Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rpcxpsqrt | GIF version |
Description: The exponential function with exponent 1 / 2 exactly matches the square root function, and thus serves as a suitable generalization to other 𝑛-th roots and irrational roots. (Contributed by Mario Carneiro, 2-Aug-2014.) (Revised by Jim Kingdon, 16-Jun-2024.) |
Ref | Expression |
---|---|
rpcxpsqrt | ⊢ (𝐴 ∈ ℝ+ → (𝐴↑𝑐(1 / 2)) = (√‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | halfre 9091 | . . . 4 ⊢ (1 / 2) ∈ ℝ | |
2 | rpcxpcl 13618 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ (1 / 2) ∈ ℝ) → (𝐴↑𝑐(1 / 2)) ∈ ℝ+) | |
3 | 1, 2 | mpan2 423 | . . 3 ⊢ (𝐴 ∈ ℝ+ → (𝐴↑𝑐(1 / 2)) ∈ ℝ+) |
4 | 3 | rpred 9653 | . 2 ⊢ (𝐴 ∈ ℝ+ → (𝐴↑𝑐(1 / 2)) ∈ ℝ) |
5 | rpre 9617 | . . 3 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ) | |
6 | rpge0 9623 | . . 3 ⊢ (𝐴 ∈ ℝ+ → 0 ≤ 𝐴) | |
7 | 5, 6 | resqrtcld 11127 | . 2 ⊢ (𝐴 ∈ ℝ+ → (√‘𝐴) ∈ ℝ) |
8 | 3 | rpge0d 9657 | . 2 ⊢ (𝐴 ∈ ℝ+ → 0 ≤ (𝐴↑𝑐(1 / 2))) |
9 | 5, 6 | sqrtge0d 11130 | . 2 ⊢ (𝐴 ∈ ℝ+ → 0 ≤ (√‘𝐴)) |
10 | ax-1cn 7867 | . . . . . 6 ⊢ 1 ∈ ℂ | |
11 | 2halves 9107 | . . . . . 6 ⊢ (1 ∈ ℂ → ((1 / 2) + (1 / 2)) = 1) | |
12 | 10, 11 | ax-mp 5 | . . . . 5 ⊢ ((1 / 2) + (1 / 2)) = 1 |
13 | 12 | oveq2i 5864 | . . . 4 ⊢ (𝐴↑𝑐((1 / 2) + (1 / 2))) = (𝐴↑𝑐1) |
14 | halfcn 9092 | . . . . 5 ⊢ (1 / 2) ∈ ℂ | |
15 | rpcxpadd 13620 | . . . . 5 ⊢ ((𝐴 ∈ ℝ+ ∧ (1 / 2) ∈ ℂ ∧ (1 / 2) ∈ ℂ) → (𝐴↑𝑐((1 / 2) + (1 / 2))) = ((𝐴↑𝑐(1 / 2)) · (𝐴↑𝑐(1 / 2)))) | |
16 | 14, 14, 15 | mp3an23 1324 | . . . 4 ⊢ (𝐴 ∈ ℝ+ → (𝐴↑𝑐((1 / 2) + (1 / 2))) = ((𝐴↑𝑐(1 / 2)) · (𝐴↑𝑐(1 / 2)))) |
17 | rpcxp1 13614 | . . . 4 ⊢ (𝐴 ∈ ℝ+ → (𝐴↑𝑐1) = 𝐴) | |
18 | 13, 16, 17 | 3eqtr3a 2227 | . . 3 ⊢ (𝐴 ∈ ℝ+ → ((𝐴↑𝑐(1 / 2)) · (𝐴↑𝑐(1 / 2))) = 𝐴) |
19 | 3 | rpcnd 9655 | . . . 4 ⊢ (𝐴 ∈ ℝ+ → (𝐴↑𝑐(1 / 2)) ∈ ℂ) |
20 | 19 | sqvald 10606 | . . 3 ⊢ (𝐴 ∈ ℝ+ → ((𝐴↑𝑐(1 / 2))↑2) = ((𝐴↑𝑐(1 / 2)) · (𝐴↑𝑐(1 / 2)))) |
21 | resqrtth 10995 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((√‘𝐴)↑2) = 𝐴) | |
22 | 5, 6, 21 | syl2anc 409 | . . 3 ⊢ (𝐴 ∈ ℝ+ → ((√‘𝐴)↑2) = 𝐴) |
23 | 18, 20, 22 | 3eqtr4d 2213 | . 2 ⊢ (𝐴 ∈ ℝ+ → ((𝐴↑𝑐(1 / 2))↑2) = ((√‘𝐴)↑2)) |
24 | 4, 7, 8, 9, 23 | sq11d 10642 | 1 ⊢ (𝐴 ∈ ℝ+ → (𝐴↑𝑐(1 / 2)) = (√‘𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 ∈ wcel 2141 class class class wbr 3989 ‘cfv 5198 (class class class)co 5853 ℂcc 7772 ℝcr 7773 0cc0 7774 1c1 7775 + caddc 7777 · cmul 7779 ≤ cle 7955 / cdiv 8589 2c2 8929 ℝ+crp 9610 ↑cexp 10475 √csqrt 10960 ↑𝑐ccxp 13572 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 ax-pre-mulext 7892 ax-arch 7893 ax-caucvg 7894 ax-pre-suploc 7895 ax-addf 7896 ax-mulf 7897 |
This theorem depends on definitions: df-bi 116 df-stab 826 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-disj 3967 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-po 4281 df-iso 4282 df-iord 4351 df-on 4353 df-ilim 4354 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-isom 5207 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-of 6061 df-1st 6119 df-2nd 6120 df-recs 6284 df-irdg 6349 df-frec 6370 df-1o 6395 df-oadd 6399 df-er 6513 df-map 6628 df-pm 6629 df-en 6719 df-dom 6720 df-fin 6721 df-sup 6961 df-inf 6962 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-reap 8494 df-ap 8501 df-div 8590 df-inn 8879 df-2 8937 df-3 8938 df-4 8939 df-n0 9136 df-z 9213 df-uz 9488 df-q 9579 df-rp 9611 df-xneg 9729 df-xadd 9730 df-ioo 9849 df-ico 9851 df-icc 9852 df-fz 9966 df-fzo 10099 df-seqfrec 10402 df-exp 10476 df-fac 10660 df-bc 10682 df-ihash 10710 df-shft 10779 df-cj 10806 df-re 10807 df-im 10808 df-rsqrt 10962 df-abs 10963 df-clim 11242 df-sumdc 11317 df-ef 11611 df-e 11612 df-rest 12581 df-topgen 12600 df-psmet 12781 df-xmet 12782 df-met 12783 df-bl 12784 df-mopn 12785 df-top 12790 df-topon 12803 df-bases 12835 df-ntr 12890 df-cn 12982 df-cnp 12983 df-tx 13047 df-cncf 13352 df-limced 13419 df-dvap 13420 df-relog 13573 df-rpcxp 13574 |
This theorem is referenced by: logsqrt 13637 sqrt2cxp2logb9e3 13687 |
Copyright terms: Public domain | W3C validator |