caddc 7970 · cmul 7972 ≤ cle 8150 / cdiv 8787 2c2 9129 ℝ+crp 9817 ↑cexp 10727 √csqrt 11473 ↑𝑐ccxp 15496 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-nul 4189 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-iinf 4657 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-mulrcl 8066 ax-addcom 8067 ax-mulcom 8068 ax-addass 8069 ax-mulass 8070 ax-distr 8071 ax-i2m1 8072 ax-0lt1 8073 ax-1rid 8074 ax-0id 8075 ax-rnegex 8076 ax-precex 8077 ax-cnre 8078 ax-pre-ltirr 8079 ax-pre-ltwlin 8080 ax-pre-lttrn 8081 ax-pre-apti 8082 ax-pre-ltadd 8083 ax-pre-mulgt0 8084 ax-pre-mulext 8085 ax-arch 8086 ax-caucvg 8087 ax-pre-suploc 8088 ax-addf 8089 ax-mulf 8090 |
| This theorem depends on definitions: df-bi 117 df-stab 835 df-dc 839 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-reu 2495 df-rmo 2496 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-if 3583 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-disj 4039 df-br 4063 df-opab 4125 df-mpt 4126 df-tr 4162 df-id 4361 df-po 4364 df-iso 4365 df-iord 4434 df-on 4436 df-ilim 4437 df-suc 4439 df-iom 4660 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-isom 5303 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-of 6188 df-1st 6256 df-2nd 6257 df-recs 6421 df-irdg 6486 df-frec 6507 df-1o 6532 df-oadd 6536 df-er 6650 df-map 6767 df-pm 6768 df-en 6858 df-dom 6859 df-fin 6860 df-sup 7119 df-inf 7120 df-pnf 8151 df-mnf 8152 df-xr 8153 df-ltxr 8154 df-le 8155 df-sub 8287 df-neg 8288 df-reap 8690 df-ap 8697 df-div 8788 df-inn 9079 df-2 9137 df-3 9138 df-4 9139 df-n0 9338 df-z 9415 df-uz 9691 df-q 9783 df-rp 9818 df-xneg 9936 df-xadd 9937 df-ioo 10056 df-ico 10058 df-icc 10059 df-fz 10173 df-fzo 10307 df-seqfrec 10637 df-exp 10728 df-fac 10915 df-bc 10937 df-ihash 10965 df-shft 11292 df-cj 11319 df-re 11320 df-im 11321 df-rsqrt 11475 df-abs 11476 df-clim 11756 df-sumdc 11831 df-ef 12125 df-e 12126 df-rest 13240 df-topgen 13259 df-psmet 14472 df-xmet 14473 df-met 14474 df-bl 14475 df-mopn 14476 df-top 14637 df-topon 14650 df-bases 14682 df-ntr 14735 df-cn 14827 df-cnp 14828 df-tx 14892 df-cncf 15210 df-limced 15295 df-dvap 15296 df-relog 15497 df-rpcxp 15498 |
| This theorem is referenced by: logsqrt 15562 sqrt2cxp2logb9e3 15614 |
| Copyright terms: Public domain | W3C validator |