ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  halfleoddlt GIF version

Theorem halfleoddlt 12280
Description: An integer is greater than half of an odd number iff it is greater than or equal to the half of the odd number. (Contributed by AV, 1-Jul-2021.)
Assertion
Ref Expression
halfleoddlt ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑀 ∈ ℤ) → ((𝑁 / 2) ≤ 𝑀 ↔ (𝑁 / 2) < 𝑀))

Proof of Theorem halfleoddlt
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 odd2np1 12259 . . 3 (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁))
2 0xr 8139 . . . . . . . . . . . 12 0 ∈ ℝ*
3 1re 8091 . . . . . . . . . . . . 13 1 ∈ ℝ
43rexri 8150 . . . . . . . . . . . 12 1 ∈ ℝ*
5 halfre 9270 . . . . . . . . . . . . 13 (1 / 2) ∈ ℝ
65rexri 8150 . . . . . . . . . . . 12 (1 / 2) ∈ ℝ*
72, 4, 63pm3.2i 1178 . . . . . . . . . . 11 (0 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ (1 / 2) ∈ ℝ*)
8 halfgt0 9272 . . . . . . . . . . . 12 0 < (1 / 2)
9 halflt1 9274 . . . . . . . . . . . 12 (1 / 2) < 1
108, 9pm3.2i 272 . . . . . . . . . . 11 (0 < (1 / 2) ∧ (1 / 2) < 1)
11 elioo3g 10052 . . . . . . . . . . 11 ((1 / 2) ∈ (0(,)1) ↔ ((0 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ (1 / 2) ∈ ℝ*) ∧ (0 < (1 / 2) ∧ (1 / 2) < 1)))
127, 10, 11mpbir2an 945 . . . . . . . . . 10 (1 / 2) ∈ (0(,)1)
13 zltaddlt1le 10149 . . . . . . . . . 10 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (1 / 2) ∈ (0(,)1)) → ((𝑛 + (1 / 2)) < 𝑀 ↔ (𝑛 + (1 / 2)) ≤ 𝑀))
1412, 13mp3an3 1339 . . . . . . . . 9 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑛 + (1 / 2)) < 𝑀 ↔ (𝑛 + (1 / 2)) ≤ 𝑀))
15 zcn 9397 . . . . . . . . . . . 12 (𝑛 ∈ ℤ → 𝑛 ∈ ℂ)
1615adantr 276 . . . . . . . . . . 11 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → 𝑛 ∈ ℂ)
17 1cnd 8108 . . . . . . . . . . 11 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → 1 ∈ ℂ)
18 2cn 9127 . . . . . . . . . . . . 13 2 ∈ ℂ
19 2ap0 9149 . . . . . . . . . . . . 13 2 # 0
2018, 19pm3.2i 272 . . . . . . . . . . . 12 (2 ∈ ℂ ∧ 2 # 0)
2120a1i 9 . . . . . . . . . . 11 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (2 ∈ ℂ ∧ 2 # 0))
22 muldivdirap 8800 . . . . . . . . . . 11 ((𝑛 ∈ ℂ ∧ 1 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 # 0)) → (((2 · 𝑛) + 1) / 2) = (𝑛 + (1 / 2)))
2316, 17, 21, 22syl3anc 1250 . . . . . . . . . 10 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (((2 · 𝑛) + 1) / 2) = (𝑛 + (1 / 2)))
2423breq1d 4061 . . . . . . . . 9 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((((2 · 𝑛) + 1) / 2) < 𝑀 ↔ (𝑛 + (1 / 2)) < 𝑀))
2523breq1d 4061 . . . . . . . . 9 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((((2 · 𝑛) + 1) / 2) ≤ 𝑀 ↔ (𝑛 + (1 / 2)) ≤ 𝑀))
2614, 24, 253bitr4rd 221 . . . . . . . 8 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((((2 · 𝑛) + 1) / 2) ≤ 𝑀 ↔ (((2 · 𝑛) + 1) / 2) < 𝑀))
27 oveq1 5964 . . . . . . . . . 10 (((2 · 𝑛) + 1) = 𝑁 → (((2 · 𝑛) + 1) / 2) = (𝑁 / 2))
2827breq1d 4061 . . . . . . . . 9 (((2 · 𝑛) + 1) = 𝑁 → ((((2 · 𝑛) + 1) / 2) ≤ 𝑀 ↔ (𝑁 / 2) ≤ 𝑀))
2927breq1d 4061 . . . . . . . . 9 (((2 · 𝑛) + 1) = 𝑁 → ((((2 · 𝑛) + 1) / 2) < 𝑀 ↔ (𝑁 / 2) < 𝑀))
3028, 29bibi12d 235 . . . . . . . 8 (((2 · 𝑛) + 1) = 𝑁 → (((((2 · 𝑛) + 1) / 2) ≤ 𝑀 ↔ (((2 · 𝑛) + 1) / 2) < 𝑀) ↔ ((𝑁 / 2) ≤ 𝑀 ↔ (𝑁 / 2) < 𝑀)))
3126, 30syl5ibcom 155 . . . . . . 7 ((𝑛 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (((2 · 𝑛) + 1) = 𝑁 → ((𝑁 / 2) ≤ 𝑀 ↔ (𝑁 / 2) < 𝑀)))
3231ex 115 . . . . . 6 (𝑛 ∈ ℤ → (𝑀 ∈ ℤ → (((2 · 𝑛) + 1) = 𝑁 → ((𝑁 / 2) ≤ 𝑀 ↔ (𝑁 / 2) < 𝑀))))
3332adantl 277 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑀 ∈ ℤ → (((2 · 𝑛) + 1) = 𝑁 → ((𝑁 / 2) ≤ 𝑀 ↔ (𝑁 / 2) < 𝑀))))
3433com23 78 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (((2 · 𝑛) + 1) = 𝑁 → (𝑀 ∈ ℤ → ((𝑁 / 2) ≤ 𝑀 ↔ (𝑁 / 2) < 𝑀))))
3534rexlimdva 2624 . . 3 (𝑁 ∈ ℤ → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 → (𝑀 ∈ ℤ → ((𝑁 / 2) ≤ 𝑀 ↔ (𝑁 / 2) < 𝑀))))
361, 35sylbid 150 . 2 (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 → (𝑀 ∈ ℤ → ((𝑁 / 2) ≤ 𝑀 ↔ (𝑁 / 2) < 𝑀))))
37363imp 1196 1 ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑀 ∈ ℤ) → ((𝑁 / 2) ≤ 𝑀 ↔ (𝑁 / 2) < 𝑀))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  w3a 981   = wceq 1373  wcel 2177  wrex 2486   class class class wbr 4051  (class class class)co 5957  cc 7943  0cc0 7945  1c1 7946   + caddc 7948   · cmul 7950  *cxr 8126   < clt 8127  cle 8128   # cap 8674   / cdiv 8765  2c2 9107  cz 9392  (,)cioo 10030  cdvds 12173
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-mulrcl 8044  ax-addcom 8045  ax-mulcom 8046  ax-addass 8047  ax-mulass 8048  ax-distr 8049  ax-i2m1 8050  ax-0lt1 8051  ax-1rid 8052  ax-0id 8053  ax-rnegex 8054  ax-precex 8055  ax-cnre 8056  ax-pre-ltirr 8057  ax-pre-ltwlin 8058  ax-pre-lttrn 8059  ax-pre-apti 8060  ax-pre-ltadd 8061  ax-pre-mulgt0 8062  ax-pre-mulext 8063
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-xor 1396  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-br 4052  df-opab 4114  df-id 4348  df-po 4351  df-iso 4352  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-iota 5241  df-fun 5282  df-fv 5288  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-pnf 8129  df-mnf 8130  df-xr 8131  df-ltxr 8132  df-le 8133  df-sub 8265  df-neg 8266  df-reap 8668  df-ap 8675  df-div 8766  df-inn 9057  df-2 9115  df-n0 9316  df-z 9393  df-rp 9796  df-ioo 10034  df-dvds 12174
This theorem is referenced by:  gausslemma2dlem1a  15610
  Copyright terms: Public domain W3C validator